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Abstract:  What determines the direction of spread of currency crises? We examine data on 
waves of currency crises in 1992, 1994, 1997, and 1998 to evaluate several hypotheses on the 
determinants of contagion. We simultaneously consider trade competition, financial links, and 
institutional similarity to the “ground-zero” country as potential drivers of contagion. To 
overcome data limitations and account for model uncertainty, we utilize Bayesian methodologies 
hitherto unused in the empirical literature on contagion. In particular, we use the Bayesian 
averaging of binary models which allows us to take into account the uncertainty regarding the 
appropriate set of regressors. 

We find that institutional similarity to the ground-zero country, as measured by quality-
of-governance indicators, plays an important role in determining the direction of contagion in all 
the emerging market currency crises in our dataset. We thus provide persuasive evidence in favor 
of the “wake up call” hypothesis for financial contagion. Trade and financial links may also play 
a role in determining the direction of contagion, but their importance varies amongst the crisis 
periods and may be sensitive to the specification of the prior. 
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1 Introduction 
Currency crises tend to occur in waves. In repeated instances from the early 1970s to the 

late 1990s it has been observed that when speculative attacks lead to a currency crisis in 

one country, market volatility tends to spread to other countries in the region and 

elsewhere. Several mechanisms have been proposed to explain this phenomenon, 

generally referred to as contagion. Commonly discussed mechanisms include the 

transmission of crises through trade and financial links between countries, as well as the 

(rational) updating of beliefs by financial traders about the sustainability of specific 

institutional and developmental models. The latter is sometimes referred to as the “wake-

up call” theory of financial contagion.  

 In this paper we empirically evaluate the relative importance of a number of 

potential transmission mechanisms that have been proposed in the existing literature, by 

analysing four waves of currency crises in the 1990s. We make two contributions. 

First, we simultaneously include institutional (quality-of-governance) variables 

alongside the trade, finance and macroeconomic variables commonly analysed in 

empirical literature on contagious currency crises, thereby directly testing the “wake-up 

call” hypothesis. 

Second, we utilize Bayesian methodologies hitherto unused in the empirical 

literature on contagion to overcome model uncertainty and data limitations. In particular, 

we use Bayesian averaging of binary models, which allows us to take into account the 

uncertainty regarding the set of regressors that should be included in the empirical 

analysis of contagion.  

Before proceeding further, it is worth clarifying the remit of our exercise. In this 

paper we do not seek to enter the debate on whether contagion exists. While there are 

now several theoretical equilibrium models of contagion, there is not yet complete 

empirical agreement about whether contagion exists.1 In this paper, we simply assume 

that contagion exists and aim only to shed light on the mechanisms by which it may 

propagate.  

                                                 
1 See Dungey and Tambakis (2003) for a discussion of the term “contagion” as well as Dungey et al (2003) 
for a detailed review of the contagion literature. 
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 Much of the extant empirical literature on contagious currency crises stresses the 

phenomenon of regional contagion. It focuses on trade and financial links, which tend to 

occur in geographical clusters, and finds evidence in favor of both as potential 

transmission mechanisms for contagion.2 However, the currency crises of the 1990s have 

spread far beyond the region of the original crisis country. Glick and Rose (1999) deem 

that Hong Kong, Indonesia, the Philippines and Thailand were affected by the “Mexican 

crisis” in 1994/1995, while Argentina, Brazil, the Czech Republic, Hungary and South 

Africa are considered to have been among the victims of the Asian Crisis. According to 

Van Rijckeghem and Weder (2001) the Russian crisis of 1998 affected 16 countries 

outside the former Soviet Union, including Argentina, Hong Kong, Indonesia, South 

Africa and Turkey. While trade competition in third markets or financial links may be 

possible explanations for extra-regional contagion, it is also interesting to examine the 

possibility that a speculative attack on a country follows from a “wake-up call” regarding 

a specific model of development: a currency crisis in one country may highlight 

vulnerabilities associated with a particular set of institutional features, which may also be 

found in other countries outside the region. 

There is now much data measuring the institutional features of different countries. 

Our paper contributes to the literature by directly testing the extent to which institutional 

similarity with the “ground zero” country determines the direction of spread of currency 

crises. This is done while simultaneously considering standard factors such as trade 

competition and financial links to give an overall view of the drivers of financial 

contagion in foreign exchange markets. 

 In addition, our paper utilizes recent econometric methodology that is relevant to 

the empirical analysis of financial contagion. There is no universally agreed-upon 

theoretical model of contagion: several alternative hypotheses coexist. In the presence of 

such model uncertainty, Bayesian model averaging (BMA) is a natural candidate for 

empirical work in this area. The idea of BMA was first proposed by Leamer (1978). It is 

a tool for forecasting and estimation when the researcher does not know the true model. 

Starting from a prior where all possible models are considered to be equally good, the 

                                                 
2 Eichengreen et al (1996), Glick and Rose (1999), Kaminsky and Reinhart (2000), Caramazza et al (2000), 
Van Rijckeghem and Weder (2003). 
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method allows researchers to estimate the posterior probabilities of the models, using the 

data, and then weight their estimates and forecasts from each model by such posterior 

probabilities. While BMA has recently been extensively used in applied problems (see 

various references below), we are the first to use it in the context of financial contagion. 

In addition to this, Bayesian methods allow us to overcome data limitations. 

Empirical samples in the contagion literature are of necessity small: in all previous 

studies the number of observations is below 100 countries. Of these only a small subset 

experience a crisis in each episode of contagion. Unlike maximum likelihood, Bayesian 

methods are also valid in small samples. 

 

Summary of Results 

We examine data on currency crises in 1992, 1994, 1997, and 1998, focussing on the 

relative importance of trade, financial links, and institutional similarity on the direction of 

contagion. We report the following results: 

1. Institutional (quality-of-governance) variables play a vital role in the spread of 

all emerging market currency crises in our dataset. Following a crisis in the 

“ground zero” country, countries that are, ceteris paribus, institutionally 

similar have a higher probability of experiencing a currency crisis.  In the 

crises of 1994, 1997, and 1998, the increase in crisis probabilities due to 

institutional similarity ranges between 24% and 63%. Our results, therefore, 

provide substantial empirical support for the “wake-up call” hypothesis for 

financial contagion. 

In contrast, however, institutional similarity has less explanatory power in the 

1992 EMU crisis, confirming the intuition that the “wake-up call” hypothesis 

is most relevant for emerging markets.  

2. Other factors, such as financial links (through common lenders) and trade also 

play a role in determining the direction of contagion, but their importance may 

vary across crisis periods. For example, financial links appear to be important 

in the 1998 crisis, while trade competition is important for 1997. The 

relevance of these variables is also sensitive to the specification of the prior. 
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Our paper is linked to a large and growing literature on financial contagion. In what 

follows, we briefly survey this literature. 

 

2 Literature review 
The literature has considered a number of potential channels for international financial 

contagion.3 The first potential channel derives from international trade.4 If a country 

experiences a sharp devaluation it gains a competitive advantage over its trade partners 

and over competitors in third markets. To the extent that (the expectation of) deteriorating 

current account deficits signals potential currency weakness, countries with strong trade 

connections to the “ground zero country” become more likely to experience a speculative 

attack. Glick and Rose (1999) examine the importance of the trade channel and find 

statistical evidence from cross-country data that currency crises spread among countries 

which have strong trade links. 

A second potential channel of contagion derives from financial linkages between 

countries.5 Here contagion arises because groups of countries rely on common creditors 

and investors. If a country experiences a speculative attack, its major creditor banks may 

experience liquidity problems, which undermine their ability to provide emergency 

finance to other countries or trigger capital outflows to restore capital adequacy ratios. 

Therefore, countries which rely on external funding from the same creditors and investors 

as the “ground zero country” become vulnerable to speculative attacks. The importance 

of the “common creditor effect”, meaning contagion through bank lending, has been 

empirically examined by Van Rijckeghem and Weder (2001 and 2003), Caramazza et al. 

(1999), Hernandez and Valdes (2001) and Kaminsky and Reinhart (2000). The results 

indicate that vulnerability to speculative attacks can spread among clusters of countries 

which depend on the same lenders. Caramazza et al. (1999) additionally show that 

countries which are more important to the common lenders are more likely to become 

crises countries than those which only receive a very small proportion of the common 

lenders’ total lending.  
                                                 
3 See Pericoli and Sbracia (2001) and Dungey et al (2003) for literature reviews. Chui et al (2004) sets out 
the framework for assessing external vulnerabilities in more detail.  
4 For a theoretical formalization of this idea see, for example, Gerlach and Smets (1995). 
5 For theoretical models formalizing this hypothesis, see, for example, Goldstein and Pauzner (2005), Allen 
and Gale (2000), and Dasgupta (2004). 



 6

 A third channel for contagion derives from shared updating by market participants 

about the sustainability of specific institutional frameworks or development models.  

Such a view of contagion is commonly referred to as the “wake-up call” hypothesis.6 The 

argument here is that if a country with a particular development strategy, institutional set-

up or macroeconomic situation experiences a devaluation, this may be seen as revealing 

information about the vulnerability of countries of a similar “type” and hence cause the 

spread of crises.7 A good example of a major re-evaluation of an economic development 

strategy was seen in the rapid turn-around in 1997 from applauding the “Asian Miracle”8 

to deploring the “Asian Debacle”. Months before the crisis South East Asia’s “dedicated 

capitalism”9 and “Asian values” were praised and held up as strategies for successful 

development the world over, but were swiftly condemned as “crony capitalism” in the 

immediate aftermath of the crisis and held responsible for economic vulnerabilities. 

Issues such as “corruption”, “regulatory quality” and “transparency” suddenly came to 

the forefront of investor attention and may have contributed to the spreading of the crisis 

to countries perceived to have similar deficits in accountability and data quality. While a 

large literature has emerged in recent years to measure and quantify the effects of legal 

and institutional variables on financial development 10  and financial fragility11  to our 

knowledge no direct test of the impact of institutional similarity on financial contagion 

has been carried out. It is a contribution of this paper to provide a direct examination of 

the “wake-up call” hypothesis using measures of institutional similarity provided in the 

literature.  

 

                                                 
6  The term “wake-up call” originates from Goldstein (1998). For theoretical formalizations of this 
hypothesis, see Rigobon (1998) and Basu (1998). Van Rijckeghem and Weder (2003) provide evidence for 
the “wake-up call” hypothesis from the Russian crisis, which caused generalized outflows from emerging 
markets. 
7 See Drazen (1998) on “information externalities” 
8  See for example the 1993 World Bank publication “The South East Asian Miracle” hailing the 
“fundamentally sound development policies” and “tailored government interventions” in eight high 
performing Asian economies. 
9 Porter (1996) 
10See Beck and Levine (2003) for a review 
11 Demirgüç-Kunt and Detragiache. (1998), Kaminsky and Reinhart (1999), Kaminsky and Schmukler 
(2003) 
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3 Data  
In Table 1 we summarize the variables that we use. For a given wave of currency crises 

and for each country i, the dependent (binary) variable records whether country i 

experienced a currency crisis following the crisis in the ground zero country.12 It is taken 

from Glick and Rose (1999) for 1992, 1994 and 1997 and from Van Rijckeghem and 

Weder (2001) for 1998. 

 To quantify the trade channel for contagion we use the “trade share” indicator 

computed by Glick and Rose (1999) for 1992, 1994 and 1997 and Van Rijckeghem and 

Weder (2001) for 1998. A high value of this index indicates that the country’s exports 

compete intensely with the ground zero country in third markets. 

 To measure financial links between countries, we choose two indicators of 

competition for funds based on Caramazza et al. (1999). Define the “common lender” to 

be the creditor country most exposed to the ground zero country. For any given country, 

our first indicator indexes the importance of the common lender to that country. For the 

emerging market crises the “common lenders” are the US (1994), Japan (1997) and 

Germany (1998). For example, in the Russian crisis of 1998 the indicator looks at the 

proportion of country i’s total borrowing which derived from German banks. Our second 

indicator measures how important a potential target country is to the common lender. 

Thus, the indicator measures country i’s borrowing as a proportion of the total loans 

made by the common lender. We also include a multiplicative interaction of these two 

indicators. The data are taken from the Bank for International Settlements’ (BIS) 

consolidated data, covering bank lending from banking systems in the “reporting area” of 

18 industrialised countries to countries outside the “reporting area”.13 All indicators refer 

to banks’ position reported at the date closest to the respective crises i.e. December 1994 

for the Mexican crisis, June 1997 for the Asian crisis and June 1998 for the Russian 

crisis. The BIS data only cover lending from the reporting area to countries outside the 

reporting area, meaning that no financial data are available for the 1992 crisis in the 

                                                 
12 Glick and Rose use journalistic and academic histories of crises episodes to identify countries suffering 
from contagion, Van Rijckeghem and Weder (2001) utilise a panel of IMF experts. 
13  The reporting area countries are: Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Ireland, Italy, Japan, Luxembourg, Netherlands, Norway, Spain, Sweden, Switzerland, UK and the US. 
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European exchange rate mechanism. However, it is likely that contagion through 

financial centres is a phenomenon limited to emerging market currency crises. 

 Our analysis of the “wake-up call” hypothesis is based on a number of variables 

that have been used in the literature to capture institutional similarity between countries. 

To measure institutional similarity, we use a number of variables taken from the set of 

governance indicators compiled by Kaufman et al. (1999) for the World Bank. In 

particular, we test whether variables such as corruption, regulatory quality, and the 

degree to which the rule of law is upheld influence whether investors withdraw capital 

from a country. A disadvantage of this dataset is that data collection only began in 1996. 

However, Kaufmann et al. (2005) note that the quality of governance tends to be highly 

persistent, because institutions change only slowly.14 Changes in governance over time 

are small relative to the level of the governance indicators and the reported error margin 

on the estimates. Changes in annual governance estimates where the 90% confidence 

intervals do not overlap are only reported in a tiny minority of countries.15 We therefore 

take the average score of each country in the years 1996, 1998 and 2000 and used this for 

each episode of the 1990s currency crises. For each country, and for each relevant 

variable, we then compute a measure of similarity to the ground zero country. For 

example, let ci be the corruption index for country i that is constructed as just described, 

and let c0 be the same variable measured for the ground zero country. Then the variable 

that we use in our analysis is defined as: oi ccc /0− . An analogous index of similarity is 

constructed for the other two institutional variables. 

 An additional way of capturing institutional similarity derives from legal origin.  

The large literature on law and finance (e.g. La Porta et al. 1998) argues that a country’s 

legal system (mostly acquired through colonisation or occupation) has important effects 

on how confidently investors transact in a country, and that this differs significantly 

between Anglo-Saxon common law and French, German and Scandinavian civil law 

systems.16 Motivated by this literature, we complement our core measures of institutional 

similarity summarized above by an indicator of common legal origin, which takes the 

                                                 
14 http://www.worldbank.org/wbi/governance/pdf/GovMatters_IV_main.pdf 
15 http://www.worldbank.org/wbi/governance/pdf/govmatters3_wber.pdf  
16 See Beck et al (2001) for a review 



 9

value 1 if a country has the same legal system as the ground zero country.  The data are 

taken from La Porta et al. (1998).  

 We include relative geographical distance to the ground zero country as a “control 

variable” in our regressions. Relative distance is relevant as a control for at least two 

reasons. First, trade competition and financial links tend to be regionally clustered, and 

thus it is worth considering these effects after controlling for pure geographic regionality. 

Second, countries that are closer are likely to have more similar institutions and culture. 

Thus, relative distances may also capture institutional similarity not captured by the more 

direct measures above. The distances between countries were computed as the distances 

between capital cities, using the distance calculator provided by Darrell Kindred17 at 

http://www.indo.com/distance. 

 Finally, we use a number of macro-economic variables as additional control 

variables, such as current account and budget deficits, countries’ reserve positions, credit 

expansion, inflation and growth performance. These variables control for the possibility 

that a country would have fallen into crisis regardless of the attack on the first country, 

because of its own weak macroeconomic fundamentals. 18   In our choice of control 

variables, we have been guided by the prior work of Eichengreen et al. (1996), Glick and 

Rose (1999) and Van Rijckeghem and Weder (2003). The variables are computed or 

taken from the IFS for the period preceding the crisis19. This reflects both the delay in 

data becoming available and the fact that in the immediate aftermath of a currency crisis 

there is usually a significant worsening of the macroeconomic situation. 

 

4 Methodology 

4.1 Bayesian Model Averaging 

Let Z be the n×k matrix that contains all variables that could potentially enter in the 

regression equation, where n is the number of observations and k is the number of 

potential regressors. Let )',...,( 1 nyyY =  be an nx1 vector of observed binary variables. 

                                                 
17 This calculator uses the latitudes and longitudes of the cities concerned and then computes the distance 
between them by using the Geod program, which is part of the PROJ system, a set of cartographic 
projection tools, provided by the US Geological Survey at ftp://kai.er.usgs.gov/pub/. 
18 See e.g. Kaminsky et al (1998) for  a review of the empirical currency crises literature 
19 1994 for Mexico, 1996 for Asia and 1997 for Russia 
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We consider all binary probit models that result from including a different subset of Z as 

explanatory variables. This gives rise to k2  models. In particular, model Mj is defined as 

the following probit model:  

                           ( )
⎩
⎨
⎧
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≥

=
00
01,,~| *

*
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i
injj yif
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*
nyyY =  is an nx1 vector containing unobserved latent data, Zj is a n×kj 

submatrix of Z, θ  is a k×1 vector of unknown parameters, jθ  is a kj×1 subvector of θ  

containing the elements of θ  that are included (i.e., not restricted to be zero) in model Mj, 

and In is the identity matrix of dimension n. 

 Our inference for θ is based on the posterior mean and credible regions20 of the 

posterior density of θ  ( ),|( ZYθπ ), which is a weighted average of the posterior 

densities obtained under each of the models ( ),,|( jMZYθπ ): 
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Here, ),|( ZYM jπ  represents the posterior probability of model Mj, which is given by 

Bayes’ Rule as follows: 
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where )( jMπ  is the prior probability of model j, )|( jMθπ is the prior density of θ  

under model Mj, and ),,|( jMZY θπ is the likelihood. 

We now define a crucial concept. The probability of inclusion for a (possibly 

singleton) set of explanatory variables Sj is the joint posterior probability of all models 

that include at least one of the variables in Sj. In other words, the probability of inclusion 

of Sj is the probability that at least one variable in Sj has a non-zero effect on the expected 

outcome of the dependent variable. Thus, a zero inclusion probability implies that all of 

the coefficients in θ that correspond to Sj are equal to zero. Inclusions probabilities will 

                                                 
20 A 95% credible interval is the Bayesian analogue of a frequentist 95% confidence interval, and it is an 
interval that contains the true value of the parameter with probability 95% (e.g. see Koop 2003, p. 44).  
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be crucial to interpreting our results: variables with high posterior inclusion probabilities 

are relevant determinants of contagion; others are not. 

 Our Bayesian methodology presents two important advantages over its more 

commonly used classical counterparts in the context of the contagion literature. First, as 

we have already noted, it allows us to control for model uncertainty. Second, Bayesian 

methods are valid in small samples. Both of these properties make Bayesian methods 

particularly suitable for the empirical analysis of financial contagion. 

 

4.2 Prior 

We use a prior that is computationally convenient and relatively uninformative. For each 

model Mj, we choose a normal prior as follows: 

),0(~| VNM jjθ ,   1' )( −= jjj ZZgV , 0>g                       (1) 

This class of priors has been extensively used for Bayesian estimation (e.g. Zellner, 1986, 

Poirier 1985, Fernandez Ley and Steel, 2001). A prior mean of zero implies that we 

consider outcomes yi=1 and yi=0 to be equally likely a priori for i=1,..,n.  It also implies 

that a priori each covariate is equally likely to have a positive or a negative effect. The 

prior variance-covariance matrix depends on the scalar parameter g. It is instructive to 

think of our choice of g in terms of the implied distribution of the following quantity:  

),,|1Pr( jjj Mzy θπ == , 

i.e, the ex ante probability, under model Mj, that the average country (a country with 

average values of regressors) experiences a currency crisis. 

 While it may be tempting to make our prior “more uninformative” by choosing a 

very large value of g, it is easy to see that this does not necessarily result in a reasonable 

prior. Very large values of g imply that, a priori, we expect π  to be either 1 or 0 and 

consequently marginal effects (on probabilities) to be approximately zero.21 Therefore, 

instead of arbitrarily fixing a very large value for g, we carefully adapt priors that have 

been proposed in the existing literature for other related models.  In particular, we use 

three values for g. Details of the prior-elicitation process for g are provided in Appendix 

A.  We summarize our choices here. 

                                                 
21 We comment further on this issue in Appendix A. 
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Our first choice for g is given by: 

 

( )( ) 11''
−−

== jjjj zZZzgg                                               (2) 

This choice is tantamount to assuming that the prior distribution of π  is uniform, a 

choice recommended by Geisser (1984) for the estimation of a probability. 

Our second choice of g is given by 

gg 46.2=  

This amounts to assuming that the a priori distribution of π  is approximately Beta(½,½), 

a prior recommended in the literature for the estimation of probabilities (Lee 1987). 

Compared to the uniform prior, the Beta prior gives slightly more weight to values of π  

near to 0 and 1. Finally, for sensitivity analysis we also consider gg 5= .  

We carry out our computations for all three values of g. 

 

4.3 Computation  

For our computations, we use the algorithm of Holmes and Held (2006) who extend the 

methodology of Albert and Chib (1993) to allow for model uncertainty. The Holmes and 

Held algorithm is a Markov Chain that visits a model (Mn) at each iteration n, and also 

generates a value for θ conditioning on Mn and the data. A priori all models are given 

equal probability. Starting with any arbitrary initial model and starting value of θ, 

Holmes and Held (2006) show that, as the number of iterations increases, the models and 

parameter values generated can be regarded as a sample from the true posterior 

distribution of models and parameters. Therefore, posterior means and other quantities of 

interest can be easily approximated with their sample analogues. The posterior 

probability of model Mj is given by the proportion of iterations that visit model Mj. We 

provide details of the algorithm in Appendix A. 

The results below derive from 165,000 iterations of the algorithm. The first 5,000 

iterations are discarded. Essentially identical results were obtained with an independent 

run of fewer (65,000) iterations, indicating good convergence. 
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5 Results 
Our main economic results are presented in Tables 2 and 3. Tables 4 and 5 assess the out-

of-sample predictive power of the models. The dependent variable is binary, taking value 

one if the country concerned suffered a crisis. For each independent variable we report 

three quantities. First, we report the probability of inclusion of the variable (p), as defined 

in Section 4.1. This is the probability that the effect associated with a regressor is 

different from zero. Second, since Probit coefficients are hard to interpret, we report the 

posterior mean for the marginal effect of each variable. These marginal effects are 

evaluated at the sample mean of variables.22 Third, for each marginal effect, we include 

the 95% credible interval, as defined in Section 4.1. This is the Bayesian analogue to the 

classical 95% confidence interval in a Maximum Likelihood estimation. Finally, at the 

bottom of each table, we report the joint inclusion probability for the institutional 

similarity variables (R. Law, Reg. Q. and Corrupt) and for the finance variables (Fi1, Fi2 

and Fi1*Fi2). Since our goal is to understand whether trade competition, financial links, 

or institutional similarity drive financial contagion, it is important for us to compare the 

joint probabilities of inclusion of these different categories of variables. The results 

reported in Tables 2 and 3 correspond to the prior with g= g 2.46. The results that we 

comment upon are robust to the 3 choices of g, unless otherwise stated.23  

 

Institutions 

The main conclusion from our empirical analysis is that institutional similarity is an 

important predictor of financial contagion during the emerging market crises of 1994, 

1997, and 1998. With our two core priors, the joint probability of inclusion of the 

institutional similarity variables is at least 94% in all crises episodes with the exception of 

1992.24 In 1992 the joint probability is above 80%, which is high but not conclusive. For 

the emerging market crises of 1994, 1997 and 1998, credible intervals at 95% for the 

                                                 
22 Note that since we have a dummy variable among the regressors, namely Legal Origin, by taking the 
sample mean of variables we are evaluating the marginal effect at the average intercept. The marginal 
effect for the dummy variable Legal Origin is calculated as the change in probability when Legal Origin 
changes from 1 to 0. The marginal effects for the finance variables (Fi1 and Fi2) take into account the 
consequent change in the interaction variable Fi1*Fi2. 
23 Results with the other two priors are available at http://fmg.lse.ac.uk/~amil/research.html.  
24 When the prior has g = 5 g , the joint probability of institutions in 1998 is still high but decreases to 90%. 
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marginal effects of institutional variables almost always exclude positive values, which is 

consistent with the wake-up call theory: countries that are institutionally similar to the 

ground zero country are more likely to experience crises. The only exceptions for these 

crises are the 95% credible intervals for R. Law and Reg. Q. in 1998, which contain 

positive values. However, the effects of these two variables in 1998 are more likely to be 

zero, since their inclusion probabilities are only 27% and 20%, respectively.25 

 Since it is difficult to interpret the size of the marginal effects of the institutional 

similarity variables, we now provide an alternative way of assessing whether the 

estimated effects are large or small. Consider a country A that has average value for all 

regressors except for the institutional similarity variables (R. Law, Reg. Q. and Corrupt), 

all of which take value 0: i.e. the country is identical to the ground zero country with 

respect to institutions. In addition, consider a country B that also has average value for all 

regressors, but whose institutional variables take the same value as the country in our 

sample that is the most dissimilar, in terms of institutions, to the ground zero country26. 

Hence, countries A and B are different only with respect to institutions. Then, country A 

is affected by the crisis in years 1994, 1997, 1998 with probabilities (24%, 63%, 55%), 

whereas the corresponding probabilities for country B are zero for each year.27 This 

confirms that institutional similarity played a particularly important role in the direction 

of spread of the emerging market crises of 1994, 1997 and 1998.  

 Our results on the effects of common legal origin are less emphatic. Zero values 

can never be confidently ruled out for the effect of Legal Or in any of the crises, 

especially in 1992, in which the effect of this variable seems to be negligible. The 

probability of inclusion of Legal Or. is highest in year 1997, in which positive values can 

be ruled out, indicating that countries with the same legal system as the ground zero 

country experienced lower probability of crisis. The 1997 ground zero country has British 

legal origin, which suggests that overall countries with British legal origin were ceteris 

                                                 
25 Even for the EMU crisis of 1992, where institutional effects are clearly less important, the 95% credible 
interval for Reg. Q., the only variable with substantial inclusion probability, excludes positive values. 
26 The most dissimilar country in our sample is defined as the country that maximises the Euclidean 
distance with respect to the ground zero country. In terms of the variables that are defined in Section 3 and 
Table 1, it maximises (R. Law)2 + (Reg. Q)2 + (Corrupt)2. According to our data, the most dissimilar 
countries to the ground zero countries (in terms of institutions) for 1992 (Finland), 1994 (Mexico), 1997 
(Thailand) and 1998 (Russia) were Guinea-Bissau, Singapore, New Zealand and Singapore, respectively.  
27 For 1992 this probability decreases from 8% to zero. 
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paribus less susceptible to financial crises, which is consistent with the results of the Law 

and Finance literature.28 The opposite effect is observed in years 1994 and 1998, where 

the ground zero countries have French and (Post-Socialist) civil law legal origins 

respectively. However, in these years the probability of the effect being zero is high.  

 We now turn to the other potential channels for financial contagion. Our results 

suggest that, after controlling for institutional similarity, other variables such as financial 

linkage, trade competition and distance have limited impact. We provide a detailed 

discussion in what follows. 

 

Finance 

The joint probability of inclusion of finance variables is above 90% only for the 1998 

crisis, provided that the prior variance g is equal to g  or 2.46 g . This probability 

decreases to 84% when g = 5 g . Despite the high joint probability, the individual 

inclusion probabilities of Fi1, Fi2 and Fi1*Fi2 are low. This is probably caused by 

multicollinearity. Despite of the problem of multicollinearity, it can be observed that the 

marginal effects of Fi1 and Fi2 in 1998 are positive, since credible intervals exclude 

negative values. Furthermore, the size of the mean marginal effects is non-negligible. 

Although the effect is not as clear for other years, the evidence for 1998 confirms the 

intuition that the more dependent the country is on the common lender, the more likely it 

is that it will be affected by the crisis.  

 

Trade and Distance 

The inclusion probability of Trade is highest in the 1997 crisis. It is 94% when g = 5 g , 

but it is below 90% when g is equal to g  or 2.46 g  (and it then takes values 81% and 

87%, respectively). However, 95% credible intervals indicate that the possibility of 

negative values can be confidently neglected, and that mean marginal effects are sizeable, 

indicating therefore that the trade channel of contagion was probably important in 1997. 

Although zero values are more likely in 1994 and 1998, 95% credible intervals indicate 

that moderately large effects are still possible, and negative values are very unlikely. 

                                                 
28 See Beck et al (2001)  
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Therefore, Trade could also have been an important determinant in years 1994 and 1998. 

However, in contrast with Glick and Rose (1999), we find that Trade has a negligible 

effect in the 1992 crisis. It is Distance, instead, that seems to play an important role. 

Distance in 1992 is probably simply capturing the fact that EMU countries, which happen 

to be geographically near, were much more likely to be affected by the crisis. However, 

the negligible effect of trade is not caused by accounting for distance: if we excluded 

distance from the set of potential regressors the marginal effect of trade would continue 

to be small.  

 

Out of Sample Predictions 

We evaluate the predictive performance of the model using the prior with g= g 2.46 and 

the following predictive rule, which is defined for p= 0.5, 0.65, 0.75, 0.9, 0.95:  

 

- yi is predicted to be one when the posterior mean of Pr(yi = 1|Z)  > p.  

- yi is predicted to be zero when the posterior mean of Pr(yi = 1|Z)  < 1-p.  

 

Predictions are made for (1997, 1998) based on parameter estimates from 1994 data. 

Similarly, predictions are made for (1994, 1998) based on parameters estimated with 

1997 data, and for (1994, 1997) based on 1998 data. For each of these three cases we 

calculate two error rates: E0 is the proportion of observations that were predicted to be 

zero but were actually 1. Similarly, E1 is the proportion of observations that were 

predicted to be one but were actually 0. Tables 4 and 5 show the results.  

 Table 4 shows that there are very few countries for which the posterior probability 

of a crisis is high, and this introduces a small sample bias in our estimate of E1. For 

example, if 1994 data is used to predict the 1997-98 crises, four cases have a posterior 

probability of a crisis greater than 0.90. Three of these, Indonesia, the Republic of Korea 

and Malaysia in 1997 actually suffered a crisis.29 Given the small number of cases that 

are predicted to be 1, the estimate of the error rate is bound to be imprecise.  

 Table 5 shows that E0 is equal to 0 when 1-p is 0.05, and it is smaller than 0.1 

when 1-p is 0.1. This suggests that the model produces reliable predictions of zeros, in 

                                                 
29 A crisis is also (incorrectly) predicted for China in 1997.  
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the sense that a small posterior mean of Pr(yi = 1|Z) can be taken as strong evidence 

against the occurrence of a crisis.  

 

6 Conclusions 
We contribute to the empirical literature on financial contagion by considering 

institutional similarity to the ground-zero country, measured via governance indicators, as 

a determinant of the direction of spread of currency crises. We find that for the emerging 

market crises of 1994, 1997, and 1998, institutional similarity played a substantial role in 

determining the direction of contagion. Simultaneously, we consider more traditional 

channels of contagion, including trade and financial links.  We are thus able to establish 

the relative importance of these various channels. 

Our analysis also utilizes recent econometric methodology that is relevant to the 

analysis of financial contagion. In the absence of a single unified model of financial 

contagion, researchers are faced with model uncertainty in estimation and prediction.  We 

use Bayesian model averaging to overcome these problems, a method hitherto unused in 

the literature on financial contagion. 

Our results provide direction to theoretical modelers on the right mix of 

ingredients that should go into a potential unified model of financial contagion.  
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Table 1: Definition of variables.  

 
 
 
 
 

Y Indicator of whether country i experienced a currency crisis; Glick and Rose (1999) and Van 
Rijckeghem and Weder (2001) 

Trade Trade competitiveness as defined in Glick and Rose (1999) 

Dom. Cred. Growth of Domestic Credit 

Bud/GDP Budget Position as a percentage of GDP 

CA/GDP Current account position as a percentage of GDP 

Growth Real rate of GDP per capita growth 

M2/Res Ratio of M2 to central bank foreign reserves 

Inflation Domestic CPI inflation 

GDP GDP per capita at the beginning of the year measured in 1990 US $  

Distance Great circle distance between capitals of country i and ground zero country in km  
Legal Or. 
 Legal Origin Dummy: 1 if a country has the same legal system as the ground zero country 

R. Law Similarity, to ground zero country, in the degree to which the rule of law is upheld. Decreasing 
with similarity. Original data from Kaufmann et al. (1999).  

Reg. Q. 
 

Similarity, to ground zero country, in Regulatory quality. Decreasing with similarity. Original data 
from Kaufmann et al. (1999).  

Corrupt Similarity, to ground zero country, in Levels of Corruption. Decreasing with similarity. Original 
data from Kaufmann et al. (1999). 

Fi1 The proportion of a country’s total borrowing that was borrowed from the common lender. 

Fi2 A country’s borrowing as a proportion of the total loans made by the common lender. 

Fi1*Fi2 The product of Fi1 times Fi2. 
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Table 2: Probabilities of inclusion, posterior mean and credible intervals for the crises in 1992 and 1994. p 
is the probability of inclusion of each variable. P(Finance) is the joint probability of inclusion of Fi1, Fi2 
and Fi1*Fi2. P(Institutions) is the joint probability of inclusion of R. Law, Reg. Q. and Corrupt. Prior with 
g= g 2.46 

             Crises in 1992              Crises in 1994 
Mean and 95% credible interval for 
marginal effects 

Mean and 95% credible interval 
for marginal effects 

 
 
   p 
 

Lower 
limit 

Mean Upper 
limit 

 
 
    p Lower 

limit 
Mean Upper 

limit 

Trade 0.29 0 0.013 0.089 0.62 0 0.090 0.491 

Dom. 
Cred. 0.34 0 6.0E-05 4.00E-04 0.24 -1.2E-04 -1.1E-05 8.3E-05 

Bud/GDP 0.40 -0.008 -0.001 0 0.49 0 0.001 0.008 

CA/GDP 
 0.33 -7.1E-05 3.3E-04 0.003 0.23 -1.7E-04 1.3E-04 8.3E-04 

Growth 0.26 -0.003 -4.2E-04 0 0.23 -2.1E-04 1.0E-04 0.001 

M2/Res 
 0.24 0 8.5E-05 0.001 0.35 -5.1E-04 -7.7E-05 3.1E-06 

Inflation 0.46 -0.002 -3.2E-04 0 0.24 -2.5E-05 3.3E-05 2.2E-04 

GDP 
 0.21 -4.9E-07 -2.7E-08 3.7E-07 0.32 -5.2E-06 -6.4E-07 3.9E-07 

Distance 
 0.92 -3.9E-05 -1.1E-05 0 0.23 -1.7E-07 1.1E-07 1.4E-06 

Legal Or. 
 0.12 -0.001 -4.9E-04 0 0.56 0 0.013 0.173 

R. Law 0.28 -0.049 -0.002 0.033 0.55 -0.049 -0.009 0 

Reg. Q. 
 0.62 -0.221 -0.046 0 0.37 -0.040 -0.006 0 

Corrupt 0.24 -0.042 -0.002 0.025 0.47 -0.038 -0.006 0 

Fi1 - 0 - - 0.23 -0.057 -0.005 2.7E-02 

Fi2 - 0 - - 0.58 0 0.891 4.29 

Fi1*Fi2 - - - - 0.28 - - - 

Constant 0.42 - - - 0.61 - - - 
P(Finance)     =       -   
P(Institutions) =  0.82 

P(Finance)     =  0.78 
P(Institutions) =  0.95 
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Table 3: Probabilities of inclusion, posterior mean and credible intervals for the crises in 1997 and 1998. p 
is the probability of inclusion of each variable. P(Finance) is the joint probability of inclusion of Fi1, Fi2 
and Fi1*Fi2. P(Institutions) is the joint probability of inclusion of R. Law, Reg. Q. and Corrupt. Prior with 
g= g 2.46 

             Crises in 1997              Crises in 1998 
Mean and 95% credible interval for 
marginal effects 

Mean and 95% credible interval 
for marginal effects P Lower 

limit 
Pos. 
Mean 

Upper 
limit 

P Lower 
limit 

Pos. 
Mean 

Upper 
limit 

Trade 0.87 0 0.484 1.25 0.27 -0.101 0.127 1.02 

Dom. 
Cred. 0.40 -0.006 -1.1E-03 0 0.13 -0.004 -2.4E-04 0.001 

Bud/GDP 0.64 0 0.012 0.044 0.18 0 0.003 0.027 

CA/GDP 
 0.38 -0.013 -0.002 0 0.17 0 0.002 0.015 

Growth 0.34 -0.019 -2.2E-03 0.002 0.18 0 0.004 0.036 

M2/Res 
 0.95 0 0.011 3.0E-02 0.24 0 0.005 0.032 

Inflation 0.22 -1.1E-03 1.1E-05 0.001 0.14 -0.002 2.8E-04 0.004 

GDP 
 0.24 -1.1E-05 -1.1E-06 1.1E-06 0.20 -3.5E-06 3.1E-06 3.5E-05 

Distance 
 0.24 -9.6E-06 -8.6E-07 1.8E-06 0.29 0 7.8E-06 5.1E-05 

Legal Or. 
 0.74 -0.324 -1.3E-01 0 0.34 0 0.159 0.838 

R. Law 0.83 -0.230 -0.081 0 0.27 -0.213 0.021 0.358 

Reg. Q. 
 0.43 -0.285 -0.055 0 0.20 -0.020 0.020 0.212 

Corrupt 0.21 -0.023 -0.002 8.0E-04 0.82 -0.681 -0.289 0 

Fi1 0.22 -0.184 0.098 1.11 0.17 0 0.433 1.22 

Fi2 0.21 -0.948 0.122 1.72 0.35 0 6.53 12.33 

Fi1*Fi2 0.21 - - - 0.59 - - - 

Constant 0.44 - - - 0.49 - - - 
P(Finance)     =  0.51 
P(Institutions) =  0.98 

P(Finance)     =  0.90 
P(Institutions) =  0.94 
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p 0.5 0.65 0.75 0.90 0.95

1994 E1 0.56 0.38 0.30 0.25 0.00
 NP 39 16 10 4 1
 AN 27 27 27 27 27

1997 E1 0.71 0.69 0.68 0.67 0.00
 NP 45 36 22 6 1
 AN 23 23 23 23 23

1998 E1 0.56 0.29 0.20        n.a.        n.a. 
 NP 16 7 5 0 0
 AN 18 18 18 18 18

Table 4: Out of Sample Predictions of 1. yi is predicted to be one when the posterior mean of Pr(yi = 1|Z) > 
p. When the models are estimated with 1994 data, predictions are made for (1997, 1998). Similarly, 
predictions are made for (1994, 1998) based on 1997 data, and for (1994, 1997) based on 1998 data. NP is 
the number of observations predicted to be 1. E1 is the proportion of NP that was actually 0. AN is the 
actual number of ones in the validation sample.   
 
 
 
 

1-p 0.5 0.35 0.25 0.1 0.05

1994 E0  0.15 0.09 0.09 0.04 0.00
 NP 68 54 45 25 12
 AN 80 80 80 80 80

1997 E0 0.15 0.14 0.12 0.06 0.00
 NP 67 59 52 34 17
 AN 89 89 89 89 89

1998 E0 0.12 0.08 0.06 0.09 0.00
 NP 89 75 54 32 10
 AN 87 87 87 87 87

Table 5: Out of Sample Predictions of 0. yi is predicted to be zero when the posterior mean of Pr(yi = 1|Z) < 
1-p. When the models are estimated with 1994 data, predictions are made for (1997, 1998). Similarly, 
predictions are made for (1994, 1998) based on 1997 data, and for (1994, 1997) based on 1998 data. NP is 
the number of observations predicted to be 0. E0 is the proportion of NP that was actually 1. AN is the 
actual number of zeros in the validation sample.   
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Appendix A: Details of Bayesian Methodology 

 

A.1: Prior Elicitation for the parameter g. 

We comment first on why we do not simply choose a very large value for g. It is easy to see that 

choosing very high values for g (which results in a very high prior variance) results in priors that 

put all probability weight on y=0 or y=1. For example, suppose that there is only one regressor in 

the model and no constant term. A sufficiently large prior variance for the slope coefficient 

implies that the probability that Zθ is in the interval (-4,4) is approximately zero. Note that in 

order to predict the outcome of yi it does not matter in practice if Zθ is –5 or –250, since both 

values result in the probability of yi=1 being approximately equal to zero. Therefore, since a large 

prior variance effectively rules out that Zθ lies in (-4,4), the size of the slope coefficient is no 

longer relevant, and all we would need, should the prior information be true, in order to predict 

perfectly the outcome of yi, is the sign of the slope coefficient. Thus, because the prior would be 

so informative, the only relevant information that we would expect from the data would concern 

the sign of the slope coefficient. A large amount of data would be necessary to change such 

strong prior beliefs on large probabilities and small marginal effects. 

We comment next on the three values of g that we actually choose. Our first choice of 

prior fixes a value of g such that: 

1)( '' == jjjjj zVzzVar θ  

where jz  is a kj×1 vector containing the average sample values of Zj. This implies the following 

value of g: 

( )( ) 11''
−−

= jjjj zZZzg                                                   

To see why this choice is appealing, recall that ( )jjjjj zMzy θθπ '),,|1Pr( Φ=== , where Ф is 

the distribution function of a standard normal and therefore π  is the probability of (y=1) for a 

country with average values for the regressors. If we fix g to be equal to g , then our prior for π  

is a uniform in the interval (0,1). 3031  

                                                 
30 To see why, note that using the second fundamental theorem of calculus, the Jacobian from π  to 

jjzz θ'~ = is the density function of a standard normal evaluated at z~ . 
31 In addition, we note that if Z contains an intercept term, then expression (2) is equal to n. A value of g 
equal to n has been recommended in the context of model selection in linear models by  Fernandez, Ley 
and Steel (2001).  
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Another popular choice of non-informative prior to estimate a probability is a 

Beta(1/2,1/2).  In the context of a binomial likelihood, this prior is uninformative according to 

alternative criteria used by different authors (Jeffreys, 1961, Box and Tiao, 1973, Akaike, 1978 

and Bernardo, 1979). Compared to the uniform prior, the Beta prior gives slightly more weight to 

values near to zero and near to 1. In our model, this implies that values of θj that were further 

away from zero would receive greater prior weight. Within our framework, we can achieve this 

greater weight by choosing gag = , with a>1. After experimenting with several values for a, we 

found that a=2.46 results in a prior for π  that approximates well to a Beta (1/2,1/2). This is 

illustrated in Figure 1, which shows that our prior for π  when a=2.46 is virtually 

undistinguishable from the Beta prior. Therefore, the second prior that we consider results from 

fixing gg 46.2= . Finally, for sensitivity analysis we also consider prior (1) with gg 5= . 

  

 

 
 

Figure 1: Three views of our prior density for π  with gg 46.2=  (continuous line) and a 

Beta(1/2,1/2) (dotted line). 

 

A.2: Computation. 

Let Mn be the model visited in the nth iteration of the Markov Chain algorithm, let θn be the value 

of the non-zero parameters in Mn at the nth iteration and similarly let *
nY  be the value of Y*.  

Assuming prior (1) for the parameters in a model, and assuming that all possible models have 

equal prior probabilities, the iteration (n+1)  proceeds as follows: 

1) Choose a model M* from a uniform distribution defined on the following set of models: 

- Model Mn 

- Models that result from dropping one regressor in Mn 

- Models that result from adding one regressor to Mn 
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2) Set Mn+1 equal to M* with probability: 

        
( ) ( )( )
( ) ( )( )⎪⎭
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where In is the identity matrix of dimension n, Z*  is a n×k* matrix with the set of 

regressors contained in M*, kn is the number of regressors in Mn and V* and Vn are defined 

as in (1). Set Mn+1 equal to Mn with probability 1-α. 

3) Draw θn+1 from a normal density with covariance matrix (V~ ) and mean (μ~ ) equal to: 

( ) 1
11

'

1
~ −

++
+

= nn ZZ
g

gV           *
1

'~~
nn YZV +=μ  

      where Zn+1 is the set of regressors that are included in model Mn+1. 

4) Draw each of the components of *
1+nY  from univariate truncated normal distributions as 

explained in Albert and Chib (1995). 

 

We calculate the posterior probability of model Mj as the proportion of iterations that visit model 

Mj. Similarly, posterior means and credible intervals for θ or functions of θ (e.g. marginal effects) 

can be calculated using the draws obtained with the algorithm.  
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