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Abstract
Compensation schemes often reward success but do not penalize failure. Fixed salaries
with stock options or bonuses have this feature. Yet the standard principal–agent model
implies that pay is normally monotonically increasing in performance. This paper shows
that, under loss aversion, there will be intervals over which pay is insensitive to perfor-
mance, with the use of carrots but not sticks is frequently optimal, especially when risk
aversion is low and reference income is endogenous. A further benefit of capping losses,
for example through options, is to discourage reckless behavior by executives seeking to
resurrect their fortunes. (JEL: F3, F4)

1. Introduction

Executive compensation schemes and pay packages more generally tend to re-
ward success but do not attach financial penalties to failure.1 Perhaps the most
striking example is motivating CEOs via base salary plus stock options.2 At first
sight, the explanation is that stock options align the interests of the CEO and
shareholders and so mitigate agency costs. However, protection from downside
loss is not a feature of standard principal–agent theory.3 As shown by Holmstrom
(1979) and Grossman and Hart (1983), if the monotone likelihood property and
some other weak assumptions are satisfied then pay is everywhere increasing in
measured performance.

A rival to the incentive theory is that high-powered compensation, partic-
ularly the award of stock options, is an expropriation device. According to this
“managerial power” view—which has grown in prominence following the Enron,
WorldCom, and other scandals—CEOs loot the companies over which they rule.
Stock options facilitate the robbery because, being nominally performance based
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1. There is much evidence that firms rely mostly on bonuses and promotions to motivate rather than
fines and demotions. Medoff and Abraham (1980) document that, when employees are evaluated
for discretionary bonuses, only 5.5% of the 4,788 managers (in firm A of their two-firm study) are
rated worse than “good” while 20% are rated higher. The reference evaluation and resultant bonus is
therefore that associated with “good”, so almost nobody is in the loss space while one fifth are in the
gain domain.

2. Early discussions of the prevalence of this type of compensation are Jensen and Murphy (1990)
and Hall and Lieberman (1998). Murphy (2002) reports that, in the year 2000, stock options consti-
tuted more than 50% of the median pay of CEOs of the S&P 500 companies.

3. The paper by Hall and Murphy (2001) appears to be inconsistent with this claim, but the absence
of a regular participation constraint means that they do not analyze a standard principal–agent model.
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(even if typically repriced or “reloaded” when under water), they appear more
defensible to investors than would a sky-high salary. In the terminology of Be-
bchuck et al. (2001) and Bebchuck and Fried (2003), stock options are less likely
to violate the shareholders’ “outrage constraint” than more transparent forms of
remuneration, including restricted stock. Yermack (1995) and Bertrand and Mul-
lainathan (2000) provide some evidence for this rent extraction view.4

This paper adapts principal–agent theory to explain the tendency for good
performance to be rewarded and for poor performance to go unpunished. Our
approach is to incorporate loss aversion, as introduced by prospect theory (Kah-
neman and Tversky 1979). The key features are that utility depends upon changes
in wealth and not just on its level, with falls in income involving greater disap-
pointment than the elation created by corresponding increases.5

Our approach involves first-order risk aversion. That is, preferences are such
that there exists a better-than-fair gamble that is rejected even as the income dif-
ference between winning and losing tends to zero. As noted by Segal and Spivak
(1990), this behavior is consistent with expected utility theory if the utility func-
tion is not differentiable near the “certainty equivalent” income. The existence
and location of the kink is determined by our further assumption of reference-
dependent utility. Realized utility is a function not only of realized income but
also of its relation to an accustomed or aspirational reference income. More-
over, the psychological pain of falling below the reference income is greater than
any pleasure from surpassing it by an equal amount. This phenomenon of loss
aversion does not require first-order risk aversion, but it is natural to assume a
kink at the reference income with the utility function steeper immediately below
this level. Such a kink is one aspect of prospect theory (Kahneman and Tversky
1979; Tversky and Kahneman 1992), a collection of features intended to cap-
ture behavioral aspects of choice. It encompasses first-order risk aversion and
loss aversion but assumes a special form for the value function: utility depends
only on the deviation in income from the reference level. Kahneman and Tver-
sky (1979, pp. 277–278) remark that, “strictly speaking”, income level should
also matter but believe nonetheless that their formulation “generally provides a
satisfactory approximation”. This may be true in some circumstances, but it is un-
likely that willingness to take a specified gamble will be independent of income.
Even more to the point in our setting, suppose an incentive scheme involves basic
pay of $100,000. High effort yields a 10% chance of a bonus of $10,000. The
reference income is then likely to be $100,000. Consider next a scheme in which
basic pay is $1m (a million dollars) and the bonus $10,000. The second scheme is
unlikely to create the same incentive to work hard as the first owing to the usual

4. Murphy (2002) proposes that stock options are best explained by a “perceived cost bias” whereby
managers genuinely underestimate the true cost of their award.

5. Empirical tests suggest that people commonly value a loss more than an equal gain by a factor of
2 to 4 or more (see e.g. Kahneman et al. 1990). Evidence of such reference effects has come from
both experimental and nonexperimental settings (Samuelson and Zeckhauser 1988; Kahneman et al.
1991). A typical case is Kachelmeier and Shehata’s (1992) finding that subjects in one experiment
were willing to pay, on average, $5.60 for a 50% chance to win $20 while demanding an average of
$10.87 to give up the identical chance to win a $20 prize. Evidence indicates that the phenomenon is
not primarily the result of income or wealth effects or even of transaction costs (see e.g. Kahneman
et al. 1990; Knetsch et al. 2001).
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diminishing marginal utility of income. The prospect theory formulation does
not capture this effect, so we adopt a generalization. As discussed herein, our
formulation resembles the value function derived axiomatically by Gul (1991)
and Sugden (2003).

At first sight it seems obvious that, if people have a strong dislike to feeling
“down”, then remuneration schemes should reduce such occurrences by provid-
ing carrots, not sticks. Yet this is not straightforward. The purpose of perfor-
mance pay is to change behavior, so a heavy penalty for failure is potentially
effective.6 Moreover, since option-type pay implies that performance incentives
are concentrated in the gain space, where the marginal utility of pay is low, it
follows that the cost to the principal is high. Hence it may seem that considerable
loss aversion is required for this type of scheme to be optimal, but this proves not
to be the case. Although loss aversion can be viewed as a tax on low payments,
avoiding the tax—by boosting the return to poor performance and to good perfor-
mance while lowering that to middling outcomes—preserves incentives without
adding much to the principal’s outlay.

This paper considers both exogenous and endogenous formulations of refer-
ence income. With exogenous reference income, earnings in earlier periods de-
termine whether current income is satisfactory. Loss aversion then implies that,
over some interval, pay may be insensitive to performance. Depending on the
level of the reference income, the flat segment may be at the bottom, the top, or
in the middle of the incentive schedule. Thus carrots, sticks, or both may be opti-
mal. When (as much evidence suggests) people are risk loving on the downside,
there is always a flat segment at the bottom of the incentive schedule. It is pos-
sible that the whole schedule consists of two flat segments with a discontinuity:
fixed pay unless performance falls short of a threshold, in which case the agent
is dismissed.

Though it provides a useful benchmark, an exogenous reference income is not
always plausible. Suppose a manager accepts a job in which the best pay possi-
ble is $1m (but inferior performance receives less). It does not seem likely that
disappointment would be associated with obtaining $1m even if the manager had
earned $2m in the past. The implication is that the reference income is forward
looking and depends on the distribution of outcomes, with losses assigned if the
individual does not do as well as expected. Preferences of this sort are axiom-
atized by Gul (1991), in which the reference income is the certainty equivalent
of the income distribution. Routledge and Zin (2003) generalize this approach,
making reference income some fraction of the certainty equivalent. The result-
ing design problem looks messy because changing the incentive scheme poten-
tially alters the reference income. In fact, since the participation constraint fixes
the certainty equivalent income and hence the reference income, the analysis is
equivalent to the exogenous case with one exception: the reference income is
never higher than the certainty equivalent and so a flat segment at the top is ruled
out.

The certainty equivalent may not be the natural representation when the ref-

6. Mirrlees (1997) gives an example where such a scheme can approximate the first-best outcome
arbitrarily closely.
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erence income is forward looking. Suppose that 99 times out of 100 a manager is
paid $1m but that he has a 1-in-a-100 chance of earning $2m. The certainty equiv-
alent formulation implies that loss is experienced whenever the $1m is earned.
In practice, most people would surely regard $1m as the norm. Elation may be
experienced if the $2m payment is received but no severe disappointment results
if the lower amount is realized. This suggests that losses are registered only if
it was odds-on (more than a 50% chance) that income would be higher. Prefer-
ences of this sort imply that a finite bonus is paid for performance that beats the
median and that flat segments occur only in the bottom half of the distribution.
Pay fixed at the reference income for all states below the median requires that
loss aversion exceed some threshold, which may be absolutely low but is higher
when risk aversion is low.

The design of incentive schemes has implications for the choice of risk as
well as for effort. The standard view is that option-based contracts create incen-
tives for risk taking. Only recently has Ross (2004) shown that it is possible for
the opposite to occur. Loss aversion introduces a new reason why stock options
may lessen reckless behavior. Options, by capping the extent of losses, mean
that individuals are not delivered into the zone where they are vulnerable to such
behavior. In order to see the implications of manager discretion over project risk,
we modify our basic model with endogenous effort in a simple way. In particular
we assume that, after the effort decision has been made, managers may receive
forewarning of how the firm will perform and can take a gamble. Given prospect
theory preferences, if events are unfolding in an unsatisfactory way (relative to the
reference level of income) then gambling for resurrection is a well-documented
phenomenon. However, we show that option-based compensation may make the
manager less inclined to take risky actions than under share-based compensation.
Whether this is a merit or not depends upon whether the action raises or lowers the
expected value of the company. Both possibilities are consistent with the claim
that option-based compensation provides relatively less incentive to take risks.

The paper is organized as follows. Section 2 provides the basic ingredients
of the problem. Sections 3 and 4 solve the problem for the three different for-
mulations of the reference income. Section 5 compares the magnitude of loss
aversion required for constant rewards for all states below the reference income
as variously specified and then undertakes comparative statics. Section 6 looks
at the choice of risk, and conclusions are drawn in Section 7.

2. The Model

We assume that stock price or profit is the only verifiable performance indicator
for the CEO.7 Given the optimal (unobservable) action of the CEO, the perfor-

7. Prendergast (1999, 2000), for example, has examined the relationship between the risk of the envi-
ronment and incentive provision. He argues that high-powered incentive contracts are often observed
in high-risk environments (such as banking and high-tech) where company earnings are relatively
unstable and that monitoring is observed in more stable environments, where it will be more efficient
at discovering performance. In more stable environments, workers have incentive to exhibit good per-
formance to the monitor. In less stable environments, in which the benefits to monitoring are weak,
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mance of the company is realized as the outcome of an effort-dependent prob-
ability distribution. Writing reference income as Y R, realized income as Y , and
effort as e ∈ {e

¯
, ē}, the utility function of the CEO is given by

U (Y ) − Z(Y R,Y ) − e, (1)

where

Z(Y R,Y ) =

{
0 if Y > Y R,

g(U (Y R) −U (Y )) if Y ≤ Y R.

We assume nonsatiation so U ′ > 0 and risk aversion so U ′′ < 0. Also, in order to
ensure that consumption is positive in all states, we impose the Inada condition:
limY→0 U ′(Y ) = ∞. The loss aversion function has g′ > 0, including g′(0) > 0;
hence there is a kink in the utility function at the reference income Y R. If loss
aversion is linear then Z(Y R,Y ) = l(U (Y R) − U (Y )) for l > 0 if Y ≤ Y R.8 This
case provides a benchmark from which we may easily extend results to risk loving
on the downside.

The state of the company s is distributed on the compact interval [s
¯
, s̄] with

distribution function F (s|e) and positive conditional density function f (s|e). Specif-
ically, { f (s

¯
|e
¯
), f (s

¯
|ē)} > 0.9 Let ∆ f (s|e) = f (s|ē) − f (s|e

¯
) denote the effect

of higher effort on the probability of state realization s. We make the stan-
dard assumption that the monotone likihood ratio property (MLRP) is satisfied:
∆ f (s|e)/ f (s|e) is increasing in the state realization.

The firm’s owners are risk neutral and seek to minimize the expected payment
to the CEO, subject to the individual rationality (IR) constraint (the CEO has
reservation utility V ∗) and the incentive compatibility (IC) constraints.10

Thus the principal’s problem, if ē is to be elicited, is

min
{ ∫ s̄

s
¯

Y (s) f (s|ē) ds
}

, (2)

the link between effort and output is noisy and so incentive pay must be higher to induce high effort.

8. In their work on asset pricing, Barberis et al. (2001) further specialize this formulation to U (Y ) =
Y and write Z = l(Y R − YL ), l > 0.

9. If the lower support increases in effort and if low income imposes a sufficient penalty then,
whether or not there is loss aversion, it is optimal to pay the minimum possible in the states that
are realized only when effort is low. In all other states there is a fixed payment. High effort is then
chosen without exposing the agent to risk, for the penalty states never occur. This result is in the spirit
of Mirrlees (1997), who identifies circumstances leading to the use of sticks not carrots. He shows
that, with utility and performance unbounded below and with the likelihood ratio tending to −∞ as
states become very bad, the principal’s first-best payoff can be approximated arbitrarily closely by
imposing massive penalties for very poor performance yet paying a fixed amount elsewhere.

10. The assumption that the principal is risk neutral (or able to pool large numbers of independent
risks) is not as innocuous here as in Holmstrom (1979), where adding a risk-averse principal leads to
a simple modification of the first-order conditions. Depending on the nature of the reference income,
shielding the agent from loss may or may not expose the principal to loss.
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subject to

∫ s̄

s
¯

(U (Y (s)) − Z(Y R,Y )) f (s|ē) ds − ē ≥ V ∗, (3)

∫ s̄

s
¯

(U (Y ) − Z(Y R,Y ))∆ f (s|e) ds ≥ ∆e. (4)

In the absence of loss aversion, it is a standard result (see Holmstrom 1979) that
MLRP implies that the optimal incentive scheme is strictly increasing in perfor-
mance. The next three sections provide solutions when there is loss aversion for
three different specifications of the reference income.

3. Exogenous Reference Income

3.1. Linear Loss Aversion

Determining the reference income is the most problematic aspect of prospect the-
ory. One approach is to suppose that the reference income reflects an accustomed
standard of living. Then the individual’s income history matters, but the reference
income is exogenous in the current period.11 We first consider this formulation.

The reference income is given by Ȳ R and losses are incurred if Y (s) ≤ Ȳ R.
We restrict attention initially to linear loss aversion. The first-order conditions,
obtained from (2)–(4) with Y R = Ȳ R, are:

∫ s̄

s
¯

(
U (Y (s)) − Θl(U (Ȳ R) −U (Y (s))

))
f (s|ē) ds − ē ≥ V ∗, (5)

∫ s̄

s
¯

(
U (Y (s)) − Θl(U (Ȳ R) −U (Y (s))

))
∆ f (s|e) ds ≥ ∆e, (6)

f (s|ē) − γU ′(Y (s))( f (s|ē) + x(s)l f (s|ē))

− λU ′(Y (s))(∆ f (s|e) + x(s)l∆ f (s|e)) ≥ 0. (7)

Here Θ is an indicator function taking the value unity if Y (s) ≤ Ȳ R and zero
otherwise.12 To handle the kink in the utility function at Y (s) = Ȳ R (where left
and right derivatives are not equal), we have introduced a variable x(s) ∈ [0, 1]
in condition (7) that multiplies l. If Y (s) < Ȳ R, then loss aversion applies and
x(s) = 1; if instead Y (s) > Ȳ R, then small variations in income leave the agent in
the gain space and so x(s) = 0. For states in which it is optimal to set Y (s) = Ȳ R >
0, (7) holds with equality when 0 ≤ x(s) ≤ 1. The x(s) multiplier eliminates the

11. Thaler et al. (1997) and Brunnermeier (2004) have addressed the implications—of learning and
the frequency with which risks are experienced—for the stability of reference-level income and for
risk-taking behavior.

12. In solving the optimization problem for different specifications of the reference income, we look
only at first-order conditions. It can, however, be shown by a transformation of the problem (see Mas-
Collel et al. 1995, p. 484) that this problem is convex, so that the first-order conditions are necessary
and sufficient for a solution.
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slackness in the first-order condition when the solution is held at the kink. It can
be shown that the IR and IC constraints are satisfied as equalities, so (5) and (6)
hold with equality and the multipliers γ and λ are positive.13 The Inada condition
means that the Y (s) all are strictly positive and that (7) is an equality.

In order to show the possible shapes of the optimal incentive scheme, we “re-
verse engineer”. That is, we assume positive values of the multipliers γ and λ
that, when inserted into (7), determine optimal incomes Y (s) with the properties
we are seeking. Given these values, the left-hand sides of the IR and IC con-
straints follow, so reservation utility and the incremental cost of effort can be set
at the levels that solve conditions (5) and (6). Thus a full solution consistent with
the assumed value of the multipliers is obtained. In implementing this procedure,
we rewrite (7) as

1
U ′(Y (s))

= (1 + x(s)l)
(
γ + λ

∆ f (s|e)
f (s|ē)

)
. (8)

Proposition 1. Given MLRP and loss aversion, four shapes of the optimal
incentive scheme, all continuous, are possible.

(i) Strictly increasing in performance.
(ii) Smoothly increasing up to some threshold, beyond which Ȳ R is paid.

(iii) Smoothly increasing Ȳ R is paid for all performance levels below some thresh-
old, but above this the pay is smoothly increasing in performance; if this case
arises then there is a level of loss aversion l∗ such that a complete bottom
flat segment exists if and only if l > l∗.

(iv) Ȳ R is paid for some finite, compact performance interval, but above and
below this interval the pay is strictly increasing.

Parts (ii), (iii), and (iv) of the proposition are illustrated in Figures 1a, 1b, and
1c, respectively.

Figures 1a, b and c here

Proof. (i) This case arises in two circumstances. First, Ȳ R may be so low that it
does not affect the solution. This requires that Y (s

¯
) ≥ Ȳ R and so x(s

¯
) = 0; then

(8) implies 1/U ′(Ȳ R) ≤ γ + λ∆ f (s
¯
|e) f (s

¯
|e). Alternatively, Ȳ R may be so high

that, by (8), all realizations are in the loss space. Then x(s) = 1 for all s, and
1/U ′(Ȳ R) ≥ (1 + l)(γ + λ∆ f (s̄|e)/ f (s̄|e)).

(ii) Pick γ and λ such that 1/U ′(Ȳ R) = γ + λ∆ f (s̄|e)/ f (s̄|ē) and Y (s̄) = Ȳ R.
For l ≥ 0 but sufficiently low, there exists some s′, with s

¯
< s′ < s̄, satisfying

1/U ′(Ȳ R) = (1+l)(γ+λ∆ f (s′ |e)/ f (s′|e)). By (8) and MLRP, the optimal scheme
is then increasing for all s < s′ and is flat at Ȳ R for all s ≥ s′.

(iii)–(iv) Pick γ and λ such that, for some intermediate state ŝ, 1/U ′(Ȳ R) =
γ +λ∆ f (ŝ|e)/ f (ŝ|ē). For all states better than ŝ, MLRP and (8) imply that x(s) =

13. An intuitive proof that the IR and IC constraints are satisfied as equalities (so that γ > 0 and
λ > 0) follows. Suppose that γ = 0; then, because F (s|ē) first-order stochastically dominates F (s|e

¯
),

there exists a set of states with ∆ f (s|e)/ f (s|ē) < 0. But given λ > 0, this would mean that U ′(Y (s)) ≤
0, which is impossible. If λ = 0 then by MLRP the compensation is not increasing in performance,
but this would mean that the manager will choose e

¯
rather than ē, violating the IC constraint.
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0 and that pay is increasing in performance. This scheme is flat for all states
s ∈ [s′, ŝ], where s′ satisfies 1/U ′(Ȳ R) = (1+ l)(γ +λ∆ f (s′|e)/ f (s′|ē)). Using (8)
and MLRP, we see that the optimal scheme involves Y (s

¯
) < Ȳ R and is increasing

for all s < s′.
Given the multipliers γ and λ, we must find the value of loss aversion l∗

that solves for s′ = s
¯
. The optimal scheme is then constant at Ȳ R for all s ≤ ŝ.

To show that l∗ is the threshold level of risk aversion that will generate a flat
segment for all states below ŝ, keep the values of V ∗ and ∆e fixed—so that the
multipliers become endogenous—and then consider the effect of varying l. If
l > l∗ but the solution remains unchanged, then the first-order conditions yield
the same value of the multipliers (remember that in this case the loss space is
not entered) and so 1/U ′(Ȳ R) < (1 + l)(γ + λ∆ f (s

¯
|e)/ f (s

¯
|ē)), confirming the

unchanged solution. Now suppose that l < l∗. If a flat segment remained at the
bottom of the distribution (even if it were to end at a different state than under l∗)
then this scheme could have been adopted when l = l∗, in which case it would
have yielded the same payoff since the loss space is not entered. Similarly, the
allegedly optimal scheme when l < l∗ is feasible and has the same payoff when
l = l∗, a contradiction. Hence, if l < l∗, the optimal scheme does not have a flat
segment for all lower states. �

As long as reference income is neither very high nor very low relative to the
optimal scheme in the absence of loss aversion, there will be an interval over
which pay does not depend on performance. There may be a threshold below
which the compensation scheme is constant—an option-like scheme. The intu-
ition for not punishing poor performance can be seen by first constraining the
problem so that no payments are made in the loss space. When reference income
is relatively low, this is not too costly. Now move the payment for the worst per-
formance into the loss space. The discontinuous drop in marginal utility as the
reference income is crossed means that, in order to maintain expected utility, ex-
pected payments in the gain space must increase by a high multiple of the saving
in outlay at the bottom of the schedule. The incentive effect depends on the extent
to which total utility for poor outcomes compares to that for good outcomes, an
extent that changes proportionately less in response to the change in the schedule
than do marginal utilities. Thus, entering the loss space is an expensive way to
create incentives.

This same line of reasoning also applies to the more surprising case of con-
stant pay at the top of the incentive scheme (sticks not carrots). If reference in-
come is relatively high, then it is not very costly to require that no payment exceed
the reference. Raising the payment in the best state so that it is barely in the gain
space does not allow for much reduction in payment below the reference income
if the participation constraint is not to be violated. So the principal’s expected
cost goes up—but, as before, there is not much effect on incentives. It may be
best to create all incentives in the loss space.
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3.2. Downside Risk Loving

Linear loss aversion, as assumed in Proposition 1, introduces a kink in the utility
function at the reference income but preserves risk-avoiding behavior on the loss
side. Kahneman and Tversky (1979) argue that much behavior under uncertainty
can be explained only if people are risk loving below the reference income. We
now extend the analysis to convex utility on the downside.

We first assume that limited liability puts a lower bound on the income of Y
¯
.

Then we note that, rather than pay an income between the reference level and
Y
¯
, it would be better to offer a lottery with the same expected income. In effect,

optimal lotteries linearize the utility function in the loss domain. There is now no
risk premium and so, if the optimal incentive scheme pays anything less than Ȳ R,
then the best income to pay is Y

¯
because doing so creates the most incentives.

Hence there are flat segments at Ȳ R and at Y
¯
, and a lottery is not actually paid.

The possible shapes of the optimal incentive scheme are shown in the summary
diagram appearing as Figures 2a, b, and c.

Figures 2 a,b and c here.

Convexifying utility below Ȳ R requires that the general formulation of (1) has
the following property: U ′′(Y (s)) − g′′(·)U ′(Y (s))2 + g′(·)U ′′(·) > 0.14 We also
assume that g′(0) > 0 and so there is a kink at Ȳ R. Convexity implies that, if
the agent receives a fixed payment Y ∗ ∈ (Y

¯
, Ȳ R), then the same utility could be

delivered to the agent at lower cost to the principal by a lottery paying two prizes,
Y
¯

and Ȳ R, whose respective probabilities p and 1− p are set to yield an expected
income of Y ∗. The expected utility of the lottery is

(1 − p)U (Ȳ R) + p
(
U (Y

¯
) + g(U (Ȳ R) −U (Y

¯
))
)
, (9)

where
Y ∗ = (1 − p)Ȳ R + pY

¯
. (10)

Substituting (10) into (9) yields expected utility as a function of expected income
generated by the optimal lottery:

u(Y ∗) = U (Ȳ R) +
Y ∗ − Ȳ R

Ȳ R −Y
¯

(
U (Ȳ R) −U (Y

¯
) + g(U (Ȳ R) −U (Y

¯
))
)
, (11)

which is linear in Y ∗.

Lemma 1. With convex utility in the loss space, it is optimal to have no payments
in the interval (Y

¯
, Ȳ R).

14. It is possible that, at a sufficiently low income, the marginal utility of consumption becomes so
high that concavity of the overall function resumes below this level. Then the optimal scheme has a
discontinuity at Y R and a flat segment that may not extend to the worst states.
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Proof. Using the utility function (11) for the loss region, the principal–agent
problem yields the following first-order condition for a payment Y ∗ ∈ (Y

¯
, Ȳ R) to

be optimal:
1

u′(Y ∗)
= γ + λ

∆ f (s|e)
f (s|ē)

. (12)

Suppose this condition is satisfied for state s∗. For states worse than s∗, the left-
hand side exceeds the right-hand-side, so it follows that expected income should
be reduced. This does not change marginal utility (by (11)) and so, in these states,
income must be reduced as far as possible—that is, to Y

¯
. For states better than

s∗, expected income should exceed Y ∗, which will entail benefits until income is
at least Ȳ R. Even for state s∗, income can be equally well set at either extreme.
Therefore, it is optimal to have no payments between the two extremes. �

Using Lemma 1 together with

u′ =
(
U (Ȳ R) −U (Y

¯
) + g(U (Ȳ R) −U (Y

¯
))
)
(Ȳ R −Y

¯
)−1 > U ′(Ȳ R)

(by (11)), we can adapt Proposition 1 to cover risk loving on the loss side.
The case of Figure 2(a), constant pay at Ȳ R for all states below ŝ < s̄, arises if

1
u′

< γ + λ
∆ f (s

¯
|e)

f (s
¯
|ē)

< γ + λ
∆ f (ŝ|e)
f (ŝ|ē)

=
1

U ′(Ȳ R)
. (13)

The first inequality implies that, in the very worst state, it is better to pay Ȳ R than
Y
¯
; the equality implies that ŝ is the best state in which Ȳ R paid. It thus follows that

Ȳ R is paid in all states [s
¯
, ŝ] and that, beyond ŝ, pay is monotonically increasing

in performance.
Using the same line of reasoning, there are flat segments of pay at Y

¯
and at

Ȳ R, as in Figure 2(b), if the following relations hold for some s′′ < s̄:

1

U ′(Ȳ R)
= γ + λ

∆ f (ŝ|e)
f (ŝ|ē)

> γ + λ
∆ f (s′′|e)
f (s′′|ē)

=
1
u′

> γ + λ
∆ f (s

¯
|e)

f (s
¯
|ē)

. (14)

The implications are that: above ŝ, pay is monotonically increasing in perfor-
mance; between s′′ and ŝ, pay is Ȳ R; and below s′′, pay is Y

¯
.

Figure 2(c) requires that

1

U ′(Ȳ R)
> γ + λ

∆ f (s̄|e)
f (s̄|ē)

> γ + λ
∆ f (s′′|e)
f (s′′|ē)

=
1
u′

> γ + λ
∆ f (s

¯
|e)

f (s
¯
|ē)

. (15)

We may summarize as follows.

Proposition 2. If reservation income affects the optimal incentive scheme, then
either Y

¯
is paid in the lowest states with a discontinuous jump to Ȳ R (which is

paid in some or all higher states) or else Ȳ R is paid in the lowest states beyond
which pay is smoothly increasing in performance.

The scheme of Figure 2(c) can be interpreted as fixed pay except that, if per-
formance falls below some threshold, the agent is fired.
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4. Endogenous Reference Income

Koszegi and Rabin (2004) argue that expectations matter in locating the reference
income. People code gains and losses according to whether the outcome is better
or worse than anticipated. Thus, Mellers et al. (1999) and Breiter et al. (2001)
find that both the actual lottery outcome and unattained outcomes affect subjects’
satisfaction with their payoffs. The utility of winning a given prize is lower, the
greater is the probability of doing better. In the present context, where the task
is to design a reward scheme, this means that reference income is endogenous.
One possibility is that the reference income is, as in Gul (1991), the certainty
equivalent. In the principal–agent setting, this turns out to be equivalent to the
exogenous formulation. The reservation utility ties down the reference income.

Making reference income equal or proportional to the certainty equivalent
does yield some questionable implications. Suppose two managers differ only
in that one feels disappointment more intensely (i.e., has a higher l). Given the
incentive scheme, the more loss-averse manager has lower certainty equivalent,
so there are realizations at which the less loss-averse manager experiences loss but
the more loss-averse manager does not. It seems more plausible that differences
in l influence the cost of loss but not the set of incomes for which it is experienced.

An alternative formulation is suggested by the following example. Suppose
that pay in a new job is fixed at $100,000 but, for very rarely achieved excep-
tional performance, there is a bonus of $10,000. The natural reference income is
then $100,000. Were the performance target more lax and so achieved (say) 70%
of the time, the reference income might well be $110,000. What this suggests
is that there is no disappointment in achieving an income that is rarely bettered,
whereas losses are experienced when one fails to beat the odds. The focus is thus
on probabilities, not on whether utility is below the expected level. Specifically,
we propose that the reference income is the median income. Aside from the psy-
chological appeal, an important consequence is that—because different income
distributions can have the same expected utility but different medians—the de-
sign of the incentive scheme now extends to the choice of reference income.

A test of these various theories of the reference income can be derived from
the experiment reported in Coelho (2004) and Coelho et al. (2004). Subjects
engage in a binary outcome task for which there is a prize for success. The design
elicits subjective success probabilities and associated certainty equivalents. On
average, the ratio of certainty equivalent to expected income is unity, but it is
decreasing in the success probability. The relationship is highly significant.

According to expected utility theory, the ratio of certainty equivalent to ex-
pected income is monotonically increasing in the probability of success. Loss
aversion with an exogenous reference income compounds this tendency. The ex-
pected cost of loss, which decreases the certainty equivalent, is smaller for those
with a lower probability of failing, whereas expected income is higher. The Gul
formulation also has the property that the certainty equivalent steadily approaches
expected income as success probability rises.15 This is not the case if loss is ex-

15. For a binary lottery, let the prize be w obtained with probability p and let the certainty equivalent
be c. Normalizing so that U (0) = 0, the Gul formulation implies U (c) = pU (w) − (1 − p)lU (c).
Thus U (c)/U (c)pU (w) = 1/(1 + (1 − p)l). As p rises, U (c) must increase by a higher percentage.
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perienced only when the income is so low that it occurs less than half of the time.
Rather, losses are now felt only by those expecting to win more than half of the
time. Hence the subjects with higher success probabilities tend to have lower
certainty equivalents relative to expected winnings. If there is elation when an
unexpectedly good event occurs, this tendency is further augmented.

The next two sections analyze the implications of the certainty equivalent and
median specifications for the choice of incentive scheme.

4.1. Gul’s Model of Disappointment Aversion

An axiomatic foundation for the utility function (1) is provided by Gul (1991), in
which loss aversion is linear and reference income is the certainty equivalent of
the prospect, including the cost of loss.16 The general idea is that disappointment
is registered whenever realized utility falls short of its expected level. That is,
reference income solves

U (Y R(ē)) =
∫ s̄

s
¯

(
U (Y R(ē)) − Θl(U (Y R(ē)) −U (Y (s))

))
f (s|ē) ds − ē. (16)

At an optimum the IR constraint binds, so U (Y R(ē)) = V ∗. At an optimum the
IC constraint also binds and so

∫ s̄

s
¯

(
U (Y R(ē)) − Θl(U (Y R(ē)) −U (Y (s))

))
f (s|ē) ds − ē (17)

=
∫ s̄

s
¯

(
U (Y R(e

¯
)) − Θl(U (Y R(e

¯
)) −U (Y (s))

))
f (s|e

¯
) ds − e

¯
.

Hence the utility of the prospect net of the cost of low effort, U (Y R(e
¯
)), must also

equal V ∗. Therefore, Y R(ē) = Y R(e
¯
). Denote the common value by Ȳ R.

The principal–agent problem with exogenous reference income of Ȳ R is equiv-
alent to the solution with Gul preferences.17 Equation (16) does, however, locate
the reference income and so rules out all but one of the possibilities identified in
Proposition 1.

Proposition 3. When the reference income is the certainty equivalent, there
exists a set of intermediate states s

¯
< s < s̄ that all pay the same income.

Given the normalization, risk aversion implies that the elasticity of U (c) is below unity. Thus c/pw
is increasing in p, which is inconsistent with the experimental results.

16. Gul (1991) modifies the independence axiom in a simple way to account for the Allais paradox.
The utility function that emerges captures both elation and disappointment; itt has one more parameter
than the expected utility function and is unique up to an affine transformation. The Gul formulation
precludes risk aversion in the gain space and risk loving in the loss space. Loomes and Sugden (1986)
use a utility function that is similar to Gul’s, but the reference income is the certainty equivalent
ignoring loss aversion.

17. Suppose to the contrary that the two solutions differ. Since both must satisfy the same IC and
IR constraints, each solution must be feasible for the other problem. Hence, if they deliver different
expected costs, then there is a contradiction.
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Proof. First we show that any flat segment of pay cannot include s
¯
. Similar

reasoning implies that a flat segment cannot include s̄. Finally, since there are
necessarily incomes above and below the certainty equivalent, there must be an
intermediate interval of states satisfying

1

U ′(Ȳ R)
= (1 + x(s)l)

(
γ + λ

∆ f (s|e)
f (s|ē)

)

and x(s) ≤ 1. �

Routledge and Zin (2003) extend Gul’s preference formulation in a simple
way that again has an axiomatic foundation. Their modification involves non-
central disappointment, which is achieved by shifting the disappointment cutoff
to some fraction of the certainty equivalent. This means that only the worst out-
comes are viewed as disappointing; otherwise the formulation is identical to that
of Gul. Since the reference income is below the certainty equivalent, it is now
possible that the flat segment extends to the worst state—an option-like compen-
sation scheme.

4.2. Median Income as Reference Income

We now assume that loss or disappointment occurs at all incomes for which it
is odds-on that a higher income would be drawn. At first sight, this implies that
the reference income is the median income. However, even though the states
are continuously distributed, the chosen incentive scheme may have a mass point
(a flat segment in the income schedule). Indeed, our main result is that, with
loss aversion, this will always be the case. Suppose for example that payments
smoothly increase over the worst 30% of the states to reach $100, that the next
30% of states are all paid $100, and that pay smoothly increases from $120 for the
remaining 40% of states. In this example the reference income is $100. Although
only 40% of realizations are higher than $100, all incomes that are exceeded with
probability more than half are below $100. Thus Y R = arg max{G(Y |ē) ≤ 0.5},
where G(Y |ē) is the cumulative conditional probability distribution of income.18

We condense this formulation as “reference income equals median income”.
Given linear loss aversion, we conjecture that the optimal compensation scheme

is (weakly) monotonic in performance. This implies that reference income is nec-
essarily paid in the state that is median as long as high effort is chosen. Denoting
this state as sm, we further propose that Y (s) > Y R for all s > sm and Y (s) = Y R

for all s ∈ [s′, sm]. Imposing these properties, the choice variables are: Y R, the
income paid in the median state; s′, the worst state for which Y (s) = Y R; and Y (s)
for all states. We show that the first-order conditions arising from this problem
imply that s′ < sm, so there is an interval of constant pay. There is an upward
discontinuity in income at state sm, justifying our assumption that the reference
income is not paid above the median. Having found the scheme that is optimal

18. G(Y (s)|ē) is derived from the distribution function F (s|ē) and allows for the same realizations
of Y (s) for distinct states. If income realizations are nondecreasing in the state realization, then states
that have the same income form a mass point.
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subject to these constraints, we finally note that, for all s ∈ [s′, sm], neither up-
ward nor downward deviations from Y R are profitable; this establishes that the
optimal scheme has been found for the unrestricted problem.

The principal minimizes

∫ s̄

sm

Y (s) f (s|ē) ds +
∫ sm

s′
Y R f (s|ē) ds +

∫ s′

s̄
Y (s) f (s|ē) ds (18)

subject to the IR and IC constraints. These constraints take the same form as (5)
and (6) with now Y R equal to the lowest income for which no more than 50% of
incomes are higher.19 The first-order conditions for the problem are the IR and
IC constraints satisfied as equalities (again it can be shown that the multipliers γ
and λ are positive). In addition, as in the exogenous reference income case, for
all states outside [s′, sm] we have that Y (s) satisfies

f (s|ē) − (1 + x(s)l)U ′(Y (s))(γ f (s|ē) + λ∆ f (s|e)) = 0. (19)

The variable x(s) ∈ [0, 1] has the same interpretation as in the exogenous case.
Since reference income is endogenous, we have a further condition for the choice
of Y R:

∫ sm

s′
f (s|ē) −U ′(Y R)

∫ sm

s′
(γ f (s|ē) + λ∆ f (s|e)) ds (20)

+ lU ′(Y R)
∫ s′

s
¯

x(s)(γ f (s|ē) + λ∆ f (s|e)) ds = 0.

Proposition 4. The optimal incentive scheme has a flat segment that ends at
the median state and may extend back to the worst state. At the median state
there is an upward discontinuity beyond which pay is smoothly increasing in
performance. There is a threshold level of loss aversion l∗ such that the flat
segment includes the worst state if and only if l ≥ l∗.

Proof. Y R is paid in the interval [s′, sm], so s′ is the worst state at which Y (s) =
Y R. Hence, s′ satisfies (19) written as

1
U ′(Y (s))

= (1 + x(s)l)
(
γ + λ

∆ f (s|e)
f (s|ē)

)
, (21)

where Y (s) = Y R and x(s) = 1. Since (21) and MLRP imply that x(s) = 1 and
Y (s) < Y R for states s ∈ [s

¯
, s′], it follows that (20) can be written as

1

U ′(Y R)
= γ + λ

∫sm

s′ ∆ f (s|e) ds

∫sm

s′ f (s|ē) ds
−

l ∫s′
s
¯

(γ f (s|ē) + λ∆ f (s|e)) ds

∫sm

s′ f (s|ē) ds
, (22)

which (given l, γ , and λ) solves for Y R.

19. If e = e
¯

then the median state will be below sm, but we assume that it exceeds s′, as will be true
if the effect of high effort on probabilities is not too great. It then follows that reservation income is
the same under both income levels.
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For states better than sm, from (21) with x(s) = 0 we have Y (s) > Y R; by
MLRP, Y (s) is increasing in s. From (21) with x(s) = 0 and (22), continuity of
the reward scheme at sm requires that

γ + λ
∆ f (sm|e)
f (sm|ē)

= γ + λ
∫sm

s′ ∆ f (s|e) ds

∫sm

s′ f (s|ē) ds
− l

∫s′
s
¯

(γ f (s|ē) + λ∆ f (s|e)) ds

∫sm

s′ f (s|ē) ds
.

However, the left-hand side exceeds the right-hand side because, by MLRP,20

∆ f (sm|ē)
f (sm|ē)

≥ ∫sm(ē)
s′ ∆ f (s|e) ds

∫sm(ē)
s′ f (s(|ē) ds

.

Hence there must be an upward discontinuity at sm in the compensation scheme.
This justifies our initial assertion that the flat segment ends at the median state,
sm.

Next we show that s′ < sm. Let ∆ be the right-hand side of (21) minus the
right-hand side of (22) with x(s′) = 1. As s′ tends to sm from below, ∆ tends to

l
(
γ + λ

∆ f (sm|ē)
f (sm|ē)

)
+ l

∫sm

s
¯

(γ f (s|ē) + λ∆ f (s|e)) ds

f (sm|ē)
> 0.

Since the left-hand sides of (21) and (22) are equal, it follows that s′ cannot be
close to sm. Given MLRP, lowering s′ reduces ∆. If ∆ > 0 at s′ = s

¯
then the

reservation income is paid in all states below the median. Otherwise, the flat
segment of the incentive scheme does not extend to the worst states.

To check that deviations from the flat segment are unprofitable, note that in the
modified problem it is feasible to increase Y (sm) and set s′ = sm. This increases
the reference income, leaving the remainder of the flat segment unaffected. It
has been shown, however, that this scheme is worse for the principal than the flat
segment extending down from the median state for a finite interval. Now consider
raising income for some state s′ < s < sm. The consequences are identical to
increasing Y (sm) except that, by MLRP, the incentive effect is lower. Hence, it
is not optimal to increase any individual income in the flat segment. Decreases
do not change reference income and, since decreases are not optimal for s′, this
holds a fortiori for better states.

In order to show that there exists a constant pay interval for all states below
sm if and only if loss aversion exceeds some threshold l∗, first impose s′ = s

¯
and

set l to solve
1

U ′(Y R)
= (1 + l)

(
γ + λ

∆ f (s
¯
|e)

f (s
¯
|ē)

)
.

20. To see this, set g(s|ē) ≡ ∆ f (s|e)/ f (s|ē). Then

∫sm

s′ ∆ f (s|ē) ds

∫sm

s′ f (s|ē) ds
=

∫sm

s′ g(s|ē) f (s|ē) ds

∫sm

s′ f (s|ē) ds

and, by MLRP, for s ≤ s′ we have

g(s|ē) f (s|ē) ≤ g(sm|ē) f (s|ē)) ≤ g(sm|ē)
∫sm

s′ f (s|ē) ds

∫sm

s′ f (s|ē) ds
=

∆ f (sm|e)
f (sm|ē)

.
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Then, even if one could freely vary income in the worst state, it would be opti-
mally set at the reference level.

If l > l∗ but the solution remains unchanged, then the first-order conditions
yield the same value of the multipliers (in this case the loss space is not entered),
confirming the unchanged solution. Now suppose that l < l∗. If a flat segment
remained at the bottom of the distribution—even if it ends at a different state than
under l∗—then this scheme could have been adopted when l = l∗, in which case
(as the loss space is not entered) it would have yielded the same payoff. Similarly,
the scheme that is allegedly optimal when l < l∗ is also feasible and has the same
payoff when l = l∗, a contradiction. Hence, if l < l∗, then the optimal scheme
does not have a complete flat segment at the bottom. �

The two forms of pay schedule implied by Proposition 4 are illustrated in
Figures 3a and 3b.

Figures 3a and b here.

When reference income equals the median realization, the optimal incentive
scheme has a discontinuity even under concavity on the downside. This is because
the principal not only takes into account the “tax” on payments in the loss space,
as in the case of exogenous reference income, but also recognizes that whether
a particular income is in the loss space depends on the nature of the scheme.
Compare the effect of a marginal reduction in pay in a state just above the median
to that of a pay cut in the median state. In the latter case, the fall means that pay
can also be lowered in somewhat worse states on the flat segment without the
loss space being entered. Thus there would be an inconsistency if income were
virtually the same at the median and just above it, since the effects of a cut are
very different at the two levels. Hence there is a finite bonus for doing better than
expected.

5. Loss Aversion, Reference Income, and Risk Aversion

We use a simple discrete formulation of the model to illustrate the magnitude of
loss aversion required to generate a complete flat segment at the bottom of the
compensation scheme (an option) and to explore how this magnitude depends on
the nature of the reference income, the level of loss aversion, and the degree of
risk aversion.

Suppose three states H, M, L occur (respectively) with probabilities PH , PM , PL

when high effort is applied and with probabilities P∗
H , P∗

M , P∗
L when low effort is

applied. Then MLRP implies that

∆PL

PL
<

∆PM

PM
<

∆PH

PH
.

The contracted payments to the entrepreneur in these states are (respectively) YH ,
YM , and YL. The principal’s problem is to choose YH ,YM ,YL to solve

min{PHYH + PMYM + PLYL} (23)
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subject to

PHU (YH ) + PMU (YM) + PL
(
U (YL) − l(U (Y R) −U (YL))

) − ē = V ∗, (24)

∆PHU (YH ) + ∆PMU (YM) + ∆PL
(
U (YL) − l(U (Y R) −U (YL))

)
= ∆ē. (25)

5.1. Threshold Loss Aversion

We define the threshold level of loss aversion as the lowest level of loss aversion
for which the principal sets YM = YL = Y R. First, let the reference income be
exogenous so that Y R = Ȳ R. The payments YH ,YM ,YL and the multipliers γ ,λ
must satisfy the IR and IC constraints as well as

Pi − γ (PiU
′(Yi) + PixilU

′(Yi)) − λ(∆PiU
′(Yi) + ∆PixilU

′(Yi)) = 0, (26)

with i = H, M, L. Here xi = 0 for Yi > Ȳ R; xi = 1 for Yi < Ȳ R; and 0 ≤ xi ≤ 1 for
Yi = Ȳ R. Solve IR and IC for YH and YM = YL = Y ∗. For an option it is necessary
that Ȳ R = Y ∗, so we set the reference income at this level. In addition, at lE∗,
the threshold level of loss aversion for the option to be optimal, we set xM = 0,
xL = 1, YM = Ȳ R, and YL = Ȳ R; then the three equations in (26) must solve for γ
and λ and lE∗. This yields

lE∗ =
(

1 +
(
− ∆PM

PM
+

∆PL

PL

)(U ′(ȲR)
U ′(YH )

− 1
)(∆PH

PH
− ∆PM

PM

)−1)−1

− 1. (27)

Now let the reference income be endogenous and equal to the median income.
Assume that M is the median state whether or not high effort is applied, so Y R =
YM ; hence xH = xM = 0. At an optimum, YH ,Y R,YL and the multipliers γ ,λ must
satisfy the IR constraints and the following first-order conditions:

PH − γPHU ′(YH ) − λ∆PHU ′(YH ) = 0,

(28)

PM − γ (PMU ′(Y R) − PLxLlU ′(Y R)) − λ(∆PMU ′(Y R) − ∆PLxLlU ′(Y R)) = 0,
(29)

PL − γ (PLU ′(YL) + PLxLlU ′(YL)) − λ(∆PLU ′(YL) + ∆PLxLlU ′(YL)) = 0.
(30)

To find the threshold level of loss aversion, first solve the IR and IC conditions for
YH and YL = Y R. Then set xL = 1 and solve (28)–(30) for γ ,λ and the threshold
level of loss aversion:

lM∗ =
(

1 +
( ∆PH

1 − PH
+

∆PL

PL

)(U ′(Y R)
U ′(YH )

− 1
)( ∆PH

1 − PH
+

∆PH

PH

)−1)−1

− 1. (31)

Proposition 5. The monotone likelihood ratio property is a necessary and
sufficient condition for lE∗ > lM∗.

Proof. Set the exogenous reference income equal to the level chosen when the
reference income is endogenous. Comparing (28) to (24), it follows that lE∗ >
lM∗ if and only if ∆PH/(1 − PH ) = −(∆PM + ∆PL)/(PM + PL) > −∆PM/PM or
∆PM/PM > ∆PL/PL, as is implied by MLRP. �
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To understand this result, suppose that loss aversion were at the threshold for
the median formulation. If median income is increased then YL is now in the loss
space, so this adds to the cost of the change. When the reference income is ex-
ogenous, raising YM does not precipitate losses for the YL realization. Hence, the
option scheme cannot be optimal for the exogenous formulation if loss aversion
is barely sufficient for an option to be optimal in the endogenous case.

The following stylized numerical example illustrates this point. The man-
ager’s utility function is given by U = Y r with relative risk aversion of σ =
1 − r = 0.5. The principal’s costs are given by C. The three states H, M, L occur
with probabilities (0.25, 0.5, 0.25) if effort is high. Without effort the probabil-
ities are (0.15, 0.5, 0.35), so MLRP is satisfied by this formulation. The cost of
the effort needed to induce the superior distribution is 0.1. The alternative for the
manager is to receive a riskless income of 9 at an alternative effort level normal-
ized to zero. The principal’s objective is to minimize the cost of compensation
subject to (i) a fixed reservation level of utility from income plus the utility cost
of effort of U∗ + ē = 3.1 and (ii) the incentive constraint that effort be applied.

The first row of the following table shows results when there is no loss aver-
sion. The second row shows the optimal scheme when, in the median formulation,
loss aversion is at the threshold level necessary to induce an option.

H M L C
13 9.6 6.7 9.73
14.8 8.1 8.1 9.8

In this example, lM∗ = 0.214. Thus, if loss aversion increases the marginal utility
of downside income by only 21%, then this is sufficient to induce an option-like
scheme. Constraining payment to be equal in the bottom two states increases the
principal’s costs very little, so this is worth doing to avoid even low costs of risk
aversion.

If there is an exogenous reference income of 8.1 then the option-type scheme
becomes optimal with sufficient loss aversion. The required threshold level of
loss is lE∗ = 0.542, but even this level of loss aversion is below that suggested by
experimental evidence.

Finally, note that loss aversion raises payments in both the best and the worst
states and depresses pay for intermediate performance. Incentives are concen-
trated in the upper segments of the compensation scheme, which becomes more
sensitive to performance.

5.2. Risk Aversion and Loss Aversion

Next we show how risk aversion affects the threshold level of loss aversion re-
quired for the optimal contract to set YM = YL = Y R. The manager’s utility func-
tion is given by U = Y r (0 < r < 1) with relative risk aversion of σ = 1 − r. In
this formulation we assume that the manager has an outside income opportunity
of W that is evaluated with the same utility function.

Proposition 6. Raising r (lowering risk aversion) raises lM∗.
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Proof. The scheme {YH ,YM = YL = Y R} solves IC and IR written as

PHY r
H + (PM + PL)(Y R)r − ē = W r, (32)

∆PHY r
H + (∆PM + ∆PL)(Y R)r = ē. (33)

Varying r, we have

dYH

dr
= ((lnW )W r − (lnYH )Y r

H )(rY r−1
H )−1, (34)

dY R

dr
= ((lnW )W r − (lnY R)Y R)(r(Y R)r−1)−1. (35)

Under our scheme, YH > W and YL < W ; thus we have dYH/dr < 0 and
dY R/dr > 0. It then follows that

d
dr

(YH

Y R

)1−r

=
((dYH

dr
Y R − dY R

dr
YH

)
(Y R)−2

)((YH

Y R

)1−r

ln
(YH

Y R

))
< 0. (36)

Hence (28) can be written as

lM∗ =
(

1+
( ∆PH

1 − PH
+

∆PL

PL

)((YH

Y R

)1−r

− 1
)( ∆PH

1 − PH
+

∆PH

PH

)−1)−1

− 1, (37)

where we have used the fact that U ′(Y R)/U ′(YH ) = (YH/Y R)1−r. Using (36) then
yields the result that lM∗ is increasing in r. �

At first sight this result seems paradoxical, since the role of an option-type
compensation scheme appears to protect against risk. In fact, raising the inter-
mediate payment at the expense of the highest is beneficial only to the extent that
the marginal utility of income is diminishing—that is, if risk aversion is present.
Unlike increasing income in the lowest state, there are no adverse incentive ef-
fects (more generally, MLRP means that the incentive effects of raising income
are more favorable in higher states). The net gain to abandoning the compensa-
tion scheme with YM = YL is thus greater, the more risk averse is the agent. Thus,
if YM = YL is only just optimal at (r, lM∗), then marginally lowering r means the
agent values YL more relative toYM and so the principal can lower YM . Because the
marginal utility of high income is now lower, maintaining incentives requires that
we raise YH even though YM has declined. But then U ′(YM)/U ′(YH ) = (YH/YM)1−r

increases and therefore l∗ decreases.

6. Choice of Risk

Option-based compensation contracts are often criticized for inducing “too much”
risk taking by managers. In our basic model, managers choose effort for a given
project and intrinsic risk is beyond their control. When this is not the case, incen-
tive pay that exposes managers to more company risk than they would normally
choose (for portfolio reasons) may induce actions that reduce this risk. Hence, it
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is possible that managers will choose projects that are excessively safe from the
shareholders’ point of view.21

Such reasoning is sometimes presented as an argument in favor of using
option-like compensation. Eliminating downside risk restores the balance in fa-
vor of risk taking. As Ross (2004) points out, the standard argument—that the
convexity in the call option’s payoff function induces gambling—is not the whole
story. The implicit assumption behind the standard argument is that the manager’s
von Neuman–Morgenstern utility function has the same (absolute) risk aversion
over the entire relevant domain of outcomes. But this will generally not be the
case: transforming the manager’s reward function (with an option contract) will
have the well-understood direct effect of convexifying the utility function over
outcomes; but it can also shift the domain of outcomes into a region of the utility
function with more risk aversion (what Ross calls a translation effect) such that
the utility cost of risk bearing actually increases. Ross also identifies a magnifica-
tion effect: when it is out of the money, the power of the option contract is locally
lower than the share-based scheme and reduces the incentive to take risks rela-
tive to shares. Overall, then, it is ambiguous whether option-based compensation
encourages risk taking.

Here we argue that the presence of loss aversion provides a further reason
why risk taking may be lower with an option contract than with a share or other
incentive scheme that does not protect against the downside. Risk loving in the
loss space means that a manager once down may behave recklessly. Options
prevent the manager from entering the gambling zone, and the firm benefits from
the changed behavior.

Assume that, once ex ante effort is applied, the manager obtains early warning
of the realization. If indications are that returns will be in the loss space, then
the manager can exert effort on a risky action with some chance of converting a
performance that is below median to one in excess of it, although failure results
in a collapse in performance. The action lowers expected firm value, so the risk-
neutral shareholders wish to discourage it.

Given the model of Section 3.2, compare a scheme of the form in Figure
2a, which protects against the loss space, with that of Figure 2b or 2c, which
do not. In Figure 2a, essentially an option, an unfair gamble that if successful
raises performance—from a low level to one just above that at which the refer-
ence income is paid—is a one-way bet. Nonetheless, expected income increases
little, and over this interval the agent is risk averse. Therefore, the action may
be rejected if the effort required is costly. This is a version of the Ross (2004)
magnification effect. Under the schemes in Figures 2b and 2c, such a gamble has
a large effect on income in a zone where the agent is risk loving. Since the gam-
ble lowers the expected return to shareholders, they will prefer the option-like
schedule that offers carrots for success rather than a scheme that involves sticks
in the event of failure.

The conclusions are similar in comparing share-based compensation with
stock options. Shares imply that pay is sensitive to performance throughout the

21. Carpenter (2000) considers a conventional investment problem for a risk-averse fund manager.
She shows in a dynamic setting that, under some conditions, option-based compensation can induce
less risk taking. However, options that are deep out of the money induce excess risk taking.
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range of performance. There is a cost to the manager if the action fails, but suc-
cess yields significant gains. Because the gamble is predominantly in the loss
space (within which the manager is a risk lover), the expected private gain to the
action may be positive. Suppose, for example, that if no action is taken then the
manager anticipates being 10 below the reference income. With probability 0.6,
the action either further reduces income to 20 below or boosts it to Ȳ R. Convexity
may mean that the increase in expected utility is enough for the risk-increasing
action to be taken. Under a full option, it never will be.

More explicitly, let the value function be given by (1) with exogenous refer-
ence income. As in the general prospect theory formulation, the value function
is convex in the loss space. Assume that, after early warning of the realization, a
manager can take a costly action that has a chance of converting a below-median
realization to one in excess of it; but if the action fails, the firm’s income is re-
duced. The foreseen down state is denoted by d. Suppose the costly action is
taken. Then the chance of improvement to a state in the gain space denoted by
u is p+; the probability of precipitating an even worse state, denoted by w, is
the complementary probability p−.22 Under an option with strike price Ȳ R, the
expected gross utility gain from the action is

GO = p+(U (Y O
u ) −U (Ȳ R)), (38)

where Y O
u is the manager’s income under the option if the action pays off and Ȳ R

(the reference level of income) is income when the action fails and the option is
out of the money. With shares, the expected gross utility gain is

GS = p+
(
U (Y S

u ) −U (Y S
d ) + g(U (Ȳ R) −U (Y S

d ))
)

+ p−
(
U (Y S

w ) + g(U (Y R) −U (Y S
w )) −U (Y S

d ) + g(U (Ȳ R) −U (Y S
d ))

)
, (39)

where Y S
d

, Y S
u , and Y S

w denote (respectively) the income of the manager under
the share scheme in states d, u, and w. This scheme may have a fixed wage
component but will have the property that Y S

u > Ȳ R > Y S
d

> Y S
w . As in Ross

(2004), it is ambiguous whether GO is greater or less than GS. Our analysis in-
troduces a new consideration. The convexity of the objective function in the loss
space means that the marginal cost of loss is most severe as the loss space is en-
tered. Hence, in the expression for GS, if the gamble pays off then the value
of the saving in utility forgone from loss, g(U (Ȳ R) − U (Y S

d
)), is greater per

dollar of income gain than the per-dollar utility cost of the extra loss incurred,
g(U (Ȳ R) − U (Y S

w )) − g(U (Ȳ R) − U (Y S
d

)), should the gamble fail. With enough
loss aversion, the risky action yields greater benefit with the share scheme, since
the upside includes the elimination of the magnified cost of loss. This result may
be stated as follows.

Proposition 7. Convexity of loss aversion increases the gain from taking a risky
action by more under share-based compensation than under an option contract.

22. For simplicity and plausibility the reference income is taken as the median prior to any gamble.
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Thus, option-like compensation may make the manager less inclined to take
risky actions than would be the case with share-based compensation. Whether
this is a merit or not depends upon whether the action increases or decreases the
expected value of the company. Both possibilities are consistent with the options
providing relatively less incentive to take risks.

7. Conclusion

Adding loss aversion to the standard principal–agent model with unobservable
effort can explain why bonuses are paid for good performance rather than penal-
ties being exacted for poor performance. The use of option-like compensation in
executive remuneration schemes may therefore be efficient. Subjecting a man-
ager to the discomfort of loss relative to their reference income is too costly a
stick to efficiently induce good performance, especially when the perception of
losses can be reduced by lowering median income.

Loss aversion may account for zones in which pay is insensitive to perfor-
mance as well as for discontinuous incentives. Depending on the nature of loss
aversion and the reference income, the only incentive may be dismissal if per-
formance falls below some threshold or a finite bonus paid when performance
is better than expected. Our analysis also shows how options can help to elim-
inate reckless behavior by managers. Of course, the efficacy of corporate gov-
ernance, financial reporting standards, and cultural factors must be considered
when attempting to understand the general patterns of executive compensation
both within and between countries. Our contention is that loss aversion is also
important.
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