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Abstract

We propose a model in which assets with identical cash flows can trade at different prices.

Infinitely-lived agents can establish long positions in a search spot market, or short positions by

first borrowing an asset in a search repo market. We show that short-sellers can endogenously

concentrate in one asset because of search externalities and the constraint that they must deliver

the asset they borrowed. That asset enjoys greater liquidity, measured by search times, and a

higher lending fee (“specialness”). Liquidity and specialness translate into price premia that

are consistent with no-arbitrage. We derive closed-form solutions for small frictions, and can

generate price differentials in line with observed on-the-run premia.
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1 Introduction

In fixed-income markets some bonds trade at lower yields than others with almost identical cash

flows. In the US, for example, just-issued (“on-the-run”) Treasury bonds trade at lower yields than

previously issued (“off-the-run”) bonds maturing on nearby dates. Warga (1992) reports that an

on-the-run portfolio returns on average 55bps below an off-the-run portfolio with matched duration.

Similar phenomena exist in other countries. In Japan, for example, one “benchmark” government

bond trades at a yield of 60bps below other bonds with comparable characteristics.1

How can the yields of bonds with almost identical cash flows differ by more than 50bps?

Financial economists have suggested two apparently distinct hypotheses. First, on-the-run bonds

are more valuable because they are significantly more liquid than their off-the-run counterparts.

Second, on-the-run bonds constitute better collateral for borrowing money in the repo market.

Namely, loans collateralized by on-the-run bonds offer lower interest rates than their off-the-run

counterparts, a phenomenon referred to as “specialness.”2 These hypotheses, however, can provide

only a partial explanation of the on-the-run phenomenon: one must still explain why assets with

almost identical cash flows can differ in liquidity and specialness.

In this paper we propose a theory of the on-the-run phenomenon. We argue that liquidity and

specialness are not independent explanations of this phenomenon, but can be explained simultane-

ously by short-selling activity. We determine liquidity and specialness endogenously, explain why

they can differ across otherwise identical assets, and study their effect on prices. A calibration of

our model for plausible parameter values can generate effects of the observed magnitude.

We consider an infinite-horizon steady-state economy with two assets paying identical cash

flows. There is a continuum of agents experiencing transitory needs to hold long or short positions.

An agent needing to be long buys an asset, and sells it later when the need disappears. Conversely,

an agent needing to be short borrows an asset, sells it, and when the need disappears buys the asset

back and delivers it to the lender. Trade involves two markets: a spot market to buy and sell, and a

repo market where short-sellers can borrow assets. We assume that both markets operate through

search, and model them as in the standard framework (e.g., Diamond (1982)) where agents are

1For US evidence, see also Amihud and Mendelson (1991), Krishnamurthy (2002), Goldreich, Hanke, and Nath
(2007), and Strebulaev (2007). For Japan, see Mason (1987), Boudoukh and Whitelaw (1991), and Boudoukh and
Whitelaw (1993).

2On liquidity, Sundaresan (2002) reports that trading volume of on-the-run bonds is about ten times larger than
that of off-the-run, and Fleming (2002) reports that bid-ask spreads of off-the-run bills are about five times larger
than when the bills are on-the-run. Specialness is measured by comparing a bond’s repo rate, which is the interest
rate on a loan collateralized by the bond, to the general collateral rate, which is the highest quoted repo rate. Duffie
(1996) reports an average specialness of 66bps for on-the-run bonds and 26bps for their off-the-run counterparts.
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matched randomly over time in pairs and bargain over the terms of trade. This captures the over-

the-counter structure of government-bond markets: transactions between dealers and customers

are negotiated bilaterally over the phone, and dealers often negotiate bilaterally in the inter-dealer

market.3 Of course, the search framework is a stylized representation of government-bond markets–

but so is the Walrasian auction which assumes multilateral trading. As long as search times are

short, as is the case in our calibration, it is not obvious which model describes the markets better.

Our model has an asymmetric equilibrium in which assets trade at different prices despite the

identical cash flows. The intuition is as follows. Suppose that all short-sellers prefer to borrow

a specific asset. Because they initially sell and eventually buy the asset back, they increase the

asset’s trading volume in the spot market. This increases the asset’s liquidity by reducing search

frictions: with more volume, buyers and sellers become easier to locate. What makes short-sellers’

concentration self-fulfilling is the constraint that they must deliver the same asset they borrowed.

This constraint implies that a short-seller finds it optimal to borrow the asset that is easier to locate,

which is precisely the asset that other short-sellers are borrowing.4 The asset in which short-sellers

concentrate trades at a premium for two reasons. Since it has a larger pool of buyers, it is easier to

sell, and thus carries a liquidity premium. It also carries a specialness premium because its owners

can lend it to short-sellers for a fee, thus deriving an additional cash flow from holding the asset.

Our mechanism relies critically on short-sellers: we show that in their absence, assets trade

at the same price. One could conjecture that even without short-sellers, asymmetric liquidity can

arise in a self-fulfilling manner: one asset is harder to sell because its lack of liquidity drives buyers

away. What rules out such asymmetries is that the difficulty to sell hurts sellers more than buyers

because for buyers it becomes relevant only later in time when they turn into sellers. Thus, sellers

of a less liquid asset are willing to lower the price enough to compensate buyers. But then buyers

buy both assets, implying that both are equally easy to sell and trade at the same price.

Short-sellers can introduce asymmetries because, unlike longs, they are constrained to buy

a specific asset - the one they borrowed. The mere presence of short-sellers, however, does not

guarantee asymmetries because they could borrow both assets equally. Asymmetries are possible

3In the US, inter-dealer trading is conducted through brokers. Some brokers operate automated trading systems,
structured as electronic limit-order books. Other brokers, however, operate voice-based systems in which orders are
negotiated over the phone. Barclay, Hendershott, and Kotz (2006) report that automated systems account for about
85% of trading volume for on-the-run bonds, but the situation is reversed for off-the-run bonds. To explain this
phenomenon, they propose a search-based model.

4The delivery constraint is standard in repo markets: lenders insist on receiving back the same asset they lent
because of considerations of book-keeping, capital-gains taxes, etc. The prevalence of the delivery constraint is
illustrated by the incidence of short-squeezes, whereby short-sellers have difficulty delivering the asset they borrowed
and the asset’s specialness in the repo market increases dramatically. For a description of short-squeezes see, for
example, Dupont and Sack (1999).
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because of the assumption of spot-market search. Indeed, because search generates a positive

relationship between trading volume and liquidity, it implies that short-sellers have a preference for

an asset that other short-sellers are borrowing. To emphasize the critical role of search, we show

that if the spot market is Walrasian, then assets trade at the same price.

While the combination of short-sellers and spot-market search generates asymmetric liquidity,

repo-market search ensures that the asymmetry can translate to a quantitatively significant price

difference. Indeed, search precludes Bertrand competition between lenders in the repo market, and

generates a positive lending fee. A positive fee gives rise to the specialness premium, which adds

to the liquidity premium. Furthermore, the shorting costs implicit in the fee prevent arbitrageurs

from eliminating the price difference between the two assets.

A calibration of our model can generate price effects of the observed magnitude even for very

short search times. We show that the liquidity premium is small, and the effects are mostly

generated by the specialness premium. Of course, this does not mean that liquidity does not matter;

it rather means that liquidity can have large effects because it induces short-seller concentration

and creates specialness.

Summarizing, our main contribution is to explain why assets with almost identical payoffs, such

as on- and off-the-run bonds, can trade at significantly different prices. Our model also provides a

framework for understanding other puzzling aspects of the on-the-run phenomenon. One apparent

puzzle is that off-the-run bonds are viewed by traders as “scarce” and hard to locate, while at

the same time being cheaper than on-the-run bonds. In our model, off-the-run bonds are indeed

scarce from the viewpoint of short-sellers searching to buy and deliver them. Because, however,

scarcity drives short-sellers away from these bonds, it makes them less liquid and less attractive to

marginal buyers who are the agents seeking to establish long positions. Our theory also has the

counter-intuitive implication that the trading activity of short-sellers can raise, rather than lower,

an asset’s price. This is because short-sellers increase both the asset’s liquidity and specialness.

While our theory can explain price differences between on- and off-the-run bonds, it does not

explain why short-sellers are more likely to concentrate in on-the-run bonds.5 We show, however,

that if assets differ enough in their supplies (i.e., issue sizes), the equilibrium becomes unique with

short-sellers concentrating in the largest-supply asset. This is consistent with the commonly held

view that off-the-run bonds are in smaller effective supply (because, e.g., they become “locked away”

in the portfolios of buy-and-hold investors). Of course, our theory cannot address the decrease in

5Our multiple-equilibria view seems to fit the Japanese government-bond market: Boudoukh and Whitelaw (1991)
and Boudoukh and Whitelaw (1993) show that the benchmark bond in which liquidity concentrates can be arbitrary.
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effective supply because it assumes a steady state.

This paper is closely related to Duffie’s (1996) theory of repo specialness. In Duffie, short-

sellers need to borrow an asset and sell it in a market with exogenous transaction costs. Assets

differ in transaction costs, and those with low costs are on special because they are in high demand

by short-sellers. The main difference with Duffie is that instead of explaining specialness taking

liquidity (transaction costs) as exogenous, we explain why both liquidity and specialness can differ

for otherwise identical assets. Krishnamurthy (2002) proposes a model building on Duffie (1996)

that links the specialness premium to an exogenous liquidity premium. This link is also present in

our model where the liquidity premium is endogenous.6

Duffie, Gârleanu and Pedersen introduce search and matching in models of dynamic asset

market equilibrium.7 In Duffie, Gârleanu, and Pedersen (2007) investors seek to establish long

positions, and in Duffie, Gârleanu, and Pedersen (2005) trade is intermediated through dealers.

Duffie, Gârleanu, and Pedersen (2002) model search in the repo market and show that it generates

a positive lending fee. Our focus differs in that we seek to explain price differences among otherwise

identical assets. This leads us to consider a multi-asset model while they assume only one asset,

and allow for search in both the spot and the repo market.

Vayanos and Wang (2007) and Weill (2007) develop multi-asset models with search, in which

assets with identical payoffs can trade at different prices. They assume no short-sellers, however, and

the price differences are driven by the constraint that longs must choose which asset to buy before

starting the search process. This constraint is somewhat implausible in the context of the Treasury

market since, for example, longs have the flexibility of buying any asset when they contact a dealer.

In the present paper, by contrast, price differences are driven by the more standard constraint that

short-sellers must deliver the same asset they borrowed. Furthermore, the presence of short-sellers

allows us to explore the interplay between liquidity and specialness, and generate much larger price

effects.

This paper is related to the monetary-search literature building on Kiyotaki and Wright (1989)

and Trejos and Wright (1995). Aiyagari, Wallace, and Wright (1996) provide an example of an

economy in which fiat monies (intrinsically worthless and unbacked pieces of paper) endogenously

differ in their price and liquidity. Wallace (2000) analyzes the relative liquidity of currency and

6Empirical studies by Cornell and Shapiro (1989), Jordan and Jordan (1997), Buraschi and Menini (2002), Kr-
ishnamurthy (2002), Graveline and McBrady (2007), and Moulton (2004) show that on-the-run bond prices contain
specialness premia consistent with Duffie (1996) and our model. We return to these studies in Section 5.

7See also Burdett and O’Hara (1987) and Keim and Madhavan (1996) for search-theoretic models of block trading
in the upstairs market.
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dividend-paying assets in a model based on asset indivisibility. Our relative contribution is to

compare dividend-paying assets as opposed to currency, and introduce short sales.

This paper is also related to the literature on equilibrium asset pricing with transaction costs.

(See, for example, Amihud and Mendelson (1986), Constantinides (1986), Aiyagari and Gertler

(1991), Heaton and Lucas (1996), Vayanos (1998), Vayanos and Vila (1999), Huang (2003), and

Lo, Mamaysky, and Wang (2004).) We add to that literature by endogenizing transaction costs.

Pagano (1989) generates asymmetric liquidity because traders can concentrate in one of multi-

ple markets.8 Our work differs because we consider concentration across assets rather than market

venues for the same asset. Boudoukh and Whitelaw (1993) show that asymmetric liquidity can

arise when a monopolistic bond issuer uses liquidity as a price-discrimination tool.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 shows

that the model is based on a minimum set of assumptions: when any assumption is relaxed, the

Law of One Price holds. Section 4 derives the main results, Section 5 draws empirical implications,

Section 6 calibrates the model and Section 7 concludes. All proofs are in the Appendix.

2 Model

Time is continuous and goes from zero to infinity. There are two assets i ∈ {1, 2} that pay an

identical dividend flow δ and are in identical supply S. Agents are infinitely lived and form a

continuum with infinite mass. They can hold long or short positions in either asset. For simplicity,

however, we allow for only three types of portfolios: long one share (of either asset), short one

share, or no position.

Agents derive a utility flow from holding a position. The utility flow is zero for an agent holding

no position. An agent holding q ∈ {−1, 1} shares of either asset derives utility flow q(δ + xt) − y,

where y > 0 and {xt}t≥0 is a stochastic process taking the values x > 0, 0, and −x < 0. We refer to

agents with xt = x as high-valuation, xt = 0 as average-valuation, and xt = −x as low-valuation.

Agents’ lifetime utility is the present value (PV) of expected utility flows, net of payments for asset

transactions, and discounted at a rate r > 0.

Our utility specification can be interpreted in terms of risk aversion. If the parameter δ is an

8See also Ellison and Fudenberg (2003) for a general analysis of the coexistence of markets, and Economides and
Siow (1988) for a spatial model of market formation. See also Admati and Pfleiderer (1988) and Chowdhry and Nanda
(1991) for models where trading is concentrated in a specific time or location because of asymmetric information.

5



expected rather than actual dividend flow, qδ represents a position’s expected cash flow. This cash

flow needs to be adjusted for risk. The parameter y represents a cost of risk bearing, which is positive

for both long and short positions. The parameters x and x represent hedging benefits. For example,

low-valuation agents could be hedging the risk of a long position held in a different but correlated

market. A short position would give these hedgers an extra utility x, while a long position would

give them a disutility −x.9 In Appendix E we derive our utility specification from first principles.10

We assume that agents have CARA preferences over a single consumption good, and can invest

in a riskless asset with return r and in two identical risky assets with expected dividend flow δ.

Moreover, agents receive a random endowment whose correlation with the dividend flow can be

positive (low-valuation), zero (average-valuation), or negative (high-valuation). These assumptions

give rise to our reduced-form specification, with the parameters y, x, x being functions of the

agents’ risk-aversion, the variance of the dividend flow, and the endowment correlation. We leave

the CARA specification to the Appendix because the reduced form conveys the main intuitions

without burdening the derivations.

At each point in time, there is a flow F of average-valuation agents who switch to high valuation,

and a flow F who switch to low valuation. Conversely, high-valuation agents revert to average

valuation with Poisson intensity κ, and low-valuation agents do the same with Poisson intensity κ.

Thus, the steady-state measures of high- and low-valuation agents are F/κ and F/κ, respectively.

Given that the measure of average-valuation agents is infinite, an individual agent’s switching

intensity from average to high or low valuation is zero.

For simplicity, we impose the following parameter restrictions.

Assumption 1. x+ x > 2y > x.

Assumption 2. F
κ
> 2S + F

κ
.

Assumption 1 ensures that low-valuation agents are willing to short-sell in equilibrium, while

average-valuation agents are not. Indeed, consider a low-valuation agent who establishes a short

position with a high-valuation agent as the long counterpart. The flow surplus of the transaction

is the sum of the high-valuation agent’s utility flow from the long position plus the low-valuation

agent’s utility flow from the short position:

[δ + x− y] + [−(δ − x)− y] = x+ x− 2y.

9Hedgers in the Treasury market can be, for example, dealers in corporate bonds or mortgage-backed securities,
who need to hedge the interest-rate risk of their inventories. For a discussion of hedging in the Treasury market, see
Dupont and Sack (1999).

10See Duffie, Gârleanu, and Pedersen (2007) for a similar derivation.
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Assumption 1 ensures that this is positive because the combined hedging benefits x + x exceed

the total cost 2y of risk bearing. On the other hand, the flow surplus when the short-seller is an

average-valuation agent is [δ + x− y] + [−δ − y] = x− 2y < 0.

Assumption 2 ensures that high-valuation agents are the marginal asset holders. Indeed, the

aggregate asset supply is the sum of the supply 2S from the issuers plus the supply from the short-

sellers. Since low-valuation agents are the only short-sellers and short one share, the latter supply

is equal to their measure F/κ. The aggregate supply is thus smaller than the measure F/κ of

high-valuation agents, meaning that these agents are marginal.

In what follows, we focus on steady-state equilibria. Assumptions 1 and 2 ensure that in

such equilibria high-valuation agents seek to establish long positions, low-valuation agents seek to

establish short positions, and average-valuation agents stay out of the market.

3 Market Settings Consistent with the Law of One Price

In our main model of Section 4 there are two markets, both operating through search: a spot

market to buy and sell assets, and a repo market where short-sellers can borrow assets. In this

section we take a step back and argue that the combination of short-sellers and a search spot market

are necessary for explaining the on-the-run phenomenon. Namely, we consider benchmark settings

where either short-sales are not allowed or the spot market is Walrasian. We show that in these

settings the Law of One Price holds, i.e., assets 1 and 2 trade at the same price.

3.1 No Short-Sales

We start with the case where short-sales are not allowed. The repo market is then shut, and agents

trade only in the spot market. Not surprisingly, the Law of One Price holds when the spot market

is Walrasian.

Proposition 1 (No Short-Sales, Walrasian Spot Market). Suppose that short-sales are not

allowed. In a Walrasian equilibrium both assets trade at the same price

p =
δ + x− y

r
.

Moreover, high-valuation agents buy one share or stay out of the market, and low- and average-

valuation agents stay out of the market.
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The intuition why both assets trade at the same price is straightforward: if one were cheaper,

it would be the only one demanded by agents. The common price of the assets is determined by the

marginal holders. From Assumption 2, these are the high-valuation agents, and the price is equal

to the PV of their utility flow δ + x − y from holding one share. Under this price, high-valuation

agents are indifferent between buying and staying out of the market, while other agents prefer to

stay out of the market.

We next assume that the spot market operates through search. As in the standard search

framework, buyers and sellers are matched randomly over time in pairs. The buyers are high-

valuation agents, and the sellers are average-valuation agents who bought when they were high-

valuation. We denote by µb the measure of buyers and by µsi the measure of sellers of asset i. We

assume that an agent establishes contact with others at Poisson arrival times with fixed intensity,

and that conditional on establishing a contact all agents are equally likely to be contacted. Thus, an

agent meets members of a given group with Poisson intensity proportional to that group’s measure.

For example, a buyer meets sellers of asset i with Poisson intensity λµsi, where λ is a parameter

measuring the efficiency of search. The Law of Large Numbers (see Duffie and Sun (2004)) implies

that meetings between buyers and sellers of asset i occur at a deterministic rate λµbµsi. When

a buyer meets a seller of asset i, they bargain over the price pi. We assume that bargaining is

efficient, in that trade occurs whenever the buyer’s reservation utility exceeds the seller’s. If trade

occurs, the price is set so that the buyer receives a fraction φ ∈ [0, 1] of the surplus. Proposition 2

shows that trade always occurs in equilibrium.

Figure 1 describes the types of agents in the market and the transitions between types. A

high-valuation agent is initially a buyer b, seeking a seller of either asset. If he reverts to average

valuation before meeting a seller, he exits the market. Otherwise, if he meets a seller of asset i,

he bargains over the price pi, buys the asset, and becomes a non-searcher ni. When he reverts to

average valuation, he becomes a seller si, seeking a buyer. Upon meeting a buyer, he bargains over

the price, sells the asset, and exits the market.

PSfrag replacements

Buyer b
Non-searcher

ni
Seller si

Figure 1: Life-cycle. No Short-Sales, Search Spot Market.
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Proposition 2 (No Short-Sales, Search Spot Market). Suppose that short-sales are not

allowed. In a search equilibrium all buyer-seller meetings result in a trade, and both assets trade at

the same price.

Proposition 2 shows that the Law of One Price holds even in the presence of search frictions.

In particular, there do not exist asymmetric equilibria in which assets differ in liquidity. One could

conjecture, for example, an equilibrium in which buyers refuse to trade when they meet sellers of

asset 2, preferring to wait for sellers of asset 1. This behavior could be based on a self-fulfilling

expectation of low liquidity: a buyer fears that asset 2 will be difficult to sell because he expects

that other buyers will also refuse to buy. What rules out such equilibria is that the difficulty to sell

hurts sellers even more than buyers because for buyers it becomes relevant only later in time when

they turn into sellers. As a consequence, sellers of asset 2 are willing to lower the price enough to

compensate buyers for any difficulties they will encounter when selling the asset. But then both

assets have the same buyer pool, consisting of high-valuation agents. Therefore, they are equally

easy to sell, and trade at the same price.

Proposition 2 implies that search frictions alone are not enough to generate price differences

among otherwise identical assets. One must also explain why assets’ buyer pools can be differ-

ent. Vayanos and Wang (2007) and Weill (2007) derive price differences in settings where buyers

must choose which asset to buy before starting the search process.11 This constraint, however, is

somewhat implausible in the context of the Treasury market. Suppose, for example, that a buyer

contacts a dealer for an on-the-run bond. If the dealer happens to have an attractively priced

off-the-run bond in inventory, nothing prevents the buyer from switching to that bond. The con-

straint becomes much more plausible if buyers are not agents seeking to initiate long positions (as

in Vayanos and Wang (2007) and Weill (2007)), but seeking to cover previously established short

positions. Considering short-sellers and the related issue of repo specialness is a central and novel

element of our theory.

Our main model of Section 4 adds short-sellers to the model of spot-market search presented

in this section. Before moving to the main model, we show in Section 3.2 that search in the spot

market is essential for our theory. Namely, we return to the case of a Walrasian spot market, and

show that the Law of One Price holds in the presence of short-sellers, both when the repo market

is Walrasian and when it operates through search.

11The price differences in these papers compensate buyers for the difficulty in locating an asset. Suppose, for
example, that asset 2 is harder to locate than asset 1. Then, no buyer will search for asset 2 if its price is greater
or equal than asset 1’s. If, however, searching for asset 2 does not preclude a simultaneous search for asset 1, price
differences disappear (as shown in Proposition 2).
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3.2 Short-Sales – Walrasian Spot Market

To motivate our modelling of the repo market, we recall the mechanics of repo transactions. In

a repo transaction a lender turns his asset to a borrower in exchange for cash. At maturity the

borrower must return an asset from the same issue, and the lender returns the cash together with

some previously-agreed interest-rate payment, called the repo rate. Hence, a repo transaction is

effectively a loan of cash collateralized by the asset. Treasury securities differ in their repo rates.

Most of them share the same rate, called the general collateral rate, which is the highest quoted

repo rate and is close to the Fed Funds Rate. The specialness of an asset is defined as the difference

between the general collateral rate and its repo rate. In our model, instead of assuming that the

lender pays a low repo rate to the borrower, we assume that the borrower pays a positive flow fee

w to the lender. Hence, the implied repo rate is the difference r − w/p between the risk-free rate

and the lending fee per dollar, and the specialness is simply w/p.

When the spot and the repo market are both Walrasian, the Law of One Price holds in both

markets: the assets trade at the same price and carry the same lending fee. Furthermore, the fee is

zero. Indeed, with a positive fee, agents would prefer to lend their assets in the repo market rather

than holding them. This would be inconsistent with equilibrium since assets are in positive supply.

Proposition 3 (Short-Sales, Walrasian Spot and Repo Markets). Suppose that short-sales

are allowed. In a Walrasian equilibrium both assets trade at the same price

p =
δ + x− y

r

and the lending fee w is zero. Moreover, high-valuation agents buy one share or stay out of the

market, low-valuation agents short one share, and average-valuation agents stay out of the market.

We next assume that the repo market operates through search, with lenders and borrowers

matched randomly over time in pairs. The lenders are high-valuation agents owning an asset, and

the borrowers are low-valuation agents seeking to initiate a short-sale. We denote by µbo the measure

of borrowers and by µ`i the measure of lenders of asset i. We assume the same matching technology

as in Section 3.1: meetings between borrowers and lenders of asset i occur at the deterministic rate

νµboµ`i, where ν is a parameter measuring the efficiency of repo-market search. When a borrower

meets a lender, they bargain over the lending fee. We assume that bargaining is efficient, in that

the repo transaction occurs whenever there is a positive surplus. If the transaction occurs, the

lending fee is set so that the lender receives a fraction θ ∈ [0, 1] of the surplus.
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Proposition 4 (Short-Sales, Walrasian Spot Market, Search Repo market). Suppose that

short-sales are allowed, the spot market is Walrasian, and the repo market operates through search.

In equilibrium both assets trade at the same price and carry the same positive lending fee.

Proposition 4 implies that search frictions in the repo market alone cannot generate departures

from the Law of One Price: the assets trade at the same price and carry the same lending fee.

The only effect of repo-market frictions is that the fee is positive. The mechanism is the same as

in Duffie, Gârleanu, and Pedersen (2002): search precludes Bertrand competition between lenders

because borrowers can only meet one lender at a time.

To explain why the Law of One Price holds, consider a possible asymmetric equilibrium where

short-sellers refuse to borrow asset 2, preferring to wait for a lender of asset 1. Such behavior

could be based on the expectation that asset 2 might be harder to deliver when unwinding the repo

contract. But with a Walrasian spot market, both assets can be costlessly bought and delivered.

Therefore, short-sellers are willing to borrow both. Note that the same conclusion would hold if

there are transaction costs in the spot market, provided that these are equal across assets.

While search frictions in the repo market alone cannot explain the on-the-run puzzle, they can

be part of the explanation. Indeed, suppose that for some (yet unexplained) reason, short-sellers

prefer to borrow a specific asset, e.g., asset 1. Then, the lenders of asset 1 can negotiate a positive

lending fee, while there is no fee for asset 2. Since the lending fee constitutes an additional cash flow

derived from an asset, it raises the price of asset 1 above that of asset 2, resulting in a departure

from the Law of One Price.

Why might short-sellers prefer to borrow a specific asset? A natural reason is that the asset

is easier to deliver because of lower transaction costs in the spot market. This is very plausible

in the context of Treasuries: locating a large quantity of a specific off-the-run issue can be harder

than for on-the-run issues. One must explain, however, why transaction costs can differ across two

otherwise identical assets. As we argue in the next section, a natural explanation, and one which

is central to our theory, is based on search frictions in the spot market.12

12Our analysis assumes that the only delivery method is to buy the asset in the spot market. An alternative method
is through the repo market: short-sellers could borrow the asset from a new lender and deliver it to the original one.
(This method is relevant only when short-sellers wish to maintain the short position and it is the lender who needs to
sell.) One could argue that the ease of delivering an asset has to do with the repo market, and not with transaction
costs in the spot market. In our model, however, both assets are equally easy to locate in the repo market because
they are in equal supply and thus have the same measure of lenders. Moreover, in practice, while it might be easier
to locate an on- rather than an off-the-run bond in the repo market, such differences are perceived to be of secondary
importance relative to the corresponding differences in the spot market.
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4 Departing from the Law of One Price

Our theory of the on-the-run phenomenon is based on short-sellers and search frictions in the spot

and the repo market. The basic mechanism is as follows. Suppose that all short-sellers prefer to

borrow a specific asset. Because they initially sell and eventually buy the asset back, they increase

the asset’s trading volume in the spot market. This increases the asset’s liquidity by reducing

search frictions: with more volume, buyers and sellers become easier to locate. The increase in

liquidity is, in turn, what makes the asset attractive to short-sellers because they can unwind their

positions more easily. The asset in which short-sellers concentrate trades at a premium for two

reasons. Since it has a larger pool of buyers, it is easier to sell, and thus carries a liquidity premium.

It also carries a specialness premium because its owners can lend it to short-sellers for a fee.

The interaction between short-sellers and spot-market search is at the heart of our theory.

Search can generate differences in spot-market liquidity among otherwise identical assets, but only

if some investors trade one asset more than the other. As shown in Proposition 2, such asymmetric

trading is hard to rationalize with longs: since they have the flexibility to buy either asset, they

constitute a common buyer pool for both assets, and trade them equally. Short-sellers, by contrast,

are constrained to buy the same asset they borrowed, and thus can generate asymmetric trading if

they have a preference for a specific asset. This preference can arise if one asset is easier to deliver

than the other. As shown in Proposition 4, such differences across assets are hard to rationalize

without differences in spot-market liquidity, which is precisely what search can generate.

While the combination of short-sellers and spot-market search generates asymmetric liquidity,

repo-market search ensures that the asymmetry can translate to a quantitatively significant price

difference. Indeed, with a Walrasian repo market, both assets would have a lending fee of zero.

Therefore, there would be no specialness premium–which according to our calibration is significantly

larger than the liquidity premium. Moreover, a zero lending fee would imply no shorting costs.

Thus, arbitrageurs could profit from (and eventually eliminate) the liquidity premium by selling

the more liquid asset and buying the less liquid one. In most of our analysis we do not consider

arbitrage strategies because we restrict agents to hold either long or short positions. In Section

4.4, however, we allow for such strategies and show that they can be unprofitable in the presence

of repo-market frictions.

The model of this section adds short-sellers and a search repo market to the model of spot-

market search presented in Section 3.1. Sections 4.1 and 4.2 describe the model, Section 4.3 derives

the equilibria, and Section 4.4 considers the possibility of arbitrage.
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4.1 Agent Types and Transitions

This section describes the types of agents and the transitions between types. The possible types of

a high-valuation agent are in Table 1. Recall that in the model of spot-market search of Section 3.1

the agent can be a buyer b, non-searcher ni, or seller si. In the presence of short-sellers, the agent

can also be a lender `i, having bought asset i and seeking to lend it in the repo market. Furthermore,

a high-valuation non-searcher is an agent who has bought and lent asset i. Depending on the type

of his repo counterparty (described in the paragraph below), a high-valuation non-searcher can be

of three types denoted by (nsi, nni, nbi). The upper bar refers to the agent being high-valuation

and the lower bar refers to the repo counterparty who is low-valuation.

Table 1: Types of High-Valuation Agent

Type Notation Definition

Buyer b Fresh entrant; seeks to buy an asset

Lender `i Has bought asset i; seeks to lend it
Seller si Has bought asset i; seeks to sell it
Non-searcher; repo counterparty si nsi Has lent asset i to agent of type si
Non-searcher; repo counterparty ni nni Has lent asset i to agent of type ni
Non-searcher; repo counterparty bi nbi Has lent asset i to agent of type bi

The possible types of a low-valuation agent are in Table 2. A low-valuation agent is initially a

borrower bo, seeking to borrow an asset in the repo market. If she enters in a repo contract with

a lender of asset i, she becomes a seller si, seeking a buyer. Upon selling the asset she becomes a

non-searcher ni, and upon switching to average valuation she becomes a buyer bi seeking to buy

the asset back and deliver it to her lender.

Table 2: Types of Low-Valuation Agent

Type Notation Definition

Borrower bo Fresh entrant; seeks to borrow an asset
Seller si Has borrowed asset i; seeks to sell it
Non-searcher ni Has sold asset i
Buyer bi Has sold asset i; seeks to buy it back and deliver to lender

13



We denote by T the set of agent types and by τ a generic type. Because the set of types is large,

the description of all possible transitions is somewhat tedious. While this description is necessary

for understanding the workings and solution of the model, readers wishing to get to our results on

equilibrium prices can skim over the rest of this section and proceed to Section 4.2.

We describe the transitions between types using Figures 2 and 3. Figure 2 describes transitions

outside a repo contract, and Figure 3 transitions within a repo contract. The top part of Figure

2 concerns a high-valuation agent and is analogous to Figure 1. The agent is initially a buyer b,

seeking a seller of either asset in the spot market. If he reverts to average valuation before meeting

a seller, he exits the market. Otherwise, if he meets a seller of asset i ∈ {1, 2}, he bargains over

the price pi and buys the asset. He then becomes a lender `i of asset i in the repo market, seeking

a borrower. If he reverts to average valuation before meeting a borrower, he exits the repo market

and becomes a seller si of asset i in the spot market. Upon meeting a buyer, he bargains over the

price pi, sells the asset, and exits the market. If instead the lender `i meets a borrower and there

are gains from trade, he bargains over the lending fee wi and enters in a repo contract (where he

can be type nsi, nni, or nbi).

PSfrag replacements
Exits

Buyer b

Finds a Seller

Lender `i
Repo

nsi, nni, nbi
Seller si

Borrower

bo

Repo

si, ni, bi

Figure 2: Life-cycles. Figure 3 magnifies the two repo boxes.

The bottom part of Figure 2 concerns a low-valuation agent who is initially a borrower bo,

seeking a lender in the repo market. If she reverts to average valuation before meeting a lender,

she exits the market. Otherwise, if she meets a lender of asset i and there are gains from trade, she

bargains over the lending fee wi and enters in a repo contract (where she can be type si, ni, or bi).
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Consider next the transitions within a repo contract, described in Figure 3. A repo contract

can be terminated by either the borrower or the lender, but in different ways. The borrower (lower

dashed box) can terminate by delivering the same asset she borrowed, while the lender (upper

dashed box) can terminate by asking for instant delivery. Terminations are described by the arrows

leaving the dashed boxes, with solid arrows corresponding to borrower-driven terminations, and

dotted arrows to lender-driven ones.

PSfrag replacements

High-valuation High-valuation High-valuation

nsi nni nbi

Seller si Non-searcher

ni

Buyer bi

+

Figure 3: The states of a lender and a borrower within a repo contract.

A borrower terminates the contract when she is a buyer bi and meets a seller. She can also

terminate when she reverts to average valuation before selling the asset, i.e., while being a seller

si. In both cases, she delivers the asset and exits the market, while the lender returns to the pool

`i of lenders.

A lender terminates the contract when he reverts to average valuation.13 If the borrower has

the asset in hand because she is of type si, she delivers it instantly. The lender then becomes a

seller si, while the borrower returns to the pool bo of borrowers. If the borrower does not have the

asset because she sold it and is of type ni or bi, instant delivery is impossible because of search. In

that event, we assume that the lender seizes some cash collateral previously posted by the borrower

and exits the market.14 The borrower returns to the pool bo of borrowers if she still wishes to hold

13In this section we take the lender’s strategy as given. We show that the trading strategies of all agents are optimal
in Section 4.3, where we establish existence of equilibrium.

14This assumption is for simplicity. An alternative assumption is that the borrower can search for the asset under
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a short position (type ni), and exits the market otherwise (type bi).

We denote by µbi the measure of buyers of asset i (types b and bi), by µsi the measure of sellers

of asset i (types si and si), and by µτ the measure of agents of type τ ∈ T. The measures {µτ}τ∈T

are determined by two sets of conditions: market-clearing and inflow-outflow. Market-clearing

requires that all assets are held by some agents, and that there is an equal measure of high- and

low-valuation agents involved in repo contracts. Inflow-outflow conditions require that the inflow

into a type is equal to the outflow, where inflows and outflows are determined by the transitions

described in Figures 2 and 3. In Appendix B we derive the market-clearing and inflow-outflow

conditions, and show that the resulting system determines uniquely the measures of all types.

4.2 Bargaining and Prices

Prices are the outcome of pairwise bargaining between buyers and sellers, and lending fees are

the outcome of bargaining between borrowers and lenders. Bargaining in the repo market is as in

Section 3.2: a repo transaction occurs whenever there is a positive surplus, and the lender receives

a fraction θ ∈ [0, 1] of the surplus. Bargaining in the spot market is more complicated than in

Section 3.1 because for each asset i there are two buyer types, b and bi, and two seller types, si and

si. We denote by ∆τ the reservation value of type τ , defined as the difference in utility between

owning and not owning the asset. Since type b receives a hedging benefit from holding the asset

while type si does not, reservation values satisfy ∆b > ∆si. They also satisfy ∆bi > ∆si since type

si receives a hedging benefit from holding a short position while type bi does not. For simplicity,

we also assume that

∆bi > ∆b > ∆si > ∆si, (1)

i.e., short-sellers are the infra-marginal traders, both as sellers and as buyers. Eq. (1) is satisfied

under appropriate restrictions on exogenous parameters, as we show in Section 4.3.15 We assume

that all buyer-seller meetings result in the same price pi. The price must lie between the valuation

of the marginal buyer and the marginal seller, i.e.,

pi = φ∆si + (1− φ)∆b, (2)

a late-delivery penalty, but this would not change the basic intuitions.
In Appendix C we show that because collateral acts as a transfer, its specific value does not affect any equilibrium

variable except the price of the repo contract: high-valuation agents accept to lend their asset for a lower fee if they
can seize more collateral. To downplay this effect, we set the collateral equal to the utility of a seller si. This ensures
that upon reverting to average valuation, agent ni is equally well off when receiving the asset (thus becoming a seller
si) or the cash collateral.

15Eq. (1) makes the analysis more transparent because it ensures that marginal traders are comparable across
assets even in equilibria where short-selling is concentrated in one asset.
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for some φ ∈ [0, 1]. The parameter φ measures the buyers’ bargaining power, and we treat it as

exogenous.16

To determine the prices and lending fees, we need to compute agents’ reservation values. These

can be derived from the utilities associated to each type. The utilities satisfy the usual flow-value

equations: denoting by Vτ the utility of being type τ , the flow value rVτ is equal to the flow benefits

accruing to τ plus the utility derived from the probability of transitions to other types. In Appendix

C we derive the flow-value equations and solve for the prices and lending fees.

4.3 Equilibrium

An equilibrium is characterized by types’ measures {µτ}τ∈T, types’ utilities {Vτ}τ∈T, prices and

lending fees {pi, wi}i=1,2, and short-selling decisions {νi}i=1,2 where νi ≡ ν if low-valuation agents

borrow asset i and νi ≡ 0 otherwise. These variables solve a system of equations: market-clearing

and inflow-outflow equations (B.3)-(B.11) for the measures, flow-value equations (C.1)-(C.10) for

the utilities, equations (C.11) and (C.12) for the prices and lending fees, and equation

νi = ν ⇔ Σi ≥ 0, (3)

for the short-selling decisions, where Σi is the surplus associated to a repo transaction. Eq. (3)

states that a borrower and a lender agree to a repo transaction for asset i only if the transaction

involves positive surplus. A solution to the system of equations is an equilibrium if it satisfies

two additional requirements. First, the conjectured trading strategies are optimal, i.e., high- and

low-valuation agents follow the strategies implicit in Figures 2 and 3, and average-valuation agents

hold no position. Second, the buyers’ and sellers’ reservation values are ordered as in (1).

Computing an equilibrium can, in general, be done only numerically. Fortunately, however,

closed-form solutions can be derived when search frictions are small, i.e., λ and ν are large.17 In

the remainder of this section we focus on this case, emphasizing the intuitions gained by the closed-

form solutions. We complement our asymptotic analysis with a numerical calibration in Section 6.

16The outcome where all meetings result in the price given by (2) can be generated as an equilibrium of a bargaining
game where the buyer and the seller make simultaneous offers. If the offers generate a set of mutually acceptable
prices, then trade occurs at the mid-point of that set. Otherwise, the meeting ends and agents return to the search
pool. If the buyer’s strategy is to offer pi, then the seller’s best response is also to ask pi–a higher ask would preclude
trade while a lower ask would lower the transaction price. Likewise, if the seller offers pi, then bidding pi is optimal
for the buyer. Obviously any pi ∈ [∆si,∆b] is an equilibrium. We do not select among these, but instead treat the
parameter φ as exogenous.

17More precisely, we assume that λ and ν go to ∞, holding the ratio n ≡ ν/λ constant. When taking this limit,
we say that a variable Z is asymptotically equal to z1/λ+ z2/ν, if Z = z1/λ+ z2/(nλ) + o(1/λ).
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Given that assets are symmetric, a natural equilibrium is one in which low-valuation agents borrow

both assets. Proposition 5 shows that a symmetric equilibrium exists.

Proposition 5. Suppose that φ, θ 6= 1 and

x− 2y +
κ

r + κ+ gs
(x− 2y) > 0, (4)

where gs is defined by (B.33). Then, for large λ and ν, there exists a symmetric equilibrium in

which low-valuation agents borrow both assets. Prices, lending fees, and population measures are

identical across assets.

We derive closed-form solutions for prices and lending fees in Proposition 6, but first we intro-

duce some notation. We denote by mb the measure of buyers of asset i in the limit when search

frictions go to zero. (For simplicity, we suppress the asset subscript in the symmetric equilibrium.)

Assumption 2 implies that buyers are the “long” side of the spot market because the asset demand

generated by high-valuation agents exceeds the asset supply generated by issuers and short-sellers.

Therefore, the measure of buyers converges to a non-zero limit when search frictions vanish, i.e.,

mb > 0. The same is true for the measure of lenders, which converges the asset supply S, the

Walrasian limit. The rates at which buyers and lenders can contact sellers and borrowers converge

to finite limits: if the limits were infinite, the measures of buyers and lenders would converge to

zero. Denoting the limit rates by gs and gbo, the measures of sellers and borrowers are asymp-

totically equal to gs/λ and gbo/ν, respectively, and converge to zero when search frictions vanish.

Closed-form solutions for (mb, gs, gbo) are in Appendix B (Eqs. (B.32), (B.33), (B.35)) and they

imply intuitive comparative statics. For example, the measure mb of buyers is increasing in the

inflow F of high-valuation agents (longs) and decreasing in the inflow F of low-valuation agents

(shorts). Conversely, the measure gs/λ of sellers is decreasing in F and increasing in F , and the

measure gbo/ν of borrowers is increasing in F .

Proposition 6. In the symmetric equilibrium of Proposition 5, both assets i ∈ {1, 2} have the same

price which is asymptotically equal to

p =
δ + x− y

r
︸ ︷︷ ︸

Walrasian price

−
κ

λmb

x

r
︸ ︷︷ ︸

Liquidity discount

−
φ(r + κ+ 2gs)

λ(1− φ)mb

x

r
︸ ︷︷ ︸

Bargaining discount

+
gbo

r + κ+ κ gs

r+κ+κ+gs
+ gbo

w

r
︸ ︷︷ ︸

Specialness premium

, (5)

and the same lending fee which is asymptotically equal to

w = θ

(

r + κ+ κ
gs

r + κ+ κ+ gs
+ gbo

)

Σ, (6)
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where

Σ =
x− 2y + κ

r+κ+gs
(x− 2y)

2ν(1− θ)S
. (7)

The price is the sum of four terms. The first is the limit when search frictions go to zero, and

coincides with the Walrasian price of Propositions 1 and 3. The remaining terms are adjustments to

the Walrasian price due to search frictions. The second term is a liquidity discount arising because

high-valuation buyers expect to incur a search cost when seeking to unwind their long positions.

This cost reduces their valuation and lowers the price. The liquidity discount decreases in the

measure mb of buyers because this reduces the time to sell the asset, and increases in the rate κ of

reversion to average valuation because this reduces the investment horizon. Interpreting the search

cost as a transaction cost, the liquidity discount is in the spirit of Amihud and Mendelson (1986).18

The third term is a discount arising because search precludes Bertrand competition between

buyers, thus allowing them to extract surplus from sellers. This “bargaining” discount decreases

in the measure mb of buyers because with more buyers the bargaining position of each individual

buyer worsens. Conversely, the bargaining discount increases in the rate gs at which buyers can

contact sellers.

The last term is a specialness premium, arising because high-valuation agents can earn a fee by

lending the asset in the repo market. As in Proposition 4, lenders do not compete the fee down to

zero because the search friction enables them to extract some of the borrowers’ short-selling surplus

Σ. The fee is an additional cash flow derived from the asset and raises its price. Both the lending

fee and the specialness premium increase in the rate gbo at which lenders can contact borrowers

because with more borrowers, lenders are in a better bargaining position.

The short-selling surplus Σ increases in the hedging benefit x of the low-valuation agents. It

also increases in the contact rate gs of sellers: the easier sellers are to contact, the more attractive

a short-sale becomes to a low-valuation agent because it is easier to buy the asset back.

Propositions 7 and 8 establish our main result: the basic mechanism explained at the beginning

of Section 4 creates asymmetric equilibria in which short-selling activity is concentrated in one asset

that trades at a higher price.

18Consistent with Amihud and Mendelson, the liquidity discount κx/(λmbr) is the PV of transaction costs incurred
by a sequence of marginal buyers. Indeed, a high-valuation investor (the marginal buyer) reverts to average valuation
at rate κ. He then incurs an opportunity cost x of holding the asset, since he does not realize the hedging benefit,
until he meets a new buyer at rate λmb.
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Proposition 7. Suppose that φ 6= 1, θ 6= 0, 1, and (4) holds. Then, for large λ and ν, there exists

an asymmetric equilibrium in which short-selling is concentrated in asset 1.

To present the solutions for prices and lending fees, we introduce notation analogous to that

in the symmetric equilibrium. We denote by m̂bi the limit measure of buyers of asset i, by ĝsi the

limit contact rate of sellers of asset i, and by ĝbo the limit contact rate of borrowers. Closed-form

solutions for these variables are in Appendix B (Eqs. (B.36)-(B.40)), and they satisfy m̂b1 > m̂b2

and ĝs1 > ĝs2, i.e., asset 1 has more buyers and sellers than asset 2.

Proposition 8. In the asymmetric equilibrium of Proposition 7, asset prices are asymptotically

equal to

p1 =
δ + x− y

r
︸ ︷︷ ︸

Walrasian price

−
κ

λm̂b1

x

r
︸ ︷︷ ︸

Liquidity discount

−
φ

λ(1− φ)

[
r + κ+ ĝs1

m̂b1
+

ĝs2
m̂b2

]
x

r
︸ ︷︷ ︸

Bargaining discount

+
ĝbo

r + κ+ κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

w1

r
︸ ︷︷ ︸

Specialness premium

(8)

and

p2 =
δ + x− y

r
︸ ︷︷ ︸

Walrasian price

−
κ

λm̂b2

x

r
︸ ︷︷ ︸

Liquidity discount

−
φ

λ(1− φ)

[
r + κ+ ĝs2

m̂b2
+

ĝs1
m̂b1

]
x

r
︸ ︷︷ ︸

Bargaining discount

. (9)

The lending fee for asset 1 is asymptotically equal to

w1 = θ

(

r + κ+ κ
ĝs1

r + κ+ κ+ ĝs1
+ ĝbo

)

Σ1, (10)

where

Σ1 =
x− 2y + κ

r+κ+ĝs1
(x− 2y)

ν(1− θ)S
. (11)

An immediate consequence of Proposition 8 is that the price of asset 1 exceeds that of asset

2. This is because of three effects working in the same direction. First, the liquidity discount

is smaller for asset 1 because this asset has a larger buyer pool, i.e., m̂b1 > m̂b2. Second, the

bargaining discount is smaller for asset 1 because the larger buyer pool implies more outside options
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for sellers.19 Finally, asset 1 carries a specialness premium because unlike asset 2 it can be lent to

short-sellers.

The results of Propositions 7 and 8 can shed light on several puzzling aspects of the on-the-run

phenomenon. At a basic level, they can explain why assets with almost identical payoffs, such

as on- and off-the-run bonds, can trade at different prices. Our results can also rationalize the

apparent paradox that off-the-run bonds are generally viewed as “scarce” and hard to locate, while

at the same time being cheaper than on-the-run bonds. We show that off-the-run bonds are indeed

scarce from the viewpoint of short-sellers seeking to buy and deliver them. Because, however,

scarcity drives short-sellers away from these bonds, it makes them less liquid and less attractive to

marginal buyers who are the agents seeking to establish long positions. Finally, our results have

the surprising implication that the trading activity of short-sellers can raise, rather than lower, an

asset’s price. This is because short-sellers increase both the asset’s liquidity and specialness.

We next compare the symmetric and asymmetric equilibria.

Proposition 9. In the asymmetric equilibrium of Proposition 7:

(i) There are more buyers and sellers of asset 1 than in the symmetric equilibrium.

(ii) There are fewer buyers and sellers of asset 2 than in the symmetric equilibrium.

(iii) The lending fee of asset 1 is higher than in the symmetric equilibrium.

(iv) The prices of the two assets straddle the symmetric-equilibrium price when φ = 0. For other

values of φ (e.g., 1/2), both prices can exceed the symmetric-equilibrium price.

Since in the asymmetric equilibrium short-selling is concentrated in asset 1, there are more

sellers of this asset than in the symmetric equilibrium. There are also more buyers because of the

short-sellers who need to buy the asset back. Conversely, asset 2 attracts fewer buyers and sellers

than in the symmetric equilibrium.

The lending fee of asset 1 is higher than in the symmetric equilibrium because of two effects.

First, because there are more buyers and sellers of asset 1, a short-sale is easier to execute, and

the short-selling surplus is higher. Moreover, lenders of asset 1 are in better position to bargain for

this surplus because they do not have to compete with lenders of asset 2.

19This logic does not apply to buyers because the marginal buyers are the high-valuation agents who are not limited
to the seller pool of a specific asset.
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To explain the price results, we recall that prices differ from the Walrasian benchmark be-

cause of a liquidity discount, a bargaining discount, and a specialness premium. In the asymmetric

equilibrium, asset 1’s liquidity discount is smaller than in the symmetric equilibrium because there

are more buyers. Moreover, asset 1’s specialness premium is higher because of the higher lend-

ing fee. Conversely, asset 2’s liquidity discount is higher than in the symmetric equilibrium, and

its specialness premium is zero. Therefore, absent the bargaining discount, i.e., when the buyers’

bargaining power φ is zero, asset 1 trades at a higher price and asset 2 at a lower price relative

to the symmetric equilibrium. Quite surprisingly, however, both assets can trade at a higher price

because of the bargaining discount. To explain the intuition, we recall that short-sellers exit the

seller pool faster when the asset they have borrowed has a larger buyer pool. This occurs in the

asymmetric equilibrium because asset 1 has more buyers than either asset in the symmetric equi-

librium. Therefore, there are fewer short-sellers in the asymmetric equilibrium, and the aggregate

seller pool can be smaller. This can worsen the buyers’ bargaining position and raise the prices of

both assets.

4.4 Arbitrage

Since asset prices differ in the asymmetric equilibrium, a natural question is whether there exists a

profitable arbitrage. Our analysis so far does not address this question because agents are restricted

to hold either long or short positions. In this section we introduce an additional agent group, the

“arbitrageurs,” who in addition to portfolios allowed to other agents, can hold an arbitrage portfolio

that is one share long and one short. We assume that arbitrageurs have average valuation and never

switch to high or low. Consistent with the risk-aversion interpretation of utility flows, we set the

flow from an arbitrage portfolio to zero. Finally, we assume that arbitrageurs are in infinite measure

so that they can hold an unlimited collective position. Proposition 10 shows that the asymmetric

equilibrium can be robust to the presence of arbitrageurs.

Proposition 10. Consider the asymmetric equilibrium of Proposition 7. If ν/λ ∈ (n1, n2) for two

positive constants n1, n2, then arbitrageurs find it optimal to stay out of the market.

To explain why arbitrage can be unprofitable, suppose that an arbitrageur attempts to profit

from the price differential by buying asset 2 and shorting asset 1. This strategy is unprofitable if

p1 − p2 <
w1

r
, (12)

22



i.e., the price differential does not exceed the PV of asset 1’s lending fee.20 The price differential

depends on the lending fee through the specialness premium. Therefore, to check whether (12)

holds, we need to substitute the equilibrium values of p1 and p2 from Proposition 8:

(φr + κ)

λ(1− φ)

[
1

m̂b2
−

1

m̂b1

]
x

r
+

ĝbo

r + κ+ κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

w1

r
<
w1

r
.

The first term on the left-hand side reflects asset 1’s lower liquidity and bargaining discounts relative

to asset 2, and we refer to it as asset 1’s liquidity premium. By buying asset 2 and shorting asset

1, an arbitrageur capitalizes on this premium. The arbitrageur also capitalizes on the specialness

premium, which is the second term on the left-hand side. Crucially, however, the specialness

premium is only a fraction of the cost w1/r of the arbitrage because lenders cannot ensure that

their asset is on loan continuously.21 Thus, (12) is satisfied when the lending fee is large enough.22

Consider next the opposite strategy of buying asset 1 and shorting asset 2. In the proof of

Proposition 10 we show that this strategy is unprofitable if

ĝbo

r + κ ĝs1

r+κ+gs1
+ ĝbo

w1

r
≤ p1 − p2. (13)

The left-hand side is the arbitrageur’s fee income from lending asset 1 in the repo market. This

exceeds the specialness premium (included in p1 − p2) because the arbitrageur can hold asset 1

forever, thus being a better lender than a sequence of high-valuation agents. Because, however,

the arbitrageur loses on the liquidity premium (the remaining part of p1 − p2), (13) is satisfied

when the lending fee is not to large. In the proof of Proposition 10 we show that (12) and (13)

are jointly satisfied when the ratio ν/λ of relative frictions in the spot and the repo market lies in

some interval (n1, n2). This interval can be quite large as evidenced by the calibration exercise in

Section 6.23

20In the proof of Proposition 10 we show that the strategy is unprofitable under the weaker condition p1 − p2 <
w1/r+ξ, for some transaction cost ξ of establishing the arbitrage position. The cost ξ arises because it is not possible
to set up the two legs of the position simultaneously given the Poisson arrival of trading opportunities.

21This holds even when in the limit when search frictions go to zero since the contact rate of borrowers converges
to the finite limit gbo.

22Our analysis has an interesting similarity to Krishnamurthy (2002), who assumes that p1 − p2 = v + zw1/r,
where v is a “liquidity benefit” of on-the-run bonds, and z < 1 is the extent to which bond holders can exploit the
specialness premium. In our setting, v is the liquidity premium and z is determined by the lenders’ search times.
One might argue that because of same-day settlement in the repo market, some sophisticated investors can manage

to lend their asset almost continuously, i.e., z ≈ 1. We conjecture that in a model with heterogenous lenders, the
less sophisticated ones would have a lower reservation value for owning the asset and hence could be the “marginal
buyers” in the spot market. The parameter z could then be significantly different than one, reflecting marginal
buyers’ inferior lending ability.

23Eqs. (12) and (13) ensure that arbitrage portfolios are suboptimal for arbitrageurs, i.e., average-valuation agents
with no initial position. They do not apply, however, to average-valuation agents with “inherited” positions. Consider,
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4.5 Equilibrium Selection

Our model has two identical asymmetric equilibria: one in which short-sellers concentrate in asset 1

and one in which they concentrate in asset 2. The mere existence of multiple equilibria is reminiscent

of Boudoukh and Whitelaw (1991) and Boudoukh and Whitelaw (1993) who document that in the

Japanese government-bond market, liquidity concentrates in an arbitrary “benchmark” bond. In

the US Treasury market, however, multiple equilibria do not explain why short-sellers concentrate

systematically in the on- rather than the off-the-run bond. In this section we explore this issue by

considering the case where asset supplies differ. Without loss of generality, we take asset 1 to be

in larger supply, i.e., S1 > S2.

Proposition 11. As λ and ν become large:

(i) An equilibrium where short-selling is concentrated in asset 1 exists for all values of S1 − S2.

(ii) An equilibrium where short-selling is concentrated in asset 2 exists for a set of values of S1−S2

that converges to [0, Ŝ] with Ŝ > 0.

(iii) An equilibrium where low-valuation agents short-sell both assets exists for a set of values of

S1 − S2 that converges to {0}.

Proposition 11 shows that asset supply is a natural device in selecting among equilibria. For

small search frictions, the symmetric equilibrium ceases to exist as long as asset supplies differ.

Moreover, if the difference exceeds Ŝ, the equilibrium in which short-sellers concentrate in asset 2

ceases to exist as well. The only remaining equilibrium is that short-sellers concentrate in asset 1.

Intuitively, short-sellers prefer the asset with the larger seller pool because they can buy it back

more easily. Since asset 1 is in larger supply, it has more owners who eventually turn into sellers.

If the supply difference S1 − S2 is large enough, this effect makes the seller pool of asset 1 larger

than the seller pool of asset 2, even if all short-sellers were to concentrate in asset 2. Therefore, if

S1−S2 is large enough, the equilibrium in which short-sellers concentrate in asset 2 does not exist.

Proposition 11 is a first step towards reconciling our theory based on multiple equilibria with

the empirical fact that liquidity in the US Treasury market concentrates systematically in just-

for example, a low-valuation agent with a short position in asset 1, who reverts to average valuation. The agent can
unwind the short position by trading with a seller of asset 1, but might also accept to trade with a seller of asset 2.
This would hedge the short position, lowering the cost of waiting for a seller of asset 1. In our analysis, we rule out
such strategies by assuming that arbitrage portfolios can be held only by arbitrageurs. This is partly for simplicity,
to keep agents’ life-cycles manageable. One could also argue that many investors do not engage in such strategies
because of costs to managing multiple positions, settlement costs, etc. (These costs could be smaller for sophisticated
arbitrageurs.) Needless to say, it would be desirable to relax this assumption.
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issued bonds. Indeed, a commonly-held view is that a bond’s effective supply decreases over time

as the bond becomes “locked away” in the portfolios of buy-and-hold investors (see Amihud and

Mendelson (1991)). Our theory cannot explain the decrease in effective supply since there are no

auction-cycle dynamics. Proposition 11 suggests, however, that if off-the-run bonds are indeed in

smaller effective supply, they are less likely to attract short-sellers and for that reason less liquid.

5 Empirical Implications

In this section we explore the comparative statics of our model and draw empirical implications.

We examine how liquidity, specialness, and the price premium depend on the extent of short-selling

activity and on assets’ supplies (i.e., issue sizes). We measure asset i’s specialness by the ratio

wi/pi of the lending fee to the price, the price premium by p1 − p2, and the short-selling activity

by the flow F of short-sellers entering the market. Liquidity can be measured by search times, but

these can differ for buyers and sellers. To condense search times into an one-dimensional measure,

we multiply the expected search time for buying asset i with that for selling the asset, and take

the inverse. This measure has the advantage of being equal, up to the multiplicative constant λ,

to asset i’s trading volume, i.e., the flow of matches λµbiµsi between buyers and sellers.24

Proposition 12. Consider the asymmetric equilibrium in which short-selling is concentrated in

asset 1, and suppose that λ and ν are large.

(i) If the flow F of short-sellers increases, then asset 1’s liquidity increases, asset 2’s liquidity

stays constant, asset 1’s specialness increases, and the price premium increases.

(ii) If the supply S1 of asset 1 decreases, holding asset 2’s supply S2 constant, then asset 1’s

liquidity decreases, asset 2’s liquidity stays constant, asset 1’s specialness can increase or

decrease, and the price premium can increase or decrease.

Result (i) is one of our theory’s main implications: short-selling activity drives both the supe-

rior liquidity of on-the-run bonds and their specialness. By concentrating in asset 1, short-sellers

increase that asset’s trading volume and liquidity. They also generate specialness because they de-

mand asset 1 in the repo market. Liquidity and specialness raise asset 1’s price above that of asset

2. These results are consistent with empirical studies. Jordan and Jordan (1997) provide a case

24An agent’s expected search time is the inverse of the Poisson intensity of arrival of counterparties. Thus, for a
buyer of asset i it is 1/(λµsi), and for a seller it is 1/(λµbi).
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study where short-seller demand for a particular Treasury note generated a large price premium.

Krishnamurthy (2002) measures short-seller demand by the issuance of corporate and agency bonds,

arguing that dealers short Treasuries to hedge their inventories. He finds that issuance is positively

related to the on-the-run premium. Graveline and McBrady (2007) emphasize the role of short-

seller demand using a conceptual framework very similar to ours. They construct several measures

of demand, attempting to get both at the hedging and the speculative component. They find that

short-seller demand is the strongest determinant of specialness once variation related to the auction

cycle is taken out. Moulton (2004) also finds evidence linking short-selling demand to specialness.

In linking the liquidity of the spot market to short-selling activity, we are also linking it to

the liquidity of the repo market. Indeed, the asset in which short-sellers concentrate has high

trading volume both in the spot and in the repo market. The empirical evidence supports such

a link. For example, Barclay, Hendershott, and Kotz (2006) show that when on-the-run bonds

become off-the-run, it is not only volume in the spot market that drops, but also volume in the

repo market.25

Result (ii) shows that a decrease in asset 1’s supply decreases liquidity, but can increase or

decrease specialness. Specialness can increase because of a scarcity effect in the repo market: since

there are fewer lenders of asset 1, they can extract a higher fee from short-sellers. There is, however,

an offsetting scarcity effect in the spot market: because there are fewer sellers of asset 1, the asset

is harder to deliver. This reduces short-sellers’ willingness to borrow the asset, and can reduce the

lending fee that lenders are able to extract. Furthermore, if supply drops below a threshold, an

equilibrium with short-seller concentration in asset 1 is not possible, as shown in Proposition 11.

Short-sellers migrate to asset 2, and asset 1’s specialness drops discontinuously.

Result (ii) can help interpret the variation of liquidity and specialness over the auction cycle.

Graveline and McBrady (2007) document that specialness increases while a bond is on-the-run,

but drops discontinuously with the issuance of the new bond. At the same time, Fleming (2002)

documents that liquidity decreases steadily with time from issuance. Suppose for reasons outside

our model, that a bond’s effective supply decreases over time as the bond becomes “locked away”

in the portfolios of buy-and-hold investors. Then the bond’s liquidity decreases, but specialness can

increase as the bond becomes scarcer in the repo market. Eventually, however, specialness drops

because short-sellers migrate to the new bond, which is easier to buy in the spot market.26

25The drop in repo-market volume is less drastic, but this might be because not all repo transactions are initiated
for short-selling purposes. For example, some transactions are initiated by institutions whose main goal is to lend
cash rather than borrow an asset.

26Empirical studies generally document a decreasing relationship between supply and specialness or on-the-run
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More broadly, Result (ii) can reconcile our model with the empirical fact that liquidity and

specialness do not always move in the same direction. For example, a sudden decrease in a bond’s

effective supply (such as a short squeeze) can lead to a jump up in specialness but a drop in liquidity.

Of course, our model cannot fully address such phenomena because it is stationary. A comprehen-

sive time-series analysis would require modelling auction-cycle dynamics and/or stochastic shocks.

6 Calibration

In this section we perform a calibration exercise, and show that our model can generate significant

price effects even for short search times. We also use the calibrated model to quantify the rela-

tive contribution of liquidity and specialness in the on-the-run spread. Our model involves fifteen

exogenous parameters listed in Table 3. We argue that a number of these parameters can be cali-

brated using Treasury-market data such as spot and repo trading activity and returns on Treasury

securities. Other parameters, however, are harder to calibrate, and we comment on our choices

and their impact on the calibration results. We also point out that parameters are constrained not

only by the calibration targets, but also by several model-implied restrictions such as Assumptions

1 and 2.

For the calibration we extend the model to more than two assets. This provides a more accurate

description of the US Treasury market, where there is one on-the-run and multiple off-the-run

securities for each maturity range. With multiple assets there is again an equilibrium in which

short-sellers concentrate in one asset, e.g., asset 1. To compute this equilibrium for the purpose

of calibration, we do not rely on the asymptotic closed-form solutions of Section 4.3. Instead, we

use a numerical algorithm that solves the exact system of equations and checks that arbitrage is

unprofitable.

We set the number of assets to I = 20, consistent with the fact that on-the-run bonds account

for about 5% of the Treasury market capitalization (Dupont and Sack (1999)). We assume that

all assets are in identical supply S. We normalize the total supply IS to one, without loss of

generality: (B.1)-(B.5) and (B.8)-(B.12) show that if (S, F , F , 1/λ, 1/ν) are scaled by the same

factor, the meeting intensities of each investor type stay the same.

As in the case of two assets, we assume that demand exceeds supply, generalizing Assumption

premia. Cornell and Shapiro (1989) and Jordan and Jordan (1997) provide case studies where large price premia
were generated by a short-squeeze or a large investor’s unwillingness to lend, respectively. Krishnamurthy (2002)
finds that on-the-run premia are negatively related to issue size, and Graveline and McBrady (2007) and Moulton
(2004) find a negative relationship between issue size and specialness.
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Table 3: Parameter Values used in the Calibration.

Parameters Notation Value

Number of assets I 20
Supply of each asset S 0.05
Flow of high-valuation investors F 2.7
Flow of low-valuation investors F 13.6
Switching intensity of high-valuation investors κ 2
Switching intensity of low-valuation investors κ 40
Contact intensity in spot market λ 106

Contact intensity in repo market ν 7.5× 104

Bargaining power of a buyer φ 0.5
Bargaining power of a lender θ 0.5
Riskless rate r 4%
Dividend rate δ 1
Hedging benefit of high-valuation investors x 0.4
Hedging benefit of low-valuation investors x 1.6
Cost of risk bearing y 0.5

2 to F/κ > IS + F/κ. We select (F , F ) to make this an approximate equality; otherwise for small

frictions, search times for sellers would be much shorter than for buyers. We use the second degree

of freedom in (F , F ) to match the level of short-selling activity. Namely, in our calibration the

amount of ongoing repo agreements for asset 1 is about seven times the asset’s issue size (Table 4),

which is within reasonable range.27

The expected investment horizons 1/κ and 1/κ are chosen to match turnover. Sundaresan

(2002) and Strebulaev (2007) report that on-the-run bonds trade about ten times more than their

off-the-run counterparts. Since the entire stock of Treasury securities turns over in less than three

weeks (Dupont and Sack (1999)), on-the-run bonds turn over in about two-thirds of a day, and

off-the-run bonds in about 125 days.28 In our model the turnover of off-the-run bonds is generated

by high-valuation investors. We let 1/κ = 0.5 years, i.e., 125 trading days, implying a turnover time

of about the same (Table 4). The turnover of on-the-run bonds is generated mainly by short-sellers.

We let 1/κ = 0.025 years, i.e., about six trading days. Such a short horizon could be reasonable

27For example, on February 2, 2005, primary dealers reported asset loans of about $2 trillion (New York Fed
website, www.ny.frb.org/markets/gsds/search.cfm). Since the Treasury market is worth about $4 trillion, of
which 5% are on-the-run bonds, the amount of repo agreements exceeds the market value of on-the-run bonds by
about 2/(4 × 5%) = 10. We select a number below ten to account for repo activity in off-the-run bonds. A higher
number would strengthen our results because the lending fee would increase.

28Suppose, for example, that the average Treasury security turns over in twelve trading days. Since on-the-run bonds
account for about 5% of market capitalization and 10/11 of trading volume, they turn over in 5%×12/(10/11) = 0.66
days, while off-the-run bonds turn over in 95%× 12/(1/11) = 125.4 days.
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for dealers in corporate bonds or mortgage-backed securities who have transitory needs to hedge

inventory. For our chosen value of κ, asset 1 turns over in 0.88 days, and its volume relative to

the aggregate of the other assets is 7.5 (Table 4).29 This is lower than the actual value of ten,

but one could argue that short-selling is not the only factor driving the large relative volume of

on-the-run bonds. Furthermore, raising the relative volume by increasing κ would strengthen our

results because the lending fee would increase.

Table 4: Calibration Results: Search Times and Turnover.

Variable Value

Average time to sell asset 1 1/(λµb1) 0.02 days
Average time to buy asset 1 1/(λµs1) 0.27 days
Average time to sell asset i ∈ {2, .., I} 1/(λµbi) 0.27 days
Average time to buy asset i ∈ {2, .., I} 1/(λµsi) 2.31 days
Average time to borrow asset 1 1/(λµ

`1
) 0.07 days

Average time to lend asset 1 1/(λµbo) 0.87 days
Time to turn over stock of asset 1 S/(λµb1µs1) 0.88 days
Time to turn over stock of asset i ∈ {2, .., I} S/(λµbiµsi) 125.27 days
Volume of asset 1 vs. aggregate of assets i ∈ {2, .., I} (λµb1µs1)/((I − 1)λµbiµsi) 7.50
Repo agreements for asset 1 relative to issue size µn1/S 7.03

The contact-intensity parameters λ and ν are chosen based on agents’ search times. Possible

proxies for the latter are the time it takes investors to find a dealer with a good quote, or the time

it takes dealers to rebalance their inventory in the inter-dealer market. While these proxies are

difficult to measure (and to map in our model which does not include dealers), intuition suggests

that search times should be short, in the order of a few hours or minutes. The search times implied

by our chosen values for λ and ν are reported in Table 4. Assuming ten trading hours per day,30

it takes 12 minutes to sell the “on-the-run” asset 1 and 2.7 hours to buy it. Each “off-the-run”

asset i ∈ {2, .., I} can be sold in 2.7 hours and bought in 2.31 days. While the time to buy might

seem long, all off-the-run issues in our model are perfect substitutes for their buyers, who are the

high-valuation agents. Therefore, a buyer’s effective search time does not exceed 2.31/(I−1) = 0.12

days. Finally, it takes 42 minutes to borrow asset 1 in the repo market and 8.7 hours to lend it. The

time to lend the on-the-run asset might seem long but could be interpreted as an average across

asset owners, some of whom do not engage in asset lending in practice. Our calibration results

29The six-day expected horizon of short-sellers is approximately equal to the turnover time of the asset supply that
they generate (F/κ). This supply is about seven times the issue size S, and turns over seven times more slowly.

30US Treasury securities are traded round the clock in New York, London, and Tokyo. However, Fleming (1997)
reports that 94% of the trading takes place in New York from 7:30am to 5:30pm.
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are sensitive to the choice of ν: a smaller value of ν implies longer search times for borrowers, less

competition between lenders, and a larger lending fee and specialness premium.31

The bargaining-power parameters φ and θ are set to 0.5 so that all agents are symmetric. The

riskless rate r is set to 4%, consistent with Ibbotson (2004)’s average T-bill rate of 3.8% during

the period 1926-2002. Given that prices and lending fees are linear in (δ, x, x, y), we set δ = 1 and

report relative prices (e.g., δ/p, w/p). We select x and y based on assets’ risk premia, measured

by the difference δ/pi − r between expected returns and the riskless rate. For x = 0.4 and y = 0.5,

risk premia are about 2% (Table 5), consistent with Ibbotson (2004)’s average excess return of

long-term bonds over bills of 1.9% per year during the period 1926-2002.32

The remaining parameter is x, the hedging benefit of low-valuation agents. Our calibration

results are sensitive to this parameter: a larger value of x raises the utility that low-valuation

agents derive from a short position, and this raises the lending fee and the specialness premium.

Our model implies several restrictions on x. For example, short-sales can involve a positive surplus

only if x > 2y − x = 0.8 (Assumption 1). Moreover, short-sellers are the infra-marginal traders

(Eq. (1)) if x ≥ 1.03. On the other hand, under the CARA-based foundation of our model, x must

not exceed 4y− x = 1.6 (Assumption 3, Appendix E); otherwise low-valuation agents would prefer

to short more than one share. When x takes the largest value in the interval [1.03, 1.6], our model

generates empirically plausible price effects (Table 5). The difference in expected returns between

the two assets is 50bps, consistent with Warga (1992) who reports that on-the-run portfolios return

55bps below matched off-the-run portfolios.33 The specialness is 35bps, consistent with Duffie

(1996) who reports a specialness difference of 40bps between on- and off-the-run bonds.34

31The search times in Table 4 appear especially short if we consider the implied transaction costs. For example, the
cost incurred by a high-valuation buyer is not to receive the hedging benefit x while searching. With a search time of
0.12 days, i.e., 0.12/250 of a year, the search cost is a fraction x×(0.12/250)/(1/6.44%) = 1.2×10−5 of the price, i.e.,
0.12 cents per $100 transaction value. Likewise, the search cost of a low-valuation agent seeking to borrow asset 1 in
the repo market is not to receive the hedging benefit x. This cost is a fraction x× (0.07/250)/(1/6.44%) = 2.9×10−5

of the price, i.e., 0.29 cents per $100 transaction value. Such costs are smaller than the average bid-ask spread in the
Treasury market, which is 1.1 cent (Dupont and Sack (1999)).

32Matching the risk premium of long-term bonds is only one condition, while there are two parameters (x, y). The
second degree of freedom in these parameters appears to have a small effect on the calibration results.

33Some studies find smaller effects. For example, Fleming (2003) reports that on-the-run bonds yield 5.6bps below
off-the-run bonds, and Goldreich, Hanke, and Nath (2007) report 1.5bps. These papers, however, focus on bonds
with a long time to maturity, for which the three-month convenience yield of being on-the-run has only a small effect
on the yield to maturity. Warga (1992) compares the returns of on- and off-the-run bond portfolios rather than
their yields to maturity. This isolates the on-the-run convenience yield in exactly the same way as in this paper.
Amihud and Mendelson (1991) compare yields to maturity, but can isolate the convenience yield because they focus
on securities with very short times to maturity. They find that Treasury bills maturing in less than six months yield
38bps below comparable Treasury notes.

34The expected return spread δ/pi−δ/p1 in Table 5 is greater than the lending fee w1/p1. This suggests an arbitrage
strategy of shorting $1 of asset 1, paying the lending fee, and buying $1 of asset 2. The payoff of this strategy is risky,
however, because the assets are held in different quantities. Adjusting for risk amounts to calculating the marginal
utility flow (δ − y)/pi − (δ − y)/p1 − w1/p1 that an arbitrageur would derive, which turns out to be negative.

30



Table 5: Calibration Results: Prices and Lending Fees.

Variable Value

Expected return of asset 1 δ/p1 5.94%
Expected return of asset i ∈ {2, .., I} δ/pi 6.44%
Spread δ/pi − δ/p1 50bps
Specialness w1/p1 35bps

Given the lack of direct evidence on x, it is difficult to ascertain whether a value close to 1.6 is

more plausible than a smaller value, so the success of our calibration exercise should be qualified.

We should emphasize, however, that matching the empirical data is not an obvious result: values

of x matching the data must also satisfy the restrictions mentioned in the previous paragraph and

be such that arbitrage is unprofitable. An additional advantage of our calibration exercise is that

we can examine the implications of the parameter choices matching the data for other quantities

of interest. For example, we can evaluate the relative contribution of liquidity and specialness in

the spread of Table 5. Generalizing the decomposition in Section 4.3, we find that the specialness

premium accounts for 99% of the spread while the liquidity premium for only 1%. Of course, this

does not mean that liquidity does not matter; it rather means that liquidity can have large effects

because it induces short-seller concentration and creates specialness.

7 Conclusion

This paper proposes a search-based theory of the on-the-run phenomenon. We argue that liquid-

ity and specialness are not independent explanations of this phenomenon, but can be explained

simultaneously by short-selling activity. Short-sellers in our model can endogenously concentrate

in one of two identical assets, because of search externalities and the constraint that they must

deliver the asset they borrowed. That asset enjoys greater liquidity, measured by search times,

and a higher lending fee (“specialness”). Moreover, liquidity and specialness translate into price

premia which are consistent with no-arbitrage. We derive closed-form solutions in the realistic case

of small frictions, and show that a calibration can generate effects of the observed magnitude.

While our analysis is motivated from the government-bond market, some lessons can be more

general. Perhaps the main lesson concerns the law of one price–a fundamental tenet of Finance.

We show that this law can be violated in a significant manner in a model where all agents are
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rational but the trading mechanism is not Walrasian. Our search-based trading mechanism is of

course an idealization, but it captures the bilateral nature of trading in over-the-counter markets.

Furthermore, the search times that are needed to generate significant price differentials are small,

in the order of a few hours. For such times, it is unclear whether the search framework is a

worse description of over-the-counter markets than a Walrasian auction, which assumes multilateral

trading.
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A Proofs of Propositions 1-4

Proof of Proposition 1: At time t, an agent with valuation xt chooses an asset i and a position

q in the asset to solve

max
i∈{1,2}

max
q∈{0,1}

[q(δ + xt)− |q| y − qrpi] , (A.1)

i.e., maximize the flow utility minus the time value of the position’s cost. In equilibrium, assets

trade at the same price because otherwise no agent would demand a long position in the more

expensive asset. Denoting by p the common price, no agent would demand a long position in any

asset if rp > (δ+ x− y). Conversely, if rp < (δ+ x− y), then high-valuation agents would demand

long positions, which generates excess demand from Assumption 2. Therefore, rp = (δ + x − y).

Under this price, high-valuation agents are indifferent between a long and no position, and all other

agents hold no position.

Proof of Proposition 2: In equilibrium, either high-valuation agents accept to buy asset i, or

they refuse to do so and the asset is owned only by average-valuation agents. To nest the two

cases, we define the variable λi by λi ≡ λ if high-valuation agents accept to buy asset i and λi ≡ 0

otherwise. The utilities Vb, Vni, and Vsi of being type b, ni, and si, respectively, are determined by

the flow-value equations

rVb = −κVb +
2∑

i=1

λiµsi
(
Vni − pi − Vb

)
, (A.2)

rVni = δ + x− y + κ (Vsi − Vni) , (A.3)

rVsi = δ − y + λiµb (pi − Vsi) . (A.4)

For example, (A.2) equates the flow value rVb of being type b to the flow benefits accruing to b and

the utility derived from the possibility of b transiting to other types. The flow benefits are zero

because b does not own an asset. The transitions are (i) revert to average valuation at rate κ and

exit the market (utility zero and net utility −Vb), and (ii) meet a seller of asset i ∈ {1, 2} at rate

λiµsi, buy at price pi, and become a non-searcher ni (utility Vni and net utility Vni − pi − Vb).

The price of asset i is such that the buyer receives a fraction φ of the surplus Σ̂i. The buyer’s

net utility from the transaction is Vni − pi − Vb and the seller’s is pi − Vsi. Therefore, the price
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satisfies

Vni − pi − Vb = φΣ̂i = φ(Vni − Vb − Vsi)⇒ pi = φVsi + (1− φ)
(
Vni − Vb

)
. (A.5)

Equilibrium imposes that

λi = λ⇔ Σ̂i ≥ 0, (A.6)

i.e., high-valuation agents accept to buy asset i if this transaction generates a positive surplus Σ̂i.

Subtracting (A.2) and (A.4) from (A.3), and replacing pi by (A.5), we find

(r + κ)Σ̂i = x− φ
2∑

j=1

λjµsjΣ̂j − (1− φ)λiµbΣ̂i. (A.7)

If λ1 = λ2 = 0, (A.7) implies that Σ̂i = x/(r + κ) > 0, a contradiction. If λ1 = λ and λ2 = 0,

(A.7) implies that Σ̂2 > Σ̂1 > 0, again a contradiction. Therefore, the only possibility is that

λ1 = λ2 = λ, i.e., high-valuation agents accept to buy both assets. For λ1 = λ2 = λ, the variables

(Vni, Vni, pi, Σ̂i) are independent of i, and thus the Law of One Price holds.

Proof of Proposition 3: The lending fee is zero by the argument preceding the proposition’s

statement. Agents’ optimization problem is (A.1) with the only difference that q ∈ {−1, 0, 1}. Same

arguments as in Proposition 1 imply that assets trade at the same price p, such that rp ≤ (δ+x−y).

If rp < (δ+x−y), then high-valuation agents would demand long positions, and average-valuation

agents would not demand short positions from Assumption 1. This implies excess demand from

Assumption 2, and thus rp = (δ + x − y). Under this price, high-valuation agents are indifferent

between a long and no position. Moreover, Assumption 1 implies that low-valuation agents hold

short positions and average-valuation agents hold no position.

Proof of Proposition 4: If in equilibrium low-valuation agents refuse to borrow asset i, the

asset carries no lending fee, and its owners are high-valuation agents who sell when they switch

to average valuation. If instead low-valuation agents accept to borrow asset i, some owners can

be average-valuation. Indeed, because the asset carries a positive lending fee, its owners might

prefer not to terminate a repo contract when they switch to average valuation, but wait until the

borrower wishes to terminate. To nest the two cases, we define the variable νi by νi ≡ ν if low-

valuation agents accept to borrow asset i and νi ≡ 0 otherwise. We denote by V`i the utility of a

high-valuation agent seeking to lend asset i, Vni the utility of a high-valuation agent who is in a
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repo contract lending asset i, Vni the utility of an average-valuation agent who is in the same repo

contract and waits for the borrower to terminate, Vbo the utility of a low-valuation agent seeking to

borrow an asset, and Vni the utility of a low-valuation agent who is in a repo contract borrowing

asset i. These utilities satisfy the flow-value equations

rV`i = δ + x− y + κ
(
pi − V`i

)
+ νiµbo

(
Vni − V`i

)
, (A.8)

rVni = δ − y + wi + κ (pi − Vni) , (A.9)

rVbo = −κVbo +

2∑

i=1

νiµ`i
(
Vni + pi − Vbo

)
. (A.10)

The remaining two equations depend on whether an owner terminates a repo contract immediately

upon switching to average valuation, or whether he waits for the borrower to terminate. The

condition for immediate termination is pi ≥ Vni, and the equations in that case are

rVni = δ + x− y + wi + κ (pi − Vni) + κ
(
V`i − Vni

)
, (A.11)

rVni = −δ + x− y − wi + κ
(
Vbo − pi − Vni

)
+ κ

(
−pi − Vni

)
. (A.12)

Eq. (A.9) implies that pi ≥ Vni is equivalent to δ−y+wi−rpi ≤ 0. The latter condition is satisfied

for small search frictions since wi ≈ 0 and rpi ≈ δ+x−y. For brevity, we focus on the case pi ≥ Vni

from now on, and treat the general case in Appendix E.

To determine the price pi, note that if pi > V`i, then high-valuation agents would not demand

long positions, and neither would other agents with lower valuations. Conversely, if pi < V`i, then

high-valuation agents would demand long positions. Since the measure of short-sellers does not

exceed that of low-valuation agents (and is, in fact, strictly smaller because of the search friction),

Assumption 2 implies excess demand for asset i. Therefore, pi = V`i. The lending fee wi is such

that the lender receives a fraction θ ∈ [0, 1] of the surplus Σi in a repo transaction. Since a repo

transaction turns the lender `i into type ni, the lender’s surplus is Vni−V`i. The borrower’s surplus

is pi+Vni−Vbo because the borrower bo sells the asset and becomes type ni. Therefore, the lending

fee is implicitly defined by

Vni − V`i = θΣi = θ(Vni − V`i + pi + Vni − Vbo). (A.13)

Finally, equilibrium imposes (3), i.e., low-valuation agents accept to borrow asset i if this transaction

generates a positive surplus Σi.
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Since pi = V`i, the surplus is Σi = Vni + Vni − Vbo. Subtracting (A.10) from the sum of (A.11)

and (A.12), and noting that (A.13) implies pi + Vni − Vbo = (1− θ)Σi, we find:

(r + κ+ κ)Σi = x+ x− 2y − (1− θ)
2∑

j=1

νjµ`jΣj . (A.14)

Eq. (A.14) implies Σ1 = Σ2 ≡ Σ and thus ν1 = ν2. If ν1 = ν2 = 0, then Σ = (x+x−2y)/(r+κ+κ),

which is positive by Assumption 1, a contradiction. Therefore, ν1 = ν2 = ν, i.e., low-valuation

agents accept to borrow both assets. For ν1 = ν2 = ν, the variables (V`i, Vni, Vni, pi, wi) are

independent of i, and thus the Law of One Price holds.

B Population Measures

The measures µbi and µsi of buyers and sellers of asset i are

µbi = µb + µbi (B.1)

µsi = µsi + µsi. (B.2)

Since assets are held by either lenders or sellers, market clearing implies that

µ`i + µsi = S. (B.3)

Moreover, since there is equal measure of high- and low-valuation agents involved in repo contracts,

µni ≡ µnsi + µnni + µnbi = µsi + µni + µbi (B.4)

To write the inflow-outflow equations, we condense types (nsi, nni, nbi) into a type ni, and denote

that type’s measure by µni as in (B.4) above. We also denote by fi the inflow from type ni to type
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`i. The inflow-outflow equations are

Buyers b F = κµb +
2∑

i=1

λµsiµb (B.5)

Lenders `i λµbµsi + fi = κµ`i + νiµboµ`i (B.6)

Non-searchers ni νiµboµ`i = fi + κµni (B.7)

Sellers si κµ`i + κµsi = λµbiµsi (B.8)

Borrowers bo F +
2∑

i=1

κ(µsi + µni) = κµbo +
2∑

i=1

νiµboµ`i (B.9)

Sellers si νiµboµ`i = κµsi + κµsi + λµbiµsi (B.10)

Non-searchers ni λµbiµsi = κµni + κµni (B.11)

Buyers bi κµni = κµbi + λµbiµsi, (B.12)

For example, (B.5) equates the inflow into type b, which is F because of the new entrants, to the

outflow, which is the sum of (i) κµb because some buyers revert to average valuation and exit the

market, and (ii)
∑2

i=1 λµsiµb because some buyers meet with sellers.

We determine population measures by the system of (B.1)-(B.5) and (B.8)-(B.12). The total

number of equations is 18 (because some are for each asset), and the 18 unknowns are the measures

of the 14 types b, bo, {`i, ni, si, si, ni, bi}i∈{1,2} and {µbi, µsi}i∈{1,2}. A solution to the system

satisfies (B.6) and (B.7), which is why we do not include them into the system. Indeed, adding

(B.10)-(B.12), and using (B.4), we find

νiµboµ`i = κµsi + κµni + λµbiµsi.

Therefore, (B.7) holds with fi = κµsi+λµbiµsi. For this value of fi, (B.6) becomes λµbiµsi+κµsi =

κµ`i + νiµboµ`i, and is redundant because it can be derived by adding (B.8) and (B.10).

To solve the system, we reduce it to a simpler one in the six unknowns µbo, µb, and {µbi, µsi}i∈{1,2}.

Adding (B.10) and (B.11), we find

µsi + µni =
νiµboµ`i
κ+ κ

. (B.13)
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Plugging into (B.9), and using (B.3), we find

F = κµbo +
κ

κ+ κ

2∑

i=1

νiµbo(S − µsi). (B.14)

Eqs. (B.10) and (B.3) imply that

µsi =
νiµbo(S − µsi)

κ+ κ+ λµbi
. (B.15)

Eq. (B.11) implies that

µni =
λµsiµbi
κ+ κ

(B.16)

and (B.12) implies that

µbi =
κµni

κ+ λµsi
. (B.17)

Combining these equations to compute µbi, and using (B.1), we find

µbi = µb +
κλµbiνiµbo(S − µsi)

(κ+ κ)(κ+ κ+ λµbi)(κ+ λµsi)
. (B.18)

Noting that µ`i + µsi = S − µsi, we can use (B.8) to compute µsi:

µsi =
κS

κ+ λµbi
. (B.19)

Adding (B.15) and (B.19), and using (B.2), we find

µsi =
κS

κ+ λµbi
+
νiµbo(S − µsi)

κ+ κ+ λµbi
. (B.20)

The new system consists of (B.5), (B.14), (B.18), and (B.20). These are six equations (because

some are for each asset), and the six unknowns are µbo, µb, and {µbi, µsi}i∈{1,2}. Once this system

is solved, the other measures can be computed as follows: µsi from (B.15), µni from (B.16), µbi

from (B.17), µsi from (B.19), µ`i from (B.3), and µni from (B.4).
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To cover the case where search frictions are small, we make the change of variables ε ≡ 1/λ,

n ≡ ν/λ, αi ≡ νi/ν, γsi ≡ λµsi, and γbo ≡ νµbo. Under the new variables, (B.5), (B.14), (B.18),

and (B.20) become

F = κµb +

2∑

i=1

µbγsi, (B.21)

F =
εκγbo
n

+
κ

κ+ κ

2∑

i=1

αiγbo(S − εγsi), (B.22)

µbi = µb +
κµbiαiγbo(S − εγsi)

(κ+ κ) [ε(κ+ κ) + µbi] (κ+ γsi)
, (B.23)

γsi =
κS

εκ+ µbi
+
αiγbo(S − εγsi)

ε(κ+ κ) + µbi
, (B.24)

respectively.

B.1 Existence and Uniqueness

We next show that the system of (B.21)-(B.24) has a unique symmetric solution when α1 = α2 = 1

(the “symmetric” case), and a unique solution when α1 = 1 and α2 = 0 (the “asymmetric” case).

Using (B.23) to eliminate γbo in (B.24), we find

γsi =
κS

εκ+ µbi
+ (µbi − µb)

(κ+ κ)(κ+ γsi)

κµbi
.

Multiplying by µbi, and setting i = 1, we find

γs1µb =
κSµb1
εκ+ µb1

+ (µb1 − µb)
κ

κ
(κ+ κ+ γs1). (B.25)

In the rest of the proof, we use (B.21), (B.22), (B.23) for i ∈ {1, 2}, and (B.24) for i = 2, to

determine µb and µb1 as functions of γs1 ∈ (0, S/ε). We then plug these functions into (B.25), and

show that the resulting equation in the single unknown γs1 has a unique solution.

We first solve for µb. In the asymmetric case, (B.23) implies that µb2 = µb, (B.24) implies that

γs2 = κS/(εκ+ µb), and (B.21) implies that

F = κµb + µb

(

γs1 +
κS

εκ+ µb

)

. (B.26)
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The RHS of (B.26) is (strictly) increasing in µb ∈ (0,∞), is equal to zero for µb = 0, and goes to∞

for µb →∞. Therefore, (B.26) has a unique solution µb ∈ (0,∞). This solution is decreasing in γs1

because the RHS is increasing in γs1. In the symmetric case, (B.21) implies that µb = F/(κ+2γs1).

This solution is again decreasing in γs1.

We next solve for µb1. Eq. (B.22) implies that

γbo =
F

εκ
n
+ κ

κ+κ

∑2
i=1 αi(S − εγsi)

=
F

εκ
n
+ κ

κ+κ(1 + α2)(S − εγs1)
,

where the second step follows because in the symmetric case γs2 = γs1 and in the asymmetric case

α2 = 0. Plugging into (B.23), setting i = 1, and dividing by µb1, we find

1 =
µb
µb1

+
(S − εγs1)nF

[ε(κ+ κ) + µb1] (κ+ γs1) [ε(κ+ κ) + n(1 + α2)(S − εγs1)]
. (B.27)

The RHS of (B.27) is decreasing in µb1 ∈ (0,∞), goes to ∞ for µb1 → 0, and goes to zero for

µb1 →∞. Therefore, (B.26) has a unique solution µb1 ∈ (0,∞). This solution is decreasing in γs1

because the RHS is decreasing in γs1 and increasing in µb (which is decreasing in γs1).

We next substitute µb and µb1 into (B.25), and treat it as an equation in the single unknown

γs1. To show uniqueness, we will show that the LHS is increasing in γs1 and the RHS is decreasing.

In the symmetric case, the LHS is equal to

γs1µb =
γs1F

κ+ 2γs1
,

and is increasing. In the asymmetric case, (B.26) implies that the LHS is equal to

γs1µb = F − κµb −
κSµb
εκ+ µb

,

and is increasing because µb is decreasing in γs1. The first term in the RHS is increasing in µb1,

and thus decreasing in γs1. To show that the second term is also decreasing, we multiply (B.27) by

µb1(κ+ κ+ γs1):

(µb1 − µb)(κ+ κ+ γs1) =
µb1(κ+ κ+ γs1)(S − εγs1)nF

[ε(κ+ κ) + µb1] (κ+ γs1) [ε(κ+ κ) + n(1 + α2)(S − εγs1)]
.

The RHS of this equation is decreasing in γs1 because it is decreasing in γs1 and increasing in µb1

(which is decreasing in γs1). Therefore, the second term in the RHS of (B.25) is decreasing in γs1.
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To show existence, we note that for γs1 = 0, the LHS of (B.25) is equal to zero, while the RHS

is positive. Moreover, for γs1 = S/ε, the LHS is equal to Sµb/ε, while the RHS is equal to

κSµb
εκ+ µb

<
Sµb
ε

because µb1 = µb. Therefore, there exists a solution γs1 ∈ (0, S/ε).

B.2 Small Search Frictions

The case of small search frictions corresponds to small ε. Thus, the solution in this case is close

to that for ε = 0 provided that continuity holds. Our proof so far covers the case ε = 0, except

for existence. We next show that Assumption 2 ensures existence for ε = 0. We also compute the

solution in closed form and show continuity.

To emphasize that ε = 0 is a limit case, we use m and g instead of µ and γ. Eqs. (B.21)-(B.24)

become

F = κmb +
2∑

i=1

mbgsi, (B.28)

F =
κ

κ+ κ

2∑

i=1

αigboS, (B.29)

mbi = mb +
καigboS

(κ+ κ)(κ+ gsi)
, (B.30)

gsi =
κS

mbi
+
αigboS

mbi
. (B.31)

We first solve the system of (B.28)-(B.31) in the symmetric case (α1 = α2 = 1), suppressing the

asset subscript because of symmetry. Eq. (B.29) implies that

gbo =
(κ+ κ)F

2κS
, (B.32)

(B.31) implies that

gs =
κS + κ+κ

2κ F

mb

, (B.33)
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and (B.28) implies that

mb =
F

κ+ 2gs
. (B.34)

Substituting gbo, gs, and mb from (B.32)-(B.34) into (B.30), we find that mb solves the equation

1 =
F

κmb + 2κS + κ+κ
κ
F

+
F

2κmb + 2κS + κ+κ
κ
F
. (B.35)

This equation has a positive solution because of Assumption 2.

We next consider the asymmetric case (α1 = 1, α2 = 0), and use m̂ and ĝ instead of m and g.

Eq. (B.30) implies that m̂b2 = m̂b, (B.31) implies that

ĝs2 =
κS

m̂b

, (B.36)

(B.29) implies that

ĝbo =
(κ+ κ)F

κS
, (B.37)

(B.31) implies that

ĝs1 =
κS + κ+κ

κ
F

m̂b1
, (B.38)

and (B.28) implies that

m̂b =
F − κS

κ+ ĝs1
. (B.39)

Substituting ĝbo, ĝs1, and m̂b from (B.37)-(B.39) into (B.30), we find

m̂b1 =
F

κ
− 2S −

F

κ
, (B.40)

which is positive because of Assumption 2.

To show continuity at ε = 0, we write (B.25) as

γs1µb −
κSµb1
εκ+ µb1

− (µb1 − µb)
κ

κ
(κ+ κ+ γs1) = 0,
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and denote by R(γs1, ε) the RHS (treating µb and µb1 as functions of (γs1, ε)). Because µb, µb1 > 0

for (γs1, ε) = (gs1, 0) (symmetric case) and (γs1, ε) = (ĝs1, 0) (asymmetric case), the functions µb and

µb1 are continuously differentiable around that point, and so is the function R(γs1, ε). Moreover, our

uniqueness proof shows that the derivative of R(γs1, ε) w.r.t. γs1 is positive. Therefore, the Implicit

Function Theorem ensures that for small ε, (B.25) has a continuous solution γs1(ε). Because of

uniqueness, this solution coincides with the one that we have identified.

C Utilities and Prices

The flow-value equations are

rVb = −κVb +
2∑

i=1

λµsi(V`i − pi − Vb) (C.1)

rV`i = δ + x− y + κ(Vsi − V`i) + νiµbo(Vnsi − V`i) (C.2)

rVnsi = δ + x− y + wi + κ(Vsi − Vnsi) + κ(V`i − Vnsi) + λµbi(Vnni − Vnsi) (C.3)

rVnni = δ + x− y + wi + κ(Ci − Vnni) + κ(Vnbi − Vnni) (C.4)

rVnbi = δ + x− y + wi + κ(Ci − Vnbi) + λµsi(V`i − Vnbi) (C.5)

rVsi = δ − y + λµbi(pi − Vsi) (C.6)

rVbo = −κVbo +
2∑

i=1

νiµ`i(Vsi − Vbo) (C.7)

rVsi = −wi + κ(Vbo − Vsi)− κVsi + λµbi(Vni + pi − Vsi) (C.8)

rVni = −δ + x− y − wi + κ(Vbo − Ci − Vni) + κ(Vbi − Vni) (C.9)

rVbi = −δ − y − wi + κ(−Ci − Vbi) + λµsi(−pi − Vbi), (C.10)

where Ci denotes the cash collateral seized by the lender when the borrower cannot deliver instantly.

The lending fee wi is such that the lender receives a fraction θ ∈ [0, 1] of the surplus Σi in a

repo transaction. Since a repo transaction turns the lender `i into type nsi, the lender’s surplus

is Vnsi − V`i. The borrower’s surplus is Vsi − Vbo because the borrower bo becomes a seller si.

Therefore, the lending fee is implicitly defined by

Vnsi − V`i = θΣi = θ(Vnsi − V`i + Vsi − Vbo). (C.11)
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The price is determined by (2). The reservation value of type b is ∆b = V`i − Vb because after

buying the asset, b becomes a lender `i. The reservation value of type si is ∆si = Vsi because after

selling the asset, si exits the market with utility zero. Substituting in (2), we find

pi = φVsi + (1− φ)
(
V`i − Vb

)
. (C.12)

Using (C.1)-(C.12), we compute below the lending fee wi and the price pi as a function of the

short-selling surplus Σi. We then derive a linear system for Σ1 and Σ2.

C.1 Lending Fee

Subtracting (C.2) from (C.3), we find

(r + κ+ κ+ νiµbo)(Vnsi − V`i) = wi + λµbi(Vnni − Vnsi), (C.13)

subtracting (C.3) from (C.4), we find

(r + κ+ κ+ λµbi)(Vnni − Vnsi) = κ(Ci − Vsi) + κ(Vnbi − V`i), (C.14)

and subtracting (C.4) from (C.5), we find

(r + κ+ κ)(Vnbi − Vnni) = λµsi(V`i − Vnbi). (C.15)

Eqs. (C.14) and (C.15) imply that

Vnbi − Vnsi =
κ

r + κ+ κ+ λµbi
(Ci − Vsi) +

κ(r + κ+ κ)− λµsi(r + κ+ κ+ λµbi)

(r + κ+ κ)(r + κ+ κ+ λµbi)
(Vnbi − V`i).

Adding Vnsi − V`i on both sides and solving for Vnbi − V`i, we find

Vnbi−V`i =
(r + κ+ κ)(r + κ+ κ+ λµbi)

(r + κ+ κ)(r + κ+ λµbi) + λµsi(r + κ+ κ+ λµbi)

[
κ(Ci − Vsi)

r + κ+ κ+ λµbi
+ Vnsi − V`i

]

.

Substituting Vnbi − V`i from this equation into (C.14), we find

Vnni − Vnsi =
κ(r + κ+ κ+ λµsi)(Ci − Vsi) + κ(r + κ+ κ)(Vnsi − V`i)

(r + κ+ κ)(r + κ+ λµbi) + λµsi(r + κ+ κ+ λµbi)
.
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Substituting Vnni − Vnsi from this equation into (C.13), and using (C.11), we can determine the

lending fee as a function of the short-selling surplus:

[

r + κ+ κ
(r + κ)(r + κ+ κ+ λµsi) + λµsi(κ+ λµbi)

(r + κ+ λµbi)(r + κ+ κ) + λµsi(r + κ+ κ+ λµbi)
+ νiµbo

]

θΣi

= wi +
κλµbi(r + κ+ κ+ λµsi)

(r + κ+ κ)(r + κ+ λµbi) + λµsi(r + κ+ κ+ λµbi)
(Ci − Vsi). (C.16)

C.2 Price

Eq. (C.6) implies that

Vsi − pi =
δ − y − rpi
r + λµbi

. (C.17)

Subtracting rpi from both sides of (C.2), and using (C.11) and (C.17), we find

V`i − pi =
1

r + κ

[

δ + x− y − rpi + νiµboθΣi + κ
δ − y − rpi
r + λµbi

]

. (C.18)

Substituting (C.17) and (C.18) into (C.12), we find

δ − y − rpi +
(1− φ)(r + λµbi)

r + κ+ (1− φ)λµbi

[
x+ νiµboθΣi − (r + κ)Vb

]
= 0. (C.19)

Substituting d− y − rpi from (C.19) into (C.18), we find

V`i − pi =
φ(x+ νiµboθΣi) + (1− φ)(r + κ+ λµbi)Vb

r + κ+ (1− φ)λµbi
.

Substituting V`i − pi from this equation into (C.1) and solving for Vb, we find

Vb =
φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj
(x+ νjµboθΣj)

(r + κ)
[

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj

] .

Substituting Vb from this equation into (C.19), we can determine the price as a function of the

short-selling surplus:

pi =
δ − y

r
+

(1− φ)(r + λµbi)

r [r + κ+ (1− φ)λµbi]



x+ νiµboθΣi −
φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj
(x+ νjµboθΣj)

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj



 .

(C.20)
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C.3 Short-Selling Surplus

Adding (C.3) and (C.8), and subtracting (C.7) and (C.2), we find

(r + κ+ κ+ νiµboθ)Σi +
2∑

j=1

νjµ`j(1− θ)Σj = λµbi(Vnni + Vni + pi − Vnsi − Vsi). (C.21)

Adding (C.4), (C.9), and rpi = rpi, and subtracting (C.3) and (C.8), we find

(r+κ+κ+λµbi)(Vnni+Vni+pi−Vnsi−Vsi) = rpi−δ+x−y+κ(pi−Vsi)+κ(Vnbi+Vbi+pi−V`i). (C.22)

Adding (C.5), (C.10), and rpi = rpi, and subtracting (C.2), we find

(r + κ+ λµsi)(Vnbi + Vbi + pi − V`i) = rpi − δ − y + κ(pi − Vsi)− νiµboθΣi. (C.23)

Substituting Vnbi + Vbi + pi − V`i from (C.23) into (C.22), and then substituting Vnni + Vni + pi −

Vnsi − Vsi from (C.22) into (C.21), we find

[

r + κ+ κ+ νiµboθ

[

1 +
λµbiκ

(r + κ+ κ+ λµbi)(r + κ+ λµsi)

]]

Σi +

2∑

j=1

νjµ`j(1− θ)Σj

=
λµbi

r + κ+ κ+ λµbi

[

x+
r + κ+ κ+ λµsi
r + κ+ λµsi

[rpi − δ − y + κ(pi − Vsi)]

]

. (C.24)

To derive an equation involving only Σ1 and Σ2, we need to eliminate the price pi. We have

rpi − δ − y + κ(pi − Vsi)

= −2y + rpi − δ + y + κ
rpi − δ + y

r + λµbi

= −2y +
(1− φ)(r + κ+ λµbi)

r + κ+ (1− φ)λµbi



x+ νiµboθΣi −
φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj
(x+ νjµboθΣj)

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj



 ,

where the first step follows from (C.17) and the second from (C.20). Plugging back into (C.24), we

can write it as

aiΣi +

2∑

j=1

fjΣj + bi

2∑

j=1

gjΣj = ci, (C.25)
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where

ai = r+κ+κ+νiµboθ

[
r + κ+ κ

r + κ+ κ+ λµbi
+

φ(r + κ)λµbi(r + κ+ κ+ λµsi)

(r + κ+ κ+ λµbi)(r + κ+ λµsi)[r + κ+ (1− φ)λµbi]

]

,

fi = νiµ`i(1− θ),

bi =
(1− φ)λµbi(r + κ+ κ+ λµsi)(r + κ+ λµbi)

(r + κ+ κ+ λµbi)(r + κ+ λµsi) [r + κ+ λ(1− φ)λµbi]
,

gi = φνiµboθ

λµsi

r+κ+(1−φ)λµbi

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµbj

,

ci =
λµbi

r + κ+ κ+ λµbi



x−
r + κ+ κ+ λµsi
r + κ+ λµsi



2y −
(1− φ)(r + κ+ λµbi)

r + κ+ (1− φ)λµbi

x

1 + φ
∑2

j=1
λµsj

r+κ+(1−φ)λµsj







 .

The short-selling surpluses Σ1 and Σ2 are the solution to the linear system consisting of (C.25) for

i ∈ {1, 2}.

Note that the collateral Ci does not enter in (C.25), and thus does not affect the short-selling

surplus. It neither affects the price, from (C.20). It affects only the lending fee because when

lenders can seize more collateral they accept a lower fee. From now on (and as stated in Footnote

14), we set the collateral equal to the utility of a seller si, i.e.,

Ci = Vsi. (C.26)

D Proofs of Propositions 5-11

Proof of Proposition 5: From Appendix B we know that given the short-selling decisions ν1 =

ν2 = ν, the population measures are uniquely determined. From Appendix C we know that

given any short-selling decisions and population measures, the utilities, prices, and lending fees are

uniquely determined. Therefore, what is left to show is (i) the short-selling surplus Σ is positive,

(ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading strategies

are optimal. To show these results, we recall from Appendix B that when search frictions become

small, i.e., λ goes to ∞ holding n ≡ ν/λ constant, µb converges to mb, µ` converges to S, λµs

converges to gs, and νµbo converges to gbo.
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We start by computing Σ, w, and p, thus proving Proposition 6. Eq. (C.25) implies that when

Σ1 = Σ2 ≡ Σ,

Σ =
c

a+ 2(f + bg)
,

where we suppress the asset subscripts from a, b, c, f, g because of symmetry. When search frictions

become small, a and b converge to positive limits, c converges to

x−
r + κ+ κ+ gs
r + κ+ gs

(2y − x), (D.1)

g converges to zero, and f converges to∞, being asymptotically equal to νS(1− θ). Therefore, the

surplus converges to zero, and its asymptotic behavior is as in Proposition 6.

Eqs. (C.16) and (C.26) imply that the lending fee is

w =

[

r + κ+ κ
(r + κ)(r + κ+ κ+ λµs) + λµs(κ+ λµb)

(r + κ+ λµb)(r + κ+ κ) + λµs(r + κ+ κ+ λµb)
+ νµbo

]

θΣ.

Because the term in brackets converges to

r + κ+ κ
gs

r + κ+ κ+ gs
+ gbo,

the lending fee converges to zero, and its asymptotic behavior is as in Proposition 6.

Eq. (C.20) implies that the price is equal to

p =
δ − y

r
+

1

r

[

1−
φr + κ

(1− φ)λmb

+ o(1/λ)

] [

x+ gboθΣ−
2φgsx

(1− φ)λmb

+ o(1/λ)

]

.

Using this equation and the fact that Σ is in order 1/λ, it is easy to check that the asymptotic

behavior (i.e., order 1/λ) of the price is as in Proposition 6.

To show that Σ is positive, we need to show that (D.1) is positive. This follows because (4)

implies that

x > 2y +
κ

r + κ+ gs
(2y − x) > 2y − x+

κ

r + κ+ gs
(2y − x) =

r + κ+ κ+ gs
r + κ+ gs

(2y − x). (D.2)

We next show that reservation values are ordered as in (1), i.e., ∆b > ∆b and ∆s > ∆s. For

this, we need to compute Vb and Vn − Vs. Adding (C.10) and rp = rp, and using (C.26), we find

Vb + p =
rp− δ − y − w + κ(p− Vs)

r + κ+ λµs
. (D.3)
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Adding (C.9) and rp = rp, and subtracting (C.8), we similarly find

Vn + p− Vs =
rp− δ + x− y + κ(Vb + p) + κ(p− Vs)

r + κ+ κ+ λµb
. (D.4)

Inequality ∆b > ∆b is equivalent to

−Vb − p > V` − p− Vb

⇔
δ + y − rp+ w − κ(p− Vs)

r + κ+ λµs
>

φ

1− φ
(p− Vs)

⇔
δ + y − rp+ w − κ rp−δ+y

r+λµb

r + κ+ λµs
>

φ

1− φ

rp− δ + y

r + λµb
(D.5)

where the second step follows from (C.12) and (D.3), and the third from (C.17). Because rp

converges to δ+x−y, and w converges to zero, the LHS of (D.5) converges to (2y−x)/(r+κ+gs),

which is positive from Assumption 1, while the RHS converges to zero. Inequality ∆s > ∆s is

equivalent to

Vn + p− Vs > p− Vs

⇔
x+ r+κ+κ+λµs

r+κ+λµs
[rp− δ − y + κ(p− Vs)]−

κ
r+κ+λµs

w

r + κ+ κ+ λµb
>
rp− δ + y

r + λµb
,

where the second step follows from (C.17), (D.3), and (D.4). When search frictions become small,

this inequality holds if the limit of the numerator in the LHS exceeds that for the RHS, i.e.,

x−
r + κ+ κ+ gs
r + κ+ gs

(2y − x) > x.

This holds because of the first inequality in (D.2).

We finally show that trading strategies are optimal. The flow benefit that an average-valuation

agent can derive from a long position in asset i is bounded above by δ−y+w, and the flow benefit for

a short position is bounded above by −δ−y. Therefore, an average-valuation agent finds it optimal

to establish no position, or to unwind a previously established one, if (δ−y+w)/r < min{p, C} and

(δ+y)/r > p. These conditions are satisfied for small frictions because p converges to (δ+x−y)/r,

w converges to zero, C − p converges to zero, and 2y > x.
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A high-valuation agent finds it optimal to buy asset i if V` − p − Vb ≥ 0. This condition is

satisfied because

V` − p− Vb =
φ

1− φ
(p− Vs) =

φ

1− φ

rp− δ + y

r + λµb
∼

φ

1− φ

x

λµb
≥ 0.

The agent finds it optimal to lend the asset because Vns − V` = θΣ > 0. Likewise, a low-valuation

agent finds it optimal to borrow asset i because Vs − Vbo = (1 − θ)Σ > 0, and to sell it because

Vn + p− Vs = p−∆s > p−∆s = p− Vs > 0.

Proof of Proposition 6: See the proof of Proposition 5.

Proof of Proposition 7: We need to show that (i) the short-selling surplus Σ1 is positive and Σ2

is negative, (ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading

strategies are optimal. We recall from Appendix B that for small search frictions and given the

short-selling decisions ν1 = ν and ν2 = 0, µbi converges to m̂bi, µ`i converges to S, λµsi converges

to ĝsi, and νµbo converges to ĝbo.

We start by computing Σ1, w1, p1, and p2, thus proving Proposition 8. Eq. (C.25) implies that

when ν2 = 0,

Σ1 =
c1

a1 + f1 + b1g1
.

When search frictions become small, c1 converges to

x−
r + κ+ κ+ ĝs1
r + κ+ ĝs1

(2y − x), (D.6)

and the dominant term in the denominator is f1 ∼ νS(1− θ). Therefore, the surplus converges to

zero, and its asymptotic behavior is as in Proposition 8. To determine the asymptotic behavior of

the lending fee and the price, we proceed as in the proof of Proposition 5.

To show that Σ1 is positive, we need to show that (D.6) is positive. This follows from (D.2)

and the fact that ĝs1 > gs, established in the proof of Proposition 9. To show that Σ2 is negative,

we note that from (C.25),

Σ2 =
c2 − (f1 + b2g1)Σ1

a2
=
c2 −

f1+b2g1
a1+f1+b1g1

c1

a2
.
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When search frictions become small, the numerator converges to the same limit as c2 − c1. This

limit is equal to

[
r + κ+ κ+ ĝs1
r + κ+ ĝs1

−
r + κ+ κ+ ĝs2
r + κ+ ĝs2

]

(2y − x),

and is negative if ĝs1 > ĝs2. Using (B.36) and (B.38), we can write this inequality as

κS + κ+κ
κ
F

m̂b1
>
κS

m̂b

. (D.7)

Eqs. (B.38)-(B.40) imply that

m̂b =
F − κS

F − κS + F
m̂b1. (D.8)

Using this equation, we can write (D.7) as

κS + κ+κ
κ
F

κS
>
F − κS + F

F − κS
.

It is easy to check that this inequality holds because of Assumption 2.

To show that ∆bi > ∆b and ∆si > ∆si, we proceed as in the proof of Proposition 5. The only

change is that the condition for ∆si > ∆si now is

x−
r + κ+ κ+ ĝs
r + κ+ ĝs

(2y − x) > x.

This inequality is implied by the first inequality in (D.2) and the fact that ĝs1 > gs. Finally, the

arguments in the proof of Proposition 5 establish that trading strategies are optimal.

Proof of Proposition 8: See the proof of Proposition 7.

Proof of Proposition 9: We start with a lemma.

Lemma 1. For χ < 1, inequality (1− χ)m̂b1 > mb is equivalent to

(1− 2χ)(F − χκm̂b1) > χF. (D.9)
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Proof: Sincemb is the unique positive solution of (B.35), whose RHS is decreasing inmb, inequality

(1− χ)m̂b1 > mb is equivalent to

1 >
F

κ(1− χ)m̂b1 + 2κS + κ+κ
κ
F

+
F

2κ(1− χ)m̂b1 + 2κS + κ+κ
κ
F

⇔ 1 >
F

F + F − χκm̂b1

+
F

F + F + (1− 2χ)κm̂b1

⇔
F − χκm̂b1

F + F − χκm̂b1

>
F

F + F + (1− 2χ)κm̂b1

,

where the second step follows from (B.40). The last inequality implies (D.9).

Result (i): We need to show that m̂b1 > mb and ĝs1 > gs. Since (D.9) holds for χ = 0, Lemma 1

implies that m̂b1 > mb. Using (B.33) and (B.38), we can write inequality ĝs1 > gs as

κS + κ+κ
2κ F

κS + κ+κ
κ
F
m̂b1 < mb.

Using Lemma 1, we then need to show that

(1− 2χ)(F − χκm̂b1) < χF, (D.10)

for

χ =

κ+κ
2κ F

κS + κ+κ
κ
F
.

Plugging for χ, we can write (D.10) as

κS(F − χκm̂b1) <
κ+ κ

2κ
FF ,

which holds because of Assumption 2 and m̂b1 > 0.

Result (ii): We need to show that m̂b2 < mb and ĝs2 < gs. Using (D.8) and m̂b2 = m̂b, we can

write inequality m̂b2 < mb as

F − κS

F − κS + F
m̂b1 < mb.
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Using Lemma 1, we then need to show (D.10) for

χ =
F

F − κS + F
.

Plugging for χ, we can write (D.10) as

F − κS − F

F − κS + F

(
F − κS + F − κm̂b1

)
< F,

which holds because m̂b1 > 0. Using (B.33), (B.36), and (D.8), we can write inequality ĝs2 < gs as

F − κS

F − κS + F

κS + κ+κ
2κ F

κS
m̂b1 > mb.

Using Lemma 1, we then need to show (D.9) for

χ =
F

F − κS + F

(

1−
κ+ κ

2κ

F − κS

κS

)

.

Assumption 2 implies that

χ <
F

F − κS + F

(

1−
κ+ κ

2κ

)

<
F

2(F − κS + F )
≡ χ̂.

Because χ̂, m̂b1 > 0, (D.9) holds for χ if it holds for χ̂. The latter is easy to check using Assumption

2.

Result (iii): Eqs. (7), (11), and ĝs1 > gs, imply that Σi in the symmetric equilibrium is smaller

than Σ1 in the asymmetric equilibrium. Since, in addition, ĝbo > gbo (from (B.32) and (B.37)),

(6) and (10) imply that the lending fee wi in the symmetric equilibrium is smaller than w1 in the

asymmetric equilibrium.

Result (iv): For φ = 0, the result follows from (5), (8), m̂b1 > mb > m̂b2, ĝbo > gbo, and the fact that

Σi in the symmetric equilibrium is smaller than Σ1 in the asymmetric equilibrium. An example

where the prices of both assets are higher in the asymmetric equilibrium is S = 0.5, F = 3, F = 5.7,

κ = 1, κ = 3, φ = θ = 0.5, r = 4%, δ = 1, x = 0.4, x = 1.6, y = 0.5, and any ν/λ.

Proof of Proposition 10: We show that buying asset 2 and shorting asset 1 is unprofitable under

p1 − p2 <
w1

r
+

x

λm̂b1
+

κx

r(νS + λm̂b2)
. (D.11)
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(which is implied by (12)), while buying asset 1 and shorting asset 2 is unprofitable under (13).

We then show that (12) and (13) are satisfied if ν/λ is in an interval (n1, n2).

Buy asset 2, short asset 1

Because trading opportunities arrive one at a time, an arbitrageur cannot set up the two legs of

the position simultaneously. The arbitrageur can, for example, buy asset 2 first, then borrow asset

1, and then sell asset 1. Alternatively, he can borrow asset 1 first, then buy asset 2, and then sell

asset 1. The final possibility, which is to sell asset 1 before buying asset 2 is suboptimal. Indeed,

for small search frictions the time to meet a buyer converges to zero while the time to meet a seller

does not. Therefore, the cost of being unhedged converges to zero only when asset 2 is bought

before asset 1 is sold.

Suppose now that the arbitrage strategy is profitable. Because the payoff of the strategy is

decreasing in asset 1’s lending fee, there exists a fee w1 > w1 for which the arbitrageur is indifferent

between following the strategy and holding no position. If for this fee it is optimal to initiate the

strategy by buying asset 2, the arbitrageur can be in three possible states:

• Long position in asset 2. State n2 with utility Vn2.

• Long position in asset 2 and borrowed asset 1. State s1n2 with utility Vs1n2.

• Long position in asset 2 and short in asset 1. State n1n2 with utility Vn1n2.

The utilities are characterized by the following flow-value equations:

rVn2 = δ − y + νµ`1(Vs1n2 − Vn2) (D.12)

rVs1n2 = δ − y − w1 + λµb1(Vn1n2 + p1 − Vs1n2) + κ(Vn2 − Vs1n2) (D.13)

rVn1n2 = −w1 + κ(Vn2 − C1 − Vn1n2). (D.14)

Solving (D.12)-(D.14), we find

rVn2 = δ − y +
νµ`1

r + κ+ νµ`1

[

−w1 +
λµb1

r + κ+ λµb1
[rp1 − δ + y + κ(p1 − C1)]

]

.

The arbitrageur is indifferent between initiating the strategy and holding no position if Vn2 is equal

to p2. Using this condition, and substituting C1 from (C.17) and (C.26), we find

w1 =
λµb2

r + λµb2
(rp1 − δ + y)−

r + κ+ νµ`2
νµ`2

(rp2 − δ − y).
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For small search frictions, this equation becomes

w1 = r(p1 − p2)−
rx

λm̂b1
−

(r + κ)x

νS
,

and is inconsistent with (D.11) since w1 < w1.

Suppose instead that it is optimal to initiate the strategy by borrowing asset 1. The arbitrageur

then starts from a state s1, in which he has borrowed asset 1 but holds no position in asset 2. The

utility Vs1 in this state is characterized by

rVs1 = −w1 + λµs2(Vs1n2 − p2 − Vs1). (D.15)

The utility in states s1n2 and n1n2 is given by (D.13) and (D.14), respectively. The utility in state

n2, however, is given by

rVn2 = δ − y + νµ`1(Vs1n2 − Vn2) + λµb2(p2 − Vn2) (D.16)

instead of (D.12). Indeed, since it suboptimal to initiate the strategy by buying asset 2, buying

that asset is dominated by holding no position. Therefore, if the arbitrageur finds himself with a

long position in asset 2, he prefers to unwind it upon meeting a seller. Eqs. (D.13), (D.14), and

(D.16) imply that

Vs1n2 =

r+κ+νµ
`1

+λµb2

r+νµ
`1

+λµb2
(δ − y) + κλµb2

r+νµ
`1

+λµb2
p2 − w1 +

λµb1

r+κ+λµb1
[rp1 − δ + y + κ(p1 − C1)]

r(r+κ+νµ
`1

+λµb2)+κλµb2

r+νµ
`1

+λµb2

.

Plugging into (D.15), and using (C.17), (C.26), and the indifference condition which now is Vs1 = 0,

we find

w1 =

λµb1

r+λµb1
(rp1 − δ + y)−

r+κ+νµ
`1

+λµb2

r+νµ
`1

+λµb2
(rp2 − δ + y)

1 +
r(r+κ+νµ

`1
+λµb2)+κλµb2

λµs2(r+νµ
`1

+λµb2)

.

For small search frictions, this equation becomes

w1 =
r(p1 − p2)−

rx
λm̂b1

− κx
νS+λm̂b2

1 + r(nS+m̂b2)+κm̂b2

ĝs2(nS+m̂b2)

,

and is inconsistent with (D.11) since w1 < w1.
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Buy asset 1, short asset 2

We consider a “relaxed” problem where asset 1 can be bought instantly and asset 2 can be

borrowed instantly at a lending fee of zero. Clearly, if the arbitrage strategy is unprofitable in the

relaxed problem, it is also unprofitable when more frictions are present.

Suppose that the arbitrage strategy is profitable. Because the payoff of the strategy is increasing

in asset 1’s lending fee, there exists a fee w1 < w1 for which the arbitrageur is indifferent between

following the strategy and holding no position. When following the strategy, the arbitrageur is

always in a state where he holds asset 1 and has borrowed asset 2, because these can be done

instantly. If the arbitrageur has not sold asset 2, he can be in four possible states:

• Seeking to lend asset 1. State `1s2 with utility V`1s2.

• Lent asset 1 to an agent s1. State ns1s2 with utility Vns1s2.

• Lent asset 1 to an agent n1. State nn1s2 with utility Vnn1s2.

• Lent asset 1 to an agent b1. State nb1s2 with utility Vnb1s2.

If the arbitrageur has sold asset 2, he can be in the four corresponding states that we denote with

n2 instead of s2.

For brevity, we skip the eight flow-value equations, but note that they have a simple solution.

To each outcome concerning asset 1 (`1, ns1, nn1, nb1) and to each outcome concerning asset 2

(s2, n2), we can associate a separate utility that we denote by V̂ . We can then write the utility

of a state (which is a “joint” outcome) as the sum of the two separate utilities. For example, the

utility V`1s2 is equal to V̂`1 + V̂s2. This decomposition is possible because the outcomes concerning

each asset evolve independently.

The utilities V̂`1, V̂ns1, V̂nn1, and V̂nb1 are characterized by the flow-value equations

rV̂`1 = νµbo(V̂ns1 − V̂`1)

rV̂ns1 = w1 + λµb1(V̂nn1 − V̂ns1)

rV̂nn1 = w1 + κ(V̂nb1 − V̂nn1)

rV̂nb1 = w1 + λµs1(V̂`1 − V̂nb1).
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and the utilities V̂s2, V̂n2 are characterized by

rV̂s2 = δ − y + λµb2(V̂n2 + p2 − V̂s2)

rV̂n2 = κ(V̂s2 − C2 − V̂n2).

Solving these equations, we find

rV`1s2 = rV̂`1 + rV̂s2

=

νµbo

r+νµbo

(

1− λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

)

1−
νµbo

r+νµbo

λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

w1 +

[

δ − y +
λµb2

r + κ+ λµb2
[rp2 − δ + y + κ(p2 − C2)]

]

.

The arbitrageur is indifferent between initiating the strategy and holding no position if V`1s2 is

equal to p1. Using this condition, and substituting C1 from (C.17) and (C.26)

νµbo

r+νµbo

(

1− λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

)

1−
νµbo

r+νµbo

λµb1

r+λµb1

κ
r+κ

λµs1

r+λµs1

w1 = rp1 − δ + y −
λµb2

r + λµb2
(rp2 − δ + y).

For small search frictions, this equation becomes

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1 = r(p1 − p2) +
rx

λm̂b2
,

and is inconsistent with (13) since w1 > w1.

Eqs. (12) and (13) are jointly satisfied

The two equations are jointly satisfied if

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1

r
< p1 − p2 <

w1

r
.

Substituting p1 and p2 from (8) and (9), we can write this equation as

A1
w1

r
<
B

λ
+A2

w1

r
<
w1

r
, (D.17)

where

A2 ≡
ĝbo

r + κ+ κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

< A1 ≡
ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

< 1
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and

B ≡
(φr + κ)

(1− φ)

[
1

m̂b2
−

1

m̂b1

]
x

r
> 0.

Eq. (D.17) is satisfied if

B

A1 −A2
>
λw1

r
>

B

1−A2
.

In this inequality, n enters only through the product λw1. Therefore, the inequality is satisfied for

n in some interval (n1, n2).

Proof of Proposition 11: Generalizing the analysis of Section B.2, we can show that a solution

for ε = 0 exists, and is close to that for small ε. The limiting equations are (B.28)-(B.31), but with

the asset supplies depending on i. For the asymmetric equilibrium, (B.36)-(B.40) generalize to

ĝbo =
(κ+ κ)F

κS1
(D.18)

ĝs1 =
κS1 +

κ+κ
κ
F

m̂b1
(D.19)

ĝs2 =
κS2

m̂b

, (D.20)

m̂b1 =
F

κ
−

2∑

i=1

Si −
F

κ
(D.21)

m̂b =
F − κS2

F − κS2 + F
m̂b1 (D.22)

Result (i): An equilibrium where ν1 = ν and ν2 = 0 can exist if Σ1 > 0 and Σ2 < 0. Condition

Σ1 > 0 can be ensured by (4). For small search frictions, condition Σ2 < 0 is equivalent to ĝs1 > ĝs2,

as shown in the proof of Proposition 7. Using (D.19), (D.20) and (D.22), we can write condition

ĝs1 > ĝs2 as

[

κ(S1 − S2) +
κ+ κ

κ
F

]

(F − κS2) > κS2F . (D.23)

This equation holds for all values of S1 ≥ S2 because Assumption 2 implies that F − κS2 > κS1 ≥

κS2.
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Result (ii): The existence condition is now (D.23), but with S1 and S2 reversed. It does not hold,

for example, when S1 is large enough to make the term in square brackets negative.

Result (iii): We proceed by contradiction, assuming that for a given S1 − S2 > 0 there exists an

equilibrium where ν1 = ν2 = ν, even when search frictions converge to zero. Since the parameters

ai, bi, ci, and gi in (C.25) converge to finite limits, while fi converges to ∞, Σi must converge to

zero, and fiΣi to a finite limit. But then (C.25) implies that the limits of c1 and c2 must be the

same. This, in turn, implies that gs1 = gs2 ≡ gs, which from (B.30) and (B.31) means that

κSi + gboSi

mb +
κgboSi

(κ+κ)(κ+gs)

is independent of i, a contradiction when asset supplies differ.

Proof of Proposition 12: The expected search time for buying asset i is 1/(λµsi) and for selling

asset i is 1/(λµbi). Thus, our liquidity measure is λ2µbiµsi = λ(µbiγsi). Dropping the multiplicative

constant λ and assuming small search frictions, this is equal to Λi ≡ m̂biĝsi. Eqs. (D.19) and (D.20)

imply that

Λ1 = κS1 +
κ+ κ

κ
F (D.24)

Λ2 = κS2. (D.25)

Eqs. (8)-(11), generalized to the case where asset supplies depend on i, imply that the lending fee

is

w1 = θ

(

r + κ+ κ
ĝs1

r + κ+ κ+ ĝs1
+ ĝbo

)
x− r+κ+κ+ĝs1

r+κ+ĝs1
(2y − x)

ν(1− θ)S1
(D.26)

and the price premium is

p1 − p2 =
(φr + κ)

λ(1− φ)

[
1

m̂b2
−

1

m̂b1

]
x

r
+ θĝbo

x− r+κ+κ+ĝs1

r+κ+ĝs1
(2y − x)

ν(1− θ)S1r
. (D.27)

Result (i): An increase in F increases Λ1 by (D.24) and leaves Λ2 constant by (D.25). It increases

ĝbo by (D.18), decreases m̂b1 by (D.21), increases m̂b1/m̂b2(= m̂b1/m̂b) by (D.22), and increases ĝs1

by (D.19). Eq. (D.26) then implies that w1 increases, and (D.27) implies that p1 − p2 increases.
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For small search frictions w1/p1 varies in the same direction as w1 since p1 is close to the limit

(δ + x− y)/r while w1 is close to zero.

Result (ii): A decrease in S1 decreases Λ1 by (D.24) and leaves Λ2 constant by (D.25). Numerical

calculations indicate that w1 and p1 − p2 increase if S1 = S2 = 0.5, F = 3, F = 5.7, κ = 1, κ = 3,

φ = θ = 0.5, r = 4%, δ = 1, x = 0.4, x = 1.6, y = 0.5, ν/λ = 0.25. If, however, S1 and S2 are

changed to 1.3, and F to 1, while other parameters stay the same, then w1 and p1− p2 decrease.

E The CARA Setting and Miscellanea

This Appendix contains the CARA-based foundation of our model, and a complete proof of Propo-

sition 4. Because this material is not as important as the other proofs, it is written as a separate

supplement.
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