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Abstract

Complex interactions between fundamentals and liquidity during
unstable periods in financial markets are succinctly modeled with co-
ordination games. We propose a flexible framework to estimate such
a model and use the efficient method of moments as estimation proce-
dure. We illustrate the model by using exchange rates from the yen–
dollar carry trade induced uncertainty in 1998, interest rate spreads
and global market volatility. The model fits the data well, with ev-
idence of low information disparities, the market is generally very
deep, where global volatility is more important than fundamental un-
certainty in the determination of liquidity. There is clear evidence of
asymmetry between the buy and sell sides of the market.
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1 Introduction

Recent episodes of financial market instability have highlighted the complex
interaction between economic fundamentals and liquidity, where the reac-
tion of agents to information arrival and their expectation of the behavior
of other agents has the potential to endogenously decrease market stability.
Since the resulting trading decisions of agents reinforce each other they are
naturally modeled by coordination game theoretic frameworks, such as the
global games models of Morris and Shin (1998) and subsequent papers. Un-
fortunately, such models do not lend themselves naturally to estimation. By
contrast, extant empirical models of financial instability are generally purely
statistical, which limits their economic interpretations. A quantitative study
of market stability requires the direct estimation of the deep parameters of an
underlying theoretical model, which provides our basic motivation. Below,
we develop and estimate a coordination game model of market instability
only requiring publicly available data. Ultimately, this estimation both pro-
vides empirical tests of the underlying theoretical model as well as guidance
for policymaking and risk management.

Most attempts of applying coordination games to financial data have fo-
cused on currency crises, and assume common knowledge of economic fun-
damentals, such as the 2nd generation currency crisis models, (see e.g. Ob-
stfeld, 1986). Common knowledge generally implies multiple equilibria and
sunspots, such as the Markov–switching model of Jeanne and Masson (2000).
Unfortunately, in the absence of ad–hoc assumptions, multiple equilibria frus-
trates empirical implementations. However, by making the plausible assump-
tion of asymmetric information a unique equilibrium can be found, facilitat-
ing empirical investigation. Such models, (see e.g. Morris and Shin, 1998;
Goldstein and Pauzner, 2005; Morris and Shin, 2004), termed global games
models, provide the theoretic background to our model. Several authors
have estimated the role of information for the propensity for speculative at-
tacks using reduced form specifications motivated by global games, and find
indirect empirical support for the theory.1

In contrast, our objective is the estimation of deep parameters, imposing
structure on the econometric model, providing direct testability of theory,
and interpretation of results. This enables us to measure the interaction be-
tween fundamentals and liquidity and its implications for market (in)stability.
A key challenge is the joint modelling of liquid and illiquid times in a time
series setting, while keeping the model structure sufficiently simple and par-

1See inter alia Prati and Sbracia (2002), Tillmann (2002) and Metz and Michaelis
(2003).
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simonious without loosing theoretical insight.

We develop our model in two stages, first focusing on the endogenous reaction
of traders to a particular environment of fundamentals and liquidity. We
consider a market for financial assets focusing on the behavior of agents who
trade for speculative reasons, termed strategic agents. The strategic agents,
representing e.g. proprietary trading desks and hedge funds, face the residual
demand of the rest of market participants, or nonstrategic agents. While
each strategic agent exerts a negligible price impact, as a group they can
have a significant price impact when that residual demand is not infinitely
elastic, i.e. at times of liquidity tensions. Each strategic agent takes this fact
into account when taking trading decisions and those decisions are mutually
reinforcing.

This results in a one period global game with a unique equilibrium, which is
brought to data as a sequence of one shot games given the short–termism of
strategic agents. This is similar in spirit to Foster and Viswanathan (1995)
who apply the one trading round version of Kyle (1985) to a time series.
Since it is unrealistic to assume that the distribution of fundamentals and
liquidity tensions is constant over time, we also model the dynamic evolution
of relevant state variables linked to fundamentals and market liquidity.

Our notion of liquidity relates to Grossman and Miller (1988), which is based
on inventory risk.2 Price changes are determined by fundamentals and un-
certainty, the nonstrategic agents’ liquidity needs and risk aversion, and the
edogenous reaction of strategic agents to such environment. By means of
nonstrategic agents’ liquidity shocks (an inelastic component in the residual
demand they provide), we explicitly allow for, but do not require, asymmetry
on the buy and sell sides, which in turn is a testable hypothesis. Given our
ultimate objective of estimation, we model illliquidity with publicly available
data.

Unfortunately, it is not possible to estimate our model with standard tech-
niques such as maximum likelihood or GMM due to the highly non–linear
nature of the model and the presence of dynamic latent variables. However,
since the model can be easily simulated, we employ the efficient method of
moments proposed by Gallant and Tauchen (1996, 2002). This procedure
identifies the optimal data moments and it is an alternative to arbitrarily
identifying a set of moments and then proceeding with GMM or simulated
method of moments. The use of optimal moments delivers efficiency close to

2Another coordination game that follows this notion of liquidty is Morris and Shin
(2004). However, they focus on loss limits as a source of coordination and asymmetric
information, which is not the case in our model.

3



or the same as maximum likelihood estimation.3

Our empirical application is the yen dollar market in 1998, where following a
long period of successful carry trades, in a span of couple of days a substan-
tial number of those were reversed, triggering previously unforeseen levels of
appreciations of the yen against the dollar. This was to a considerable extent
triggered by events unrelated to the Japanese market, e.g. the aftermath of
the Russian and LTCM crisis, and yield curve adjustments in the run–up
to the adoption of the Euro. The slow buildup and rapid reversal of carry
trades implies a particular pattern for prices, sometimes denoted as up by

the escalator, down by the elevator, and constitutes a testable hypothesis.

We estimate the model with daily yen dollar exchange rate returns from 1992
to 2004, enabling us to include both time periods with and without turmoil.
Furthermore, we estimate the model in three subsamples, enabling us to focus
on the different market conditions throughout the sample period. In addition
to estimating the model parameters, we illustrate the results by means of
simulations. We employ global volatility, and the interest rate spread between
Japan and US as proxies for payoff uncertainty and fundamentals.

Our model fits the data well, it is not statistically rejected and all parameters
are significant. There is evidence of low information disparities amongst
agents, the market is generally very deep, where global volatility is more
important than fundamental uncertainty in the determination of liquidity.
We find clear evidence of asymmetry between the buy and sell sides of the
market, with clear escalator–elevator effects in prices where low levels of
market illiquidity have a bigger effect on the buy side, while higher levels
of illiquidity are primarily felt on the sell side. These effects are especially
pronounced in the second subsample which contains the main crisis event.

2 Returns under Liquidity Tensions

Consider a market for a financial security, with two categories of agents,
strategic agents and nonstrategic agents. The strategic agents trade for short
term speculative reasons, represent institutions such as proprietary traders
and hedge funds, and play a coordination game. The remainder of market
participants, or nonstrategic agents, are represented by a residual demand

3The EMM method has seen a wide range of applications, mostly in the area of asset
pricing. There are applications to stochastic volatility such as Chernov and Ghysels (2000)
and Chernov et al. (2003); applications to interest rates such as Dai and Singleton (2000),
Bansal and Zhou (2002), and Ahn et al. (2002); and applications to exchange rates such
as Gallant and Long (1997) and Chung and Tauchen (2001)
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that defines the environment of fundamentals and liquidity that strategic
traders face.

We present our model in two stages, below we focus on the endogenous
reaction of strategic traders to a particular environement by means of a
one-period theoretic model. We subsequently develop an econometric model
for the dynamic evolution of that environment, which is required for the
estimation of the coordination game model with time series data.

2.1 Asset Return Decomposition

There is a continuum of strategic agents uniformly distributed on the interval
[0, 1]. Each strategic agent makes a binary decision, of either buying or selling
one unit of the asset. Indicate the fraction of agents selling by λ ∈ [0, 1].

We represent nonstrategic agents by residual demand that is linear in the
asset price. We impose in Appendix A a market clearing condition by the end
of trading period that equalizes the residual demand of nonstrategic agents
to the net supply of strategic agents, where we can express the observed rate
of return on the risky asset as:

r = v − λc− + (1 − λ)c+, (1)

that is, r is modeled as the sum of two components,

Observed return = fundamental return + strategic return, (2)

where the strategic return is the net price impact of the strategic agents,
aggregating the buy price impact (1 − λ)c+, and the sell price impact λc−,
with c+, c− ≥ 0.

Liquid times are given by c+ = c− = 0 implying r = v . Hence the funda-
mental return v is the one period rate that would be observed if the residual
demand was perfectly elastic. It is driven by asset fundamentals, the ex-
pected liquidation value of the asset under study, and hence represents the
exogenous arrival of information during the period. It is assumed to be nor-
mally distributed

v ∼ N
(

m, α−1
)

, (3)

where α is the precision of the fundamental return, and m is its mean. m is
the expectation of asset fundamentals at the beginning of the period, while
asset fundamentals refer to the expectation at the end of the period of an
asset’s liquidation value.
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Liquidity tensions are represented by at least one of (c+, c−) higher than 0.
Therefore, we can interpret (c+, c−) as a measure of (lack of) liquidity or
market depth on the buy and sell side. By contrast, in most standard one
period models, either c+ or c− is zero, since such models soley focus on the
effect of agents one direction impact, e.g. a decision to launch a speculative
attack or not. Since our ultimate objective is to estimate the model from
time series data, we model both buying and selling decisions.

While the price impact of an individual strategic agent is negligible, they
exert significant price impact if a sufficient number of strategic agents make
the same trading decision during times of illiquidity. This in turn gives rise
to strategic behavior where the equilibrium value of λ is the solution of a
game, denoted by λe.

2.2 Trading Decisions of Strategic Agents

Each strategic agent is a short–term speculator that trades depending on
her expectation of the asset return. She makes a binary trading decision
to sell or buy one the unit of the asset depending on her expectation of the
fundamental return, as well as the trading decisions of other strategic agents,
neither of which they observe prior to trading.

Each strategic agent i buys one unit of the asset if she expects a price increase
by the end of the period, and sells otherwise, i.e. if

E (r | Ωi) > 0 (4)

and sells one asset unit otherwise, where Ωi means information available at
the beginning of period. If agent i expects a high λ she will go short, while
if she expects a low λ she will go long.

The strategic agents only have access to incomplete information. They know
both the price impacts, (c+, c−) and the parameters of the fundamental re-
turns distribution (m, α), but they do not observe v, which depends on the
arrival of information during the period, before their trading decision. How-
ever, each strategic agent i receives a private signal xi:

xi = v + εi, εi
iid∼ N

(

0, β−1
)

, (5)

where the signal noise is independent and identically distributed across agents.
The parameter β is the signals’ precision and is known by all agents. It is a
measure of information disparities among the strategic agents.
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Hence the relevant information set of each agent i for making a trading
decision is:

Ωi =
(

mi, α, β, c+, c−
)

, (6)

where mi is the posterior mean of v for this agent after observing xi, a linear
combination of (m, xi).

2.3 Market Equilibrium

We focus on monotone strategies whereby a strategic agent buys if her private
signal exceeds xo, and sells otherwise, implying that xo is the signal of the
marginal agent, who has information set Ωo, and is indifferent between buying
and selling. By applying a law of large numbers to the cross section of agents,
the equilibrium fraction of agents selling, denoted by λe, is

λe = Pr (x < xo | Ωo, v) ,

where x represents the distribution of signals across agents. The following
Lemma characterizes λe.

Lemma 1 There is a unique equilibrium in the coordination game if and

only if
α2 (α + β)

β (α + 2β)
≤ 2π

(c− + c+)2 , (7)

such that

λe = Φ
[

√

β (xo − v)
]

,

where xo is the signal of the agent that is indifferent between buying and

selling.

This follows directly4 from showing that the condition in Lemma 1 is a suf-
ficient and necessary condition for a unique symmetric equilibrium where
every trader buys the asset if and only if her signal is such that x < xo,
where xo is given by xo = β−1 [(α + β)mo − αm] with mo solving the fixed
point equation

mo + c+ =
(

c− + c+
)

Φ

[√
ω

α

β
(mo − m)

]

.

4The corresponding proof is available upon request from the authors.
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Finally, this switching strategy is the only one that survives iterated domi-
nance. That is, there cannot be any other equilibrium when the symmetric
one exists.

We can interpret the uniqueness condition as a lower bound on β for given
α and price impacts. That is, a unique equilibrium requires private infor-
mation to be precise enough with respect to public information.5 Note that
λe is monotonically decreasing in v, providing a clear connection between
fundamentals and equilibrium, and it is also a function of liquidity tensions
given by (c+, c−).

Note that, even though we wrote observed returns as the sum of funda-
mental and strategic returns in (2), λe defines a complex interaction of
(m, α, β, c+, c−) in the defintion of r. That is, we find a potentially com-
plex interaction of fundamentals and liquidity. To clarify such interaction,
consider the special case where β → ∞, i.e. the signal precision is unbounded.

In this case, every agent will do the same, buying or selling, depending on
the realization of fundamental returns and price impacts. The marginal
agent’s beliefs about λe in the limit are uniform in [0, 1] whatever the sig-
nals’ distribution, which can be interpreted as the highest strategic uncer-
tainty when β → ∞ even though fundamental uncertainty becomes negli-
gible. Hence, the marginal agent expects half of the agents to sell and her
signal is xo = 0.5 (c− − c+). We arrive to the following corollary:

Corollary 2 If β → ∞ there is a unique equilibrium in the coordination

game with

λe = I
[

v < 0.5
(

c− − c+
)]

,

where I [·] denotes the indicator function.

Now λe is not a continuous function of v due to small information dispar-
ities, i.e., market outcomes are more extreme in this context. In addition,
if liquidity tensions on the sell side are much higher than on the buy side,
c− >> c+, then even a relatively high v might not be enough to avoid λe = 1.
And vice versa, if liquidity tensions on the buy side are much higher than
on the sell side c+ >> c− then even a relatively low v might not be enough
to avoid λe = 0. On the other hand, if c− = c+ then λe = I [v < 0], which
is independent of liquidity tensions. However, this irrelevance of symmetric
liquidity for trading decisions is not the case for bounded β.

5The asymmetric information among the strategic agents helps to pin down a unique
equilibrium. If v was common knowledge then there would be multiple equilibria for some
values of v.
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Lemma 1 implies that the observed return in equilibrium is

r =
(

v + c+
)

−
(

c− + c+
)

Φ
[

√

β (xo − v)
]

, (8)

while the corollary shows that, under unbounded precision, it behaves like

r =
(

v + c+
)

−
(

c− + c+
)

I
[

v < 0.5
(

c− − c+
)]

.

3 Econometric Model of Fundamentals and

Liquidity

Above we focused on one–period trading decisions, however, in order to es-
timate the model with available time series data it is necessary to extend it
to a time series setting. For ease of exposition, we think of each period as
one day, but of course the model applies to other data frequencies. It is now
necessary to index the model variables by time, so we write (1) as:

rt = vt − λtc
−

t + (1 − λt)c
+
t . (9)

We assume the nonstrategic traders behave in a such a way that (9) holds
and the distribution of vt is Gaussian conditional on the fundamental, in the
dynamic framework the expected future dividends discounted at the risk–free
rate, and uncertainty

(

mt, α
−1
t

)

vt ∼ N
(

mt, α
−1
t

)

,

which reflects the exogenous information arrival, that is, the strategic agents’
uncertainty about the end of period fundamentals.

The equilibrium value of λt in Lemma 1 remains the same in the time series
model because strategic agents are short–term speculators who do not take
into account future returns in current trading decisions. Short–term goals
are a clear feature of many participants in financial markets due to reasons
such as loss limits.

In sum, the time series model is a sequence of one–shot games of the type
discussed above. Nevertheless, it is unrealistic to expect the environment
of fundamentals and liquidity defined by the state variables (m, α, β, c+, c−)
to remain constant over time, and consequently we need to model them as
stochastic variables.
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3.1 Fundamental Returns

The fundamental mean is linked to a predictor of fundamentals that is ob-
servable by strategic agents before they take trading decisions. Specifically,
a lagged proxy of fundamentals zF

t−1. In our case, we employ a linear trans-
formation

mt = γ0z
F
t−1

for a real number γ0. The actual proxy for fundamentals used in the econo-
metric application depends on the particular market under study and the
frequency of observations. If no fundamental proxies are available we can
model them as a latent stochastic process, or even a fixed parameter. We
will illustrate these alternatives in our empirical application below.

In addition, we need to model the volatility of fundamental returns, and in
this we are guided by both stylized facts of financial returns and theoretical
considerations. In particular, we assume that the noise component of vt fol-
lows a stochastic volatility (SV) model, proposed originally by Clark (1973),
with Taylor (1986) developing the dynamic version of the SV model that
underpins subsequent developments. The SV model has a natural continu-
ous time representation and as such has application in option pricing, where
the exogenous volatility process can be interpreted as news arrival. Recently
asset prices implications with stochastic volatility in fundamentals have been
considered, e.g. by Tauchen (2005).

Following a standard SV model, the fundamental return precision α−1
t is a

stationary AR(1) process in logs with normal innovations:

− ln αt − γ1 = γ2 (− ln αt−1 − γ1) + γ3ut, ut
iid∼ N (0, 1) , |γ2| < 1, (10)

where ut and the Gaussian innovation of vt are independent. This is con-
sistent with the assumed information structure in trading decisions, where
knowledge of αt by strategic agents does not give them extra information
about the level of vt.

3.2 Private Signals

Another relevant dimension of fundamental returns is the private information
that strategic traders have about them. A consequence of (7) in Lemma 1 is
that because (αt, βt) and

(

c+
t , c−t

)

change over time, the uniqueness condition
needs to be satisfied at each point in time in the econometric model. There-
fore, the stochastic process for βt should satisfy that constraint. Denote the
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lower bound by bt, then a stochastic βt that satisfies (7) is:

ln (βt − bt) = η,

where η is a real number that defines βt given the rest of stochastic processes.

This parameter is a measure of the relative precision of strategic agents’
private information about fundamentals at the end of period with respect
to their public information. If η is very low then we find the lowest level of
private signals’ precision that is compatible with the uniqueness condition
(7). If η is very high then private information is much more reliable than
public information and signals are so precise about vt that there are low
information disparities across traders.

3.3 Market (Il)liquidity

In Appendix A we derive the relationship between c+
t and c−t and a linear

residual demand provided by nonstrategic agents. In that context, market
illiquidity on the buy and sell side, c+

t and c−t , is linked to market illiquidity
and liquidity shocks, ct and et. The former is inversly related to the slope
of the residual demand with respect to price, while the latter represents its
inelastic component.

Several measures of liquidity have been proposed, (see e.g. Dańıelsson and
Payne, 2002; Amihud et al., 2005; Pastor and Stambaugh, 2003), some of
which depend on proprietary data. In our case, we limit our attention to
publicly available data at the daily frequency, whereby the specific market
structure dictates the specific form of the model and choice of variables. For
example, if the underlying market structure is composed by market makers
as on the NYSE, it would be natural to use TAQ data. Alternatively, for
limit order markets one might use order flow if available.

The market illiquidity process ct is linked to the uncertainty about the realiza-
tion of the (discounted value of) future dividends xt around asset fundamen-
tals ft, which represents their expected value. If we think of xt ∼ N (ft, σ

2
t )

then σ2
t is the corresponding conditional variance and we expect a positive

link between σ2
t and ct. Since σ2

t is not an observable variable, it can be
proxied (e.g. by global volatility) or treated as a latent process.

In addition, the process ct is also determined by how many units of the asset,
say kt ≥ 0, each strategic agent trades in each time period, where up to now
we have assumed that kt = 1. The higher kt is, the riskier is to absorb orders
for nonstrategic agents and the higher the market illiquidity ct. Similarly
to σ2

t , kt is a latent variable, but unfortunately without the availability of a
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good proxy. Consequently we model its dynamics as negatively related to
fundamental uncertainty α−1

t . We interpret this relationship as external risk
controls and asset allocation constraints on strategic traders choices that are
based on public information.

There are liquidity tensions (the market is not infinitely deep) if a linear func-
tion of both the leverage and uncertainty proxies exceeds a certain threshold,
which without loss of generality, we can set at zero. Consequently, we model
the illiquidity index ct as a truncation of a linear function of both the leverage
and uncertainty proxies

ct = max
{

φ0 + φ1z
L
t + φ2z

U
t , 0

}

, (11)

where the proxies are scaled to have mean zero and variance one and de-
noted by zL

t and zU
t respectively.6 In this case φ0 gives the average value

of the latent process underlying ct, with both the leverage and uncertainty
parameters (φ1, φ2) being positive. The relative magnitude of these two pa-
rameters indicates the relative importance of leverage versus uncertainty in
the determination of market liquidity.

Finally, the price impacts c−t and c+
t are also affected by liquidity shocks et

of nonstrategic traders, which introduce a wedge between c−t and c+
t . The

potential asymmetry between c−t and c+
t is succinctly captured by making

one of c+
t or c−t , say c+

t , equal to ct and modelling directly the asymmetry of
the other price impact:

c+
t = ct,

while the asymmetry between c−t and c+
t is given by the following transfor-

mation
c−t = ct

ξ, ξ ≥ 0 (12)

where ξ gives a measure of the asymmetry on the buy and sell side of the
market. Both c+

t and c−t increase with ct, but the mapping (12) captures
three different scenarios of the relationship between ct and et depending on
the value of ξ:

ξ > 1 c+
t increases at a constant rate with ct while c−t increases at an in-

creasing rate, the former being higher than the latter when ct < 1 and

6Specifically, we define

zL

t
≡ − (− log αt − γ1) /

√

γ2
3
/ (1 − γ2

2
),

zU

t
≡

(

log σ2

t
− E

(

log σ2

t

))

/
√

Var (log σ2
t
).
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lower when ct > 1, with the gap increasing in ct. As ct increases, this
scenario represents an inelastic demand et < 0 of nonstrategic traders
that changes to an inelastic supply et > 0 at level ct = 1, that is, a
positive relationship between ct and et. Moreover, we can interpret the
increasing gap between price impacts (final inelastic supply is higher
than initial inelastic demand) as the unwinding of accumulated posi-
tions.

ξ < 1 c−t increases at a decreasing rate, being higher than c+
t when ct < 1

and lower when ct > 1, with the gap increasing in ct. As ct increases,
this scenario represents an inelastic supply of nonstrategic traders that
changes to an inelastic demand at level ct = 1, that is, a negative
relationship between ct and et.

ξ = 1 c−t = c+
t and both increase at a constant rate with ct. This scenario

represents the lack of an inelastic component et in the residual demand
of nonstrategic traders.

4 Estimation Method

Econometrically, our model is a special form of a stochastic volatility (SV)
model. Due to the nonlinear dependence on nonnormal dynamic latent vari-
ables such models cannot be directly estimated by either maximum likelihood
or GMM. However, simulation methods have successfully been applied to SV
models and we follow that approach here, in particular the efficient method
of moments (EMM), proposed by Gallant and Tauchen (1996, 2002). The
deep parameters of our model are

ρ = (γ0, γ1, γ2, γ3, η, φ0, φ1, φ2, ξ) .

Denote by xt a vector of lagged returns plus strictly exogenous covariates if
they are introduced in the model to proxy mt and zU

t . Our model defines im-
plicitely a particular dynamic density p (rt | xt; ρ) for given deep parameters
ρ.

4.1 First EMM Step: SNP Estimation

The EMM approach is based on first estimating an auxiliary model of the ob-
servable data, the score generator, with the SNP semi nonparametric method.
The SNP density is based on the notion that a Hermite expansion can be
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used to provide a general purpose approximation of the density function of
the data of interest, with parametric modelling capturing dependence in the
first and second moments. The SNP method nests many variants of AR–
GARCH models.

While our theoretical model only defines an implicit density, this reduced
form model has an explicit density that we can define as f (rt | xt; θ), where
θ is the corresponding parameter vector. The semi nonparametric feature is
due to the dimension of θ, specifically the Hermite expansion order, which
should be expanded at a proper rate as T grows to get the same efficiency as
maximum likelihood when applying SNP to EMM.

Take the dimension of θ as given. While we don’t know the true parameters θ0

of the score generator, we can estimate them by quasi–maximum likelihood.

That is, the estimator of θ0 is a θ̂ such that
∑T

t=1 s
(

rt | xt; θ̂
)

= 0, where

s (·) is the score of f (·)

s (rt | xt; θ) =
∂

∂θ
ln f (rt | xt; θ) .

This estimation is done for a given dimension of θ, but we need to pin down
that dimension too. Hence this first EMM step also relies on a model se-
lection procedure, such as the Schwarz criteria (BIC). Several SNP models
are estimated by quasi-maximum likelihood and the one with lowest BIC is
chosen.

4.2 Second EMM Step: Deep Parameters Estimation

The score of the chosen SNP model is used to identify the efficient moments
to use in the estimation of deep parameters. We know by quasi–maximum
likelihood arguments that there is a θ0 related to the true deep parameters
ρ0 by implicit equations m (ρ0, θ0) = 0, where

m (ρ, θ) = Eρ [s (rt | xt; θ)]

is the expected SNP score with respect to the theoretical model evaluated at
ρ. Our inference will be based on inverting that relationship.

In the final EMM step, the estimator ρ̂ of ρ0 minimizes the distance between
expected SNP score evaluated at θ̂ and zero for a particular metric,

ρ̂ = arg min
ρ

m
(

ρ, θ̂
)

′

Ŝ−1m
(

ρ, θ̂
)

, (13)
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where Ŝ is a consistent estimator of S, the asymptotic variance of T−1/2
∑T

t=1

s (rt | xt; θ0). Gallant and Tauchen (1996) show sevaral ways of computing Ŝ
and develop the asymptotic distribution of ρ̂.

(13) refers to a model without covariates. However, the EMM methods allows
for the inclusion of exogenous explanatory variables in the theoretical model.
See Gallant and Tauchen (1996) for the required extensions in the definition
of m (·) and S.

If the score generator smoothly embeds the true model this estimator is fully
efficient with the same distribution as the maximum likelihood estimator
of ρ0. We can expect EMM to be nearly fully efficient when SNP is used
as the score generator since it is a flexible reduced form model that closely
approximates the actual distribution of the data.

Moreover, given this property of the SNP model, the EMM procedure selects
the optimal testable properties of the model. The value of the criterion
function provides a good test of the adequacy of a theoretical model to explain
the dynamic and steady state properties of data. We can also perform a more
detailed analysis moment by moment by means of score diagnostics.

The specific procedures, and in particular the optimization method, MCMC,
are described in Appendix B.

5 Empirical Application

The relevance of our model ultimately rests on its ability to capture important
tumultuous events in financial markets, e.g. speculative attacks which were
the original motivation behind Morris and Shin (1998), asset price bubbles,
emerging markets crisis, or carry trades. Figure 1 depicts some possible
scenarios of market instability which can be captured by our model. Our
application is based on carry trades driving the first scenario.

Carry trades are a common trading strategy, whereby market participants
borrow funds in a country with low interest rates and invest them in a country
with high interest rates. Denote by FXL and FXH the low and high interest
rate country exchange rates respectively. If a sufficient number of agents
follow the strategy it will weaken FXL, further increasing profits, implying
such a strategy is self reinforcing.

However, such a situation is unstable because a small change in the economic
environment, say adverse changes in the interest rate differential and/or the
exchange rates, can potentially trigger events such as margin calls and high
losses in highly leveraged positions. Consequently, agents will be on a con-
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stant lookout for such scenarios and rapidly unwind their trades if they sus-
pect it is imminent. While such trading strategies are sometimes likened
to collecting crumbs in front of a steamroller, they nevertheless generally
contain significant amount of funds and are a important concern for policy
makers.

The slow buildup and the subsequent rapid unwinding of carry trades implies
that exchange rates follow what has been called the up by the escalator—down

by the elevator pattern for exchange rates. This scenario translates to our
model as ξ > 1, that is, a positive relationship between nonstrategic agents’
liquidity shocks et and market illiquidity ct. We take FXL as the numeraire
in the following.

Consider a context of moderate illiquidity ct. There is a natural initial di-
rection of the nonstrategic agents’ inelastic demand in this case due to the
interest rate differential, buy FXH and sell FXL, (et < 0), making the buy
side relatively more illiquid (c−t < c+

t ) and hence giving strategic agents in-
centives to buy FXH also. Many strategic traders will buy FXH unless the
realization of vt is quite low.

However, a context of increasing leverage and/or uncertainty translates into
increasing market illiquidity ct. The positions of nonstrategic agents in FXH

tend to be unwound when ct passes a critical level, that is, their inelastic
demand becomes sell FXH and buy FXL (et >> 0). This makes the sell side
much more illiquid than the buy side (c−t >> c+

t ) which implies that strategic
agents have strong incentives to sell FXH too. Eventually, even a relatively
high realization of vt might not avoid that many strategic traders sell, which
leads to a rapid depreciation in FXH.

5.1 The Yen–Dollar Crisis of 1998

One of the best known examples of a carry trade induced market turmoil
occured in 1998, when over two days in October – 7th and 8th – the dollar
fell from 131 yen to 112 yen by lunchtime in London on Thursday the 8th,
bouncing back sharply to end New York trading at 119 yen. October 7th and
8th 1998 were two of the most turbulent days of currency trading in financial
markets in recent memory. These events are discussed e.g. by Morris and
Shin (2000) and Dańıelsson and Shin (2003). In the week beginning October
5th, the decline of the dollar against the yen accelerated sharply — closing
down roughly 15% over the week consistent with the rapid unwinding of the
yen carry trades. Global events such as the Russian default, LTCM, and
the yield curve adjustments leading to the Euro initiated the unwinding of
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previous long positions in dollars.

We use daily yen dollar exchange rates as reported by the New York Fed and
estimate the model using continuously compounded returns in percentage
terms, rt. While our main event of interest occurs in 1998, the entire data
sample used for estimation spans 1992 to 2004. Since our model addresses
both liquid and illiquid time periods, the data need to be sufficiently long so
that we obtain a good estimation of the underlying processes of fundamental
and strategic returns. At the same time we avoid an arbitrary choice of time
period to be fitted by the model.

We also use proxies of fundamentals and payoff uncertainty. The fundamen-
tal mean mt is driven by the interest rate spread between the US and Japan,
since it can be interpreted as the dividend of holding dollars and it is avail-
able at the daily frequency.7 Indicate iJAP and iUS the daily rate of return on
the monthly8 LIBOR Japanese and US interest rates, respectively. This data
was obtained directly from www.bba.org. The interest rate spread is calcu-
lated by st−1 = 100 log

[(

1 + iJAP
t−1

)

/
(

1 + iUS
t−1

)]

and the fundamental mean
is linearly related to the spread’s first difference zF

t−1 = ∆st−1. Therefore,
the sign of γ0 is informative about the connection between interest rate news
and fundamental appreciation.9 The payoff uncertainty σ2

t is proxied by the
volatility in global markets, in particular the MSCI index denominated in US
dollars. If the daily log return on the index is yt in percentage terms then the
volatility forecast that we use is simply σ2

t = y2
t−1, similar to ARCH filtering

of volatility.

Summary statistics for the data are shown in Table 1, and plots of both
exchange rates and returns in Figures 2–3. The MSCI returns and interest
rate spreads are shown in Figures 4 and 5 respectively.

We identify three general regimes within our sample period by considering
descriptive accounts of the sample period and statistical analysis of the data.
Most importantly, our key event occurs in 1998, with the escalator effects
commencing in 1996 and the aftershocks terminating in 1999. This can also
be identified from the interest rate spreads which are lowest in the same time

7Other macro variables such as real output and nominal money supply are not available
at the daily frequency.

8We should use overnight rates but the corresponding time series (2001-2005) is not
long enough. Fortunately, the behaviour of overnight rates is closely related to monthly
rates. For the period of time were both are available, the correlation is 0.975 and OLS of
overnight rates onto one-month rates gives an intercept of −0.001 and a slope of 0.964.

9The fundamental return parameters are related to the arrival of new information in
the economic model and hence we use ∆st−1 instead of st−1. In the empirical application,
the use of ∆st−1 instead of st−1 does not have a significant impact on the results.
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period. Consequently, the second subsample spans 1996 to 1999. Starting
around 1992 and ending in 1995, we see the interest rate spreads decline
systematically, along with the exchange rates. Also, the MSCI index has
relatively low volatility in those years. Finally, after 1999 the spreads are in-
creasing, MSCI volatility is high, and the exchange rates are relatively stable.
Taken together, this suggests estimating our models over three subsamples
in addition to the entire sample, i.e., 1992–1995, 1996–1999, and 2000–2004.

We followed the procedure in Gallant and Tauchen (2006) to select the
SNP densities for both the full sample and the subsamples, which results in
model 11114010 for the full sample and 11114000 for each subsample. Since
11114010 has 14 parameters while 11114000 only 9, we suspect the larger
sample size for the full sample implied the richer model. Both SNP mod-
els are AR(1)-GARCH(1,1) with a semiparametric density for innovations
based on a fourth order Hermite polynomial. We used hundred thousand
simulations in EMM.

5.2 Model Estimation

We estimate three variants of our model:

Model A is a standard stochastic volatility (SV) model, which is repre-
sented by an infinitely deep market in our framework. We also set
the fundamental mean mt to zero and hence there are only three deep
parameters, ρA = (γ1, γ2, γ3).

Model B introduces potential liquidity tensions using only information of
FX returns. This is achieved by setting the fundamental mean mt to
zero and assuming payoff uncertainty zU

t is IID normal. This results in
parameters, ρB = (γ1, γ2, γ3, η, φ0, φ1, φ2, ξ).

Model C incorporates both changes in the interest rate spreads and the
volatility of the MSCI index as proxies10 for fundamentals and payoff
uncertainty, implying parameters, ρC = (γ0, γ1, γ2, γ3, η, φ0, φ1, φ2, ξ).

Table 2 presents the parameter estimates results which describe the envi-
ronment of fundamentals and liquidity under each model. In all cases the
parameters for the full sample are statistically different from zero (the only

10The proxies are treated as strictly exogenous and stationary covariates in the imple-
mentation of the model. Exogeneity was checked with empirical tests based on VAR(1)s.
The lagged FX return did not help to forecast these proxies with respect to their own lag.
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exception being γ3 in Model B ), with ξ also significantly different from one,
but some of the subsample parameters are not, indicating the subsample size
may not be sufficient. We initially estimated η along with the other model
parameters, but in all cases the results indicated unbounded signals precision
βt → ∞. That is, low information disparities across strategic traders, which
is a natural feature of FX markets. Consequently, the estimates in the table
refer to models where βt → ∞.

In the case of Model A, the estimated parameters are (−1.28, 0.61, 0.56), with
a somewhat low persistence parameter. A likely reason is that the presence
of outliers or excessive market turmoil hides the volatility clusters resulting
in a low estimation of the persistence parameter. Similar results obtain in
the subsamples, where the second subsample shows the highest γ̂1 and γ̂2 to
fit liquidity tensions. Model A is rejected by the data at all periods given
the high criterion function’s values.

The criterion function value for Model B implies that it is not rejected by the
data. This model shows a lower SV of fundamental returns than Model A on
average, γ̂1 = −1.87, and considerable degree of persistence with γ̂2 = 0.99.

The asymmetry parameter ξ̂ = 1.38 is consistent with the up by escalator-
down by elevator scenario. For the market illiquidity process, we find that
φ̂0 = −0.39 which indicates that strategic agents only affect the market at
certain times since the market is usually infinitely deep. The leverage param-
eter φ̂1 = 0.48 indicates that fundamental volatility is negatively correlated
with market illiquidity, i.e. as strategic agents decreasing leverage under in-
creasing fundamental volatility. The random proxy for payoff uncertainty is
associated to φ̂2 = 0.79, and this value shows that this factor is relatively
more important than fundamental uncertainty.

Results for the subperiods indicate that the fundamental parameters are
stable across the periods while the liquidity parameters are not. However,
across all periods we find φ̂0 < 0 and ξ̂ > 1. The second subperiod, which
contains many crisis events, has the highest ξ̂, i.e. that is, the maximum
asymmetry on the sell side, as well as the highest φ̂0.

Finally, Model C, introduces the change in interest rate spreads with param-
eter γ0 and global volatility with parameter φ2. This model is not rejected
by EMM either. We find γ̂0 = −0.12, a fundamental appreciation of the
dollar is expected when the spread between Japan and USA interest rates
decreases.11 On the other hand, the SV component of fundamental returns

11An uncovered interest rate parity (UIP ) argument links a negative spread with a dollar
(observed) depreciation. It is well known that UIP is at odds with empirical evidence. See
for instance Evans and Lyons (2002).
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shows a higher average level than Model B with γ̂1 = −1.74, and lower per-
sistence with γ̂2 = 0.48, a crowding–out effect of global market volatility
through market illiquidity.

As in Model B, the asymmetry parameter ξ is consistent with the escalator–
elevator scenario with ξ̂ = 1.53, the market are usually very deep since the
estimation of average illiquidity is φ̂0 = −1.13, and the uncertainty parameter
is higher than the leverage one with φ̂1 = 0.22 and φ̂2 = 1.61. The latter in-
dicates that high global market volatility, as a proxy for payoff uncertainty, is
related to low liquidity for the yen carry trades. Furthermore, global volatil-
ity is more important than fundamental uncertainty in the determination of
liquidity.

Subsamples also show a negative (but nonsignificant) γ̂0. We do find signif-
icant differences in the SV model between subsamples, in particular γ̂2. By
contrast, γ̂2 is high in all samples for Model B, suggesting that the change in
magnitudes is entirely due to the covariates. The discussion of the liquidity
parameters φ̂0 and ξ̂ in Model B applies here too.

In sum, the results clearly indicate that a standard SV model is not suitable
to explain the dollar exchange rate, while our model is. Furthermore, the
introduction of covariates significantly affects the results, and provides clear
identification of different environments of fundamentals and liquidity.

5.3 Model Simulation

We further illustrate the estimation results by means of simulations whereby
we simulate the three models over all subsamples with parameter estimates
from Table 2. Since this results in extensive output, we only present rep-
resentative results here. The full Monte Carlo results are available from us
upon request. In all cases the number of simulations is 100,000, while for the
figures the simulation size is 1000. First, we study more the liquidity context
that our model is describing. Second, we study the properties of returns and
prices under our model estimates.

For Model B, Table 3 focuses on the relative magnitude of c+ and c− during
the second subsample where the market turmoil was high. The Table shows
the relative frequency and magnitude of c+, c− > i × σ(yen returns), i =
0, 1, . . . , 5, i.e., the speculative price impacts above thresholds of increasing
size as multiples of the volatility of the yen dollar exchange rate returns.
The asymmetry between the buy and sell sides is clear, in particular, for the
largest thresholds c+ is zero but not for c−. This has direct implications for
asset price dynamics and results in the elevator—escalator effect.
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For Model C, Table 4 shows sample statistics for the observed data, the
fundamental return v and the simulated total return, r. We see that the
statistics of v do not match the observed yen returns while the total returns
do. Especially interesting, the kurtosis, minima, maxima and autocorrela-
tions are similar. This suggests that the model has successfully captured the
stylized statistical facts of the yen dollar exchange rate.

Finally, Figures 6 and 7 show the first thousand simulated exchange rates
for the full sample and the second subsample, respectively. Here, especially
in the second figure, the elevator—escalator effects are very dramatic.

6 Conclusions and Further Research

This paper represents a first attempt to the integration of coordination games
with heterogeneous information and empirical finance, specifically stochastic
volatility models. There are some interesting issues, both theoretical and
empirical, that are outside the scope of this paper, and hence are left for
future research.

It is possible to filter and forecast the latent variables, such as the fundamen-
tal and strategic components of returns which is helpful for the identification
of unstable periods and the potential for liquidity tensions, and as such could
be of use to both policymakers and practitioners. While such filtering and
forecasting is conceptually straightforward, it is technically somewhat chal-
lenging and beyond the scope of this paper. Another avenue of empirical
extensions would be the use of richer data in the estimation, e.g. by making
better use of the microstructure of the underlying markets.

It is also be of interest to specify agent behavior in a more detailed manner,
e.g. to understand better the liquidity provided by nonstrategic agents by
building a more primitive model of the residual demand they represent and
hence estimating deeper parameters. On the other hand, it would be inter-
esting to enrich the information structure and dynamic behavior of strategic
agents. The informational content of prices in global games has recently
been studied by Angeletos and Werning (2005), Hellwig et al. (2006), and
Tarashev (2003). Similarly, richer dynamic behavior in global games (e.g.
learning across several trading rounds) is considered12 by Angeletos et al.
(2006), and Dasgupta (2007).

12Abreu and Brunnermeier (2003) is another relevant reference on dynamic behavior,
close in spirit to global games.

21



A Return Decomposition

We represent nonstrategic trades by means of a linear residual demand, which
defines the environment of fundamentals and liquidity that strategic traders
face and might be interpreted as a limit order book,

f − p

d
− e,

where f is the expected liquidation value of the asset under study, termed
the asset fundamentals, d is a nonnegative parameter, and e is a parameter
that takes values on the real line.

This net demand schedule can be easily motivated by a representative com-
petitive mean-variance agent. Suppose this trader has only access to two
assets. The first a risky asset with price p and random payoff, or liquidation
value, x ∼ N (f, σ2). The second asset is riskless with price normalized to
1 and rate of return fixed to 0, without loss of generality.13 If we further
assume that she maximizes a CARA utility defined on final wealth with a
coefficient of absolute risk aversion a then her demand of the risky asset is
(f − p) /d with d = aσ2.

The second component e of the net demand can be interpreted as an endow-
ment of the risky asset or a liquidity shock realized at the beginning of the
period. Hence e > 0 means that there is some inelastic supply of the risky
asset from the representative nonstrategic trader, while e < 0 means that
there is some inelastic demand of the risky asset. Given that the measure
of strategic traders is 1, we assume |e| ≤ 1 to model their relevance in this
market.

On the other hand, the (per capita) net supply of strategic traders is λ −
(1 − λ) since they can only sell or buy one asset unit each. The closing price,
the price by the end of trading period, will be given by the market clearing
condition of the risky asset. The equality of net demand by nonstrategic
traders and net supply by strategic traders by the end of trading period
expressed as

f − p

d
− e = 2λ − 1

gives the equilibrium price

p = f − de − d (2λ − 1) = f + d (1 − e) (1 − λ) − d (1 + e)λ.

13Moreover, it is not far from reality if the trading period is one day.
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Denote the previous closing price by p0. The current closing price p translates
into the following rate of return for the risky asset:

r =
p − p0

p0
= v − λc− + (1 − λ)c+,

where we have defined

v =
f − p0

p0

, c− = c (1 + e) , c+ = c (1 − e) , c =
d

p0

,

and both (c+, c−) are nonnegative given our assumption on e.

If the market is infinitely deep, c = 0, then prices are equal to fundamentals
and r = v. If there is not an inelastic component in the residual demand,
e = 0, then c+ = c− = c, that is, both directions of strategic traders orders
are equally absorbed and give the same deviation of p with respect to f and
hence r = v − c (2λ − 1).

Naturally, e > 0 implies c− > c+ whenever c 6= 0. That is, if there is some
inelastic supply (a positive liquidity shock) is is easier for the market to ab-
sorb buying orders from strategic traders, in the sense that strategic buying
requires a smaller deviation of p with respect to f than strategic selling.
Similarly, if e < 0 then c+ > c−, some inelastic demand (a negative liquid-
ity shock) implies a market that absorbs easier selling orders from strategic
traders.

Finally, we can extend the model to a set–up where strategic traders can
trade a number of asset units k not necessarilly equal to 1. To simplify, let
us assume that the liquidity shock is also scaled by k. Then the market
clearing condition becomes

f − p

d
− ke = k (2λ − 1)

and we can see that the effect of k is equivalent to scaling d by k, and hence
scaling c.

B Simulated Scores and MCMC

We use two different types of simulations in the second step of EMM. First,
while we cannot compute m (ρ, θ) analytically, it is straightforward to get
a good approximation by means of simulations. Specifically, m (ρ, θ) is an
expectation and can be approximated by a simulated sample average. We
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can simulate a long time series {rh (ρ)}H
h=1 from p (rt | xt; ρ) and use the

approximation:

m (ρ, θ) ≃ 1

H

H
∑

h=1

s (rt (ρ) | xt (ρ) ; θ) . (14)

The theoretical model is simulated for given model parameters ρ and the
SNP scores evaluated at θ̂ are calculated from simulated data. Finally, the
estimation of deep parameters is based on making the average of simulated
SNP scores close to zero. If H if sufficiently large, the sampling error in (14)
is negligible. In the case where we use exogenous variables, were generally
their sample size T is much lower than H , we employ repeated sequences
of the exogenous variables. We can proceed with the calculation in (14)
provided exogenous variables are strictly stationary and exogenous.

We obtain parameters estimates by the Markov chain Monte Carlo (MCMC)
approach of Chernozhukov and Hong (2003), where deep parameter esti-
mates are computed by a quasi–Bayesian MCMC method. In our case, the

quasi–likelihood for ρ is exp

[

−Tm
(

ρ, θ̂
)

′

Ŝ−1m
(

ρ, θ̂
)

]

and can be used to

apply Bayesian MCMC methods to estimate ρ0. Specifically, we will use a
Metropolis–Hastings sampler based on a random walk and a normal proposal.

The advantage of using and MCMC procedure is the convenience of imposing
support restrictions, inequality restrictions, and informative but not sharp
priors. These restrictions and priors can be imposed on the model parameters
or arbitrary functions of the model. For example, instead of the procedure
wasting time generating data that is clearly at odds with the true data, we
can expediently reject those parameter estimates with that rejection learned.
Finally, the MCMC output provides a natural way to obtain standard errors
of the EMM estimators.

24



C Tables and Figures

Table 1: Summary statistics daily yen–dollar exchange rate returns and co-
variates, 1992–2004

The yen–dollar and MSCI index are in percentage returns, same as in Figures 3, and 4,

respectively. The spread is the Japanese one month LIBOR minus the US one month

LIBOR, same as in Figure 5.

Statistic yen–usd MSCI index spread

Mean: -0.01 0.02 -0.03
Std 0.70 0.85 0.02
Skewness: -0.50 -0.12 0.18
Kurtosis: 3.98 3.25 -1.31
Min: -5.63 -5.21 -0.06
Max: 3.24 4.79 0.02
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Table 2: Estimation results

Standard errors in parenthesis. Estimates with unbounded signals precision, i.e. βt → ∞.

model γ0 γ1 γ2 γ3 φ0 φ1 φ2 ξ

A -1.28 0.607 0.555
full sample (0.063) (0.045) (0.042)

A -1.41 0.435 0.783
92–95 (0.080) (0.655) (0.063)

A -0.926 0.69 0.435
96–99 (0.173) (0.456) (0.104)

A -1.22 0.577 0.539
2000–04 (0.082) (0.075) (0.066)

B -1.87 0.99 0.02 -0.393 0.476 0.79 1.38
full sample (0.079) (0.001) (0.017) (0.047) (0.038) (0.018) (0.035)

B -1.6 0.986 0.146 -3.06 1.82 1.48 1.09
92–95 (0.093) (0.002) (0.034) (0.371) (0.066) (0.132) (0.064)

B -1.64 0.99 0.146 -0.056 0.002 0.674 1.98
96–99 (0.211) (0.003) (0.047) (0.12) (0.179) (0.09) (0.207)

B -1.77 0.987 0.109 -0.53 0.343 0.751 1.33
2000–04 (0.085) (0.003) (0.036) (0.099) (0.059) (0.045) (0.127)

C -0.123 -1.74 0.482 0.324 -1.13 0.219 1.61 1.53
full sample (0.034) (0.033) (0.113) (0.091) (0.017) (0.038) (0.016) (0.018)

C -0.01 -1.47 0.988 0.126 -3.89 1.91 3.35 1.1
92–95 (0.128) (0.105) (0.002) (0.039) (0.395) (0.435) (0.300) (0.080)

C -0.199 -1.66 0.761 0.589 -0.302 0.308 0.945 2.53
96–99 (0.303) (0.291) (0.148) (0.232) (0.119) (0.097) (0.088) (0.285)

C -0.024 -1.73 0.307 0.469 -1.01 0.824 0.767 1.19
2000–04 (0.062) (0.096) (0.215) (0.219) (0.154) (0.083) (0.105) (0.111)
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Table 3: Some simulation results from Model C in subsample 1996–1999

Simulated sample statistics from Model C with parameter estimates from Table 2, and

100,000 simulations. Relative frequency and magnitude of c+, c− > i×σ(yen returns), i =

0, 1, . . . , 5, i.e., the speculative price impacts above thresholds of increasing size as multiples

of the volatility of the yen dollar exchange rate returns.

c− c+

magnitude frequency mean frequency mean
0 × σ 17.7% 0.64 23.3% 0.48
1 × σ 4.68% 1.96 3.4% 1.00
2 × σ 2.28% 2.75 0.001% 1.67
3 × σ 1.05% 3.6 0% —
4 × σ 0.48% 4.47 0% —
5 × σ 0.23% 5.3 0% —

Table 4: Simulation of Model C, full sample

Simulated sample statistics from Model C with parameter estimates from Table 2, and

100,000 simulations.

mean data sd skew kurt min max ar(y) ar(y2)

yen returns -0.0097 0.703 -0.504 3.97 -5.63 3.24 0.025 0.212
v -0.0007 0.452 -0.037 0.89 -3.48 3.01 0.005 0.029
r -0.0256 0.727 -0.832 4.20 -5.83 3.73 0.019 0.131
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Figure 1: Scenarios of market instability
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Figure 2: Yen–Dollar 1992–2004
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Figure 3: Yen–Dollar Returns 1992–2004
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Figure 4: MSCI Index Returns 1992–2004
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Figure 5: Interest rate spread 1992–2004
Japanese one month LIBOR minus the US one month LIBOR.
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Figure 6: Simulated Cumulative prices for Model C, full sample

Simulated sample statistics from Model C with parameter estimates from Table 2, and

1000 simulations.
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Figure 7: Simulated Cumulative prices for Model C, second subsample

Simulated sample statistics from Model C with parameter estimates from Table 2, and

1000 simulations. Parameters from the second subsample, 1997–1999.
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