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Abstract

This paper surveys asset allocation methods that extend the traditional approach. An

important feature of the the traditional approach is that measures the risk and return trade-

off in terms of mean and variance of final wealth. However, there are also other important

features that are not always made explicit in terms of investor’s wealth, information, and

horizon: The investor makes a single portfolio choice based only on the mean and variance of

her final financial wealth and she knows the relevant parameters in that computation. First,

the paper describes traditional portfolio choice based on four basic assumptions, while the

rest of the sections extend those assumptions. Each section will describe the corresponding

equilibrium implications in terms of portfolio advice and asset pricing.
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1 Introduction

Asset allocation, defined as the optimal distribution of investment across broad sets of assets,

is probably the most important component of portfolio management as it is stressed by Brinson

et al. (1986) among others. This paper is a survey on asset allocation methods that extend the

traditional approach. Scherer (2004) is a good reference for many of the topics we will cover and

Brandt (2004) is another good reference, with a focus on econometric issues related to portfolio

choice.

An important feature of the traditional approach is that measures the risk and return trade-

off in terms of mean and variance of final wealth, i.e. it takes a particular stand on investor’s pref-

erences. Mean-variance theory has been widely used both inside and outside financial economics.

Finance applications include topics such as portfolio analysis, asset pricing, and performance

measurement.

However, there are also other important features of traditional portfolio choice that are not

always made explicit in terms of investor’s wealth, information, and horizon: The investor makes

a single portfolio choice based only on the mean and variance of her final financial wealth and she

knows the relevant parameters in that computation. Therefore, we define traditional portfolio

choice as based on four assumptions on the investor:

1. Wealth: There are not background risks and all financial assets are tradable (perfectly

liquid). Inflation, human capital, liabilities, etc. are not taken into account.

2. Information: Her information set includes all the relevant parameters in the portfolio

choice problem. Specifically, she knows the relevant parameters of the joint distribution

of asset returns.

3. Preferences: Under the expected utility paradigm, she only cares about the mean and

variance of random outcomes, i.e. her preferences are mean-variance. The relevant measure

of risk is variance.

4. Horizon: Her investment horizon is one period in the sense that she only trades at the

beginning of that period and cares about utility from final wealth. The investor does not

take into account investment opportunities in future periods.

This ordering of assumptions represents an increasing complexity in the required extensions
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once that particular assumption is dropped and hence will be the guideline of this survey.

Section 2 describes traditional portfolio choice and the rest of the sections extend one of those

assumptions while keeping the rest as given. References that extend several assumptions at

the same time will also be provided. Each section will describe the corresponding equilibrium

implications in terms of portfolio advice and asset pricing. Even though a survey on portfolio

choice could naturally skip asset pricing issues, we consider very relevant to describe the feed-

back between portfolio choice and asset pricing models.

Section 3 extends the first assumption on investor’s wealth, while Section 4 extends the

second assumption on investor’s knowledge of parameters. These two sections still rely on

mean-variance preferences, but the next two represent a significant departure. Section 5 extends

the third assumption on investor’s preferences and Section 6 extends the fourth assumption on

investor’s horizon.

Obviously, the previous assumptions are not the only ones that are made. First, portfolio

choice based on maximizing expected utility is a maintained hypothesis in this paper. The

expected utility paradigm is the canonical model of preferences under uncertainty and plays a

central role in portfolio choice theory. The interested reader can find references outside this

paradigm in Section 2.4.1 of Brandt (2004). We will also briefly refer to robust portfolio choice

in Section 4.3.

We also assume perfect markets in the sense of price-taking behaviour and lack of market

frictions such as transaction costs, trading constraints, taxes, etc. Some market frictions can be

easily included in the analysis as problem constraints, but this survey is not focused on portfolio

choice under different types of constraints for a given (mean-variance) criterion. For instance,

we will not add value at risk or probability of shortfall constraints. Nevertheless, we dedicate

Section 5 to preferences that are not mean-variance, where we can introduce those constraints

as the portfolio choice criterion itself. In addition, Section 4 comments briefly the introduction

of constraints to alleviate the effects of estimation error.

There are some topics such as security selection, and hedging and arbitrage strategies, that

fall outside the scope of this survey. We will not study security selection because it does not

belong to asset allocation. On the other hand, this should not be confused with an emphasis

on passive management since we will study market timing (tactical asset allocation) in Section

6.2 and each section will comment the corresponding portfolio advice in terms of holding or not
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the market portfolio. Even though we do not focus on exploiting superior information, Section

3.3 describes Black-Litterman’s optimal combination of investor and market views. We will not

study portfolio insurance but we will study particular types of hedging induced by portfolio

construction in set-ups with background risks and/or time-varying investment opportunities,

analyzed in Section 2.2 and 5.2 respectively.

On the other hand, we will comment some topics that might not be regarded as asset alloca-

tion issues. We will study benchmark-relative management in Section 2.3 as a simple application

of portfolio choice under background risks. We will also study some non-traditional performance

measures in Section 4.3 as natural implications of preferences that are not mean-variance.

Practitioners tend lately to focus on the concept of risk budgeting but asset allocation is still

relevant in that context. We share the view of Scherer (2004) that portfolio construction and

risk budgeting are the same concept, looking for a portfolio that delivers an optimal risk-return

trade-off. Portfolio construction is expressed in terms of portfolio weights while risk budgeting

uses risk exposures (e.g. VaR), but it is simply a difference in the presentation.

2 Traditional Portfolio Choice

2.1 Asset Allocation Set-Up

Let us first describe the investment opportunities and the required notation. The gross return

of a particular asset (payoff divided by price) is denoted by R and the corresponding rate of

return by r = R−1. We assume the investor has access to 1 ≤ N <∞ risky assets. Those assets

should be understood as asset classes, e.g. stocks and bonds. In a global asset allocation set-up,

we would include currencies, stocks and bonds from different countries or regions. To simplify

the exposition, we assume cash (short-term money-market instruments) is another available

asset class and plays the role of a safe asset. The risk-free rate of return is denoted by r0 and

an excess return by e = r − r0.

The corresponding vectors of rates of returns and excess returns of risky assets are denoted

by r and e. The corresponding N × 1 mean vectors and N × N variance-covariance matrix,

which we assume well-defined, are

ν =E (r) , µ = E (e) , Σ = V ar (r) = V ar (e) ,

where µ is known as the vector of risk premia. We make two simplifying assumptions on those

3



objects, not all expected returns are equal to the riskless return (µ �= 0), and Σ is nonsingular

(|Σ| > 0). The former assumption is required to define a proper risk-return trade-off and the

latter one is required to avoid a "hidden" safe asset, i.e. a non-trivial portfolio with zero variance.

We also define H = µ′Σ−1µ.

The payoffs that an investor can get are given by portfolios of those assets and financial

investment is modelled as a technology with constant returns to scale. Let us define 1 as an

N × 1 vector of ones and denote the amount of wealth invested in each risky asset class by

an N × 1 vector w. Hence w′1 represents the wealth invested in risky assets and the rest of

wealth is invested in the safe asset. If we normalize initial wealth to 1 then 1−w′1 is the wealth

invested in the safe asset. Moreover, we can interpret w as the proportions of wealth invested

in risky asset classes.

We can express the rate of return of a unit-cost portfolio as

r = w′r+
(
1−w′1

)
r0 = r0 +w

′e, (1)

and the corresponding notation for its moments is

E (r) = r0 +w
′µ = ν, E (e) = w′µ = µ, (2)

V ar (r) = V ar (e) = w′Σw = σ2.

An investor’s portfolio choice maximizes expected utility. Here we impose assumptions 1 and

4. The latter assumption defines final period wealth as the object of interest for the investor

and the former one allows the focus on financial wealth, i.e. the payoff of the chosen portfolio.

Since we normalize initial wealth to 1, her final wealth is equal to her portfolio’s gross return R.

The portfolio choice problem is simply

max
w

E [u (R)] (3)

for some von Neumann-Morgenstern (vN-M) utility function1 u (·), which is usually strictly

increasing and concave to reflect an agent that prefers more to less and shows risk aversion.

2.2 Mean-Variance Portfolio Choice

Now we impose assumption 3, which means that we can represent investor’s expected utility

as a function of her return’s mean and variance E [u (R)] = U
(
ν, σ2

)
, where

(
ν, σ2

)
are given

1We follow the usual convention in finance references. Other references might use the concept of vN-M utility

for E [u (R)] instead.
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in (2) and the function U (·) is such that ∂U/∂ν > 0, ∂U/∂σ < 0, and U
(
ν, σ2

)
is (strictly)

concave. Variance is the risk measure in this set-up. It is widely used in finance since it delivers

simple expressions and rich empirical implications, even though that it is not necessarily an

accurate measure of risk. Portfolio choice under mean-variance preferences was developed in

Markowitz (1952, 1959) and Tobin (1958).

A mean-variance investor solves a special version of the problem (3)

max
w

U
(
ν, σ2

)

and we can study her indifference curves on
(
ν, σ2

)
or (ν, σ) spaces, where ν is usually drawn

on the y-axis.2 We will focus on the space (µ, σ) from now on, which simply changes the origin

on the y-axis. She will choose the tangency between her indifference curves and the mean-

variance frontier σ2 (µ), which represents the best mean-variance trade-off that investors can get

from available assets. See Figure 1, where the dotted curves are indifference curves, the arrow

shows the direction of higher expected utility, and the mean-variance frontier is the solid line.

Therefore, we turn to study σ2 (µ).

The mean-variance optimization frontier can be represented in three equivalent ways: Mini-

mizing variance for each target risk premia µ to emphasize portfolio diversification

min
w

V ar (e) s.t. E (e) = µ, (4)

where the dependence of V ar (e) and E (e) on w is given by (2), maximizing risk premium for

each target variance σ2 in the spirit of risk budgeting

max
w

E (e) s.t. V ar (e) = σ2,

or maximizing a trade-off between risk and return given by each risk tolerance λ

max
w

E (e)− 1

2λ
V ar (e) .

By choosing the corresponding µ, σ2 and λ, we can make the three solutions equal. The

corresponding algebra for a general N was developed explicitly by Merton (1972). A textbook

2We can be more precise with a classical example: vN-M exponential (or CARA) utility u (R) = − exp (−θR),

where θ > 0 is the coefficient of absolute risk aversion, plus normally distributed R ∼ N
(
1 + v, σ2

)
. In that

context,

E [− exp (−θR)] = − exp

[
−θ (1 + v) +

1

2
θ
2
σ
2

]
,

which is an ordinal utility function of
(
v, σ2

)
and can also be represented by v − 0.5θσ2.
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treatment can be found in Chapter 3 of Huang and Litzenberger (1988) and Chapter 4 of Ingersoll

(1987). The case of an unbounded N was studied by Chamberlain and Rothschild (1983). They

embed mean-variance analysis into Hilbert space theory.

The risky component of the optimal portfolio is

w (µ) =
( µ
H

)
Σ−1µ, (5)

in the first representation, while it is w (λ) = λΣ−1µ in the last representation. Stevens (1998)

gives an insightful representation of the matrix Σ−1, and hence the vector Σ−1µ, in terms of

regression hedges. Think of a least squares regression of a particular excess return on a constant

and the rest of excess returns. That excess return’s entry in Σ−1µ is equal to the ratio of the

constant over the residual variance of that regression.

Let us focus on the solution of the first representation. The main property of w (µ) is its

proportionality to Σ−1µ, i.e. the target µ only rescales the previous vector and relative weights

in the optimal risky position are constant across the frontier. In fact, we can compute any

optimal portfolio from any pair of optimal portfolios, which is known as two-fund spanning.

However, the natural choice is the safe asset and the tangency portfolio, a portfolio of risky

assets that the mean-variance frontiers with and without risky assets share. See Figure 2, where

the dotted curve represents the mean-variance frontier without a safe asset. The interested

reader can find the details about that frontier and the characterization of such tangency in the

references.

The mean-variance frontier is the variance corresponding to the optimal portfolio (5) for

each target µ

σ2 (µ) = w (µ)′Σw (µ) =
1

H
µ2. (6)

The global minimum variance portfolio is simply the safe asset. The frontier is composed by

two straight lines on the space (µ, σ), where it is usually drawn with µ on the y-axis. Of course,

we can also draw it on the
(
µ, σ2

)
space, where it becomes a parabola.

Mean-variance efficient portfolios are defined as those portfolios that are not dominated in

mean-variance space by any other portfolio. Therefore, (6) shows that the efficient frontier is

given by portfolios (5) with µ ≥ 0. This part of the frontier is the solid line in Figure 1 and

2. Mean-variance investors’ portfolios will be located on the efficient frontier and this (mean-

variance) efficient set of portfolios is convex. In addition, we find a trade-off between risk and
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return on the efficient side of the frontier, we can only target a higher µ if we are willing to

suffer a higher σ2.

2.3 Equilibrium Implications

We have not been very explicit about mean-variance parameters so far. Now we impose

assumption 2 and hence all investors use the same mean-variance parameters and they are equal

to the true ones. We will think of a set of investors, each of them with some mean-variance

preferences U
(
v, σ2

)
and some initial wealth.

In this context, we will study the equilibrium implications of the previous set-up in terms of

portfolio advice and asset pricing. This theory is called the Capital asset pricing model (CAPM)

and was developed by Sharpe (1964), Lintner (1965), and Mossin (1966). More recently, Berk

(1997) develops the necessary and sufficient conditions for the CAPM under expected utility.

We will focus on the CAPM with a safe asset, the reader can find a CAPM without it in Black

(1972). The CAPM provides a precise link of risk and return and hence it is widely applied even

though it does not hold empirically as described in Chapter 5 in Campbell et al. (1997) and

Chapter 20 in Cochrane (2001).

Let us define the market portfolio as the aggregate supply of risky assets, with weights

given by market capitalization. It includes all risky assets in the economy since we assume

everything is traded through assumption 1, but the market is understood as listed equities (the

stock market) in the usual applications. Under equilibrium, the market portfolio must be equal

to the aggregation of agents’ demands, which are mean-variance efficient. The convexity of the

mean-variance efficient set implies that the market portfolio must be efficient, which is the basic

implication of the CAPM. The efficient part of the linear frontier is called the Capital market

line (CML). Moreover, if we assume a zero net supply of the riskless asset then the market

portfolio is equal to the tangency portfolio.

By two-fund spanning, we can represent every investor’s portfolio as a combination of the

safe asset and the market portfolio and this type of situation is labelled as two-fund separation.

Being more (less) risk averse simply translates into investing less (more) on the market portfolio.

Therefore, the portfolio advice of the CAPM is passive investment, i.e. investors should hold

the market portfolio. This implication of the CAPM had a big impact in the industry, spurring

the use of indexed funds.
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In the real world, not every agent invests in the same portfolio of risky assets. Professional

advice recommends a higher ratio of stocks with respect to bonds the higher the aggressiveness

and the investment horizon of the investor as Canner et al. (1997) point out. They also stress

that the absence of a riskless asset cannot rationalize this advice because the mix of bonds and

stocks would change with risk aversion, but not in the same direction as professional advice.

Short-sale constraints on cash positions cannot rationalize the advice either. Moreover, given

the historical low Sharpe ratio of bonds compared to stocks, it looks like mean-variance investors

should not invest much in bonds. Next sections will show how the theoretical advice gets closer

to real world portfolios once we drop some of the traditional four assumptions.

Another big impact of mean-variance analysis in the investment industry has been the de-

velopment of certain performance measures. One of such measures is the Sharpe ratio (others

examples are the Treynor index and the Jensen’s alpha), which is defined as a risky portfolio’s

risk premium per unit of risk

SR =
µ

σ
(7)

and was developed in Sharpe (1966) to evaluate mutual funds following the implications of

mean-variance analysis. Obviously, we can compare Sharpe ratios of different portfolios without

relying on an equilibrium set-up, but this measure is meaningful when we think of the CML.

Under mean-variance preferences, there is an optimal benchmark for every agent, the slope of

the CML on the (µ, σ) space (
√
H) . Sharpe (1994) reviewed the literature that this measure

generated and clarified its application.

Finally, let us briefly comment the asset pricing implications of the CAPM. In equilibrium,

any risky portfolio with excess return e and risk premium µ must satisfy

µ = βµM , β =
Cov (e, eM)

V ar (eM)
, (8)

where eM is the market excess return and µM is the market risk premium. Every risk premium is

equal to the corresponding beta, the risk measure in the CAPM, times the market risk premium,

and this linear relationship is called the Security market line (SML).

Unfortunately, the pricing equation (8) is simply a direct implication of the mean-variance

frontier algebra, i.e. it is true if we substitute the market portfolio for any frontier portfolio.

Moreover, the market portfolio is unobservable and researchers usually work with a stock index

as a proxy. Therefore, testing the CAPM is not a straightforward application of (8) as Roll

(1977) stressed.
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3 Background Risks

3.1 New Framework

Assumption 1 stated that there are not background risks and all financial assets are tradable

or perfectly liquid. Obviously, not every risk or asset can be traded and hence a more realis-

tic set-up is portfolio choice of risky securities (endogenous risks) while facing exogenous and

unavoidable background risks.

Let us study a simple way of introducing the latter risks in the portfolio construction. Instead

of managing the risk-return trade-off of r, we manage a = r− b, where b is the background risk

and covers several situations such as:

• Inflation: b is the relevant inflation rate and a the corresponding real returns. This case

was studied by Friend et al. (1976) and Solnik (1978).

• Human capital: b is minus the return on human capital, which is treated as uninsurable.

This case was studied by Mayers (1973) and Brito (1977) as the most important example

of a nontradable asset. Friend et al. (1976) also analyze the joint effect of inflation and

human capital.

• Liabilities: In the context of asset-liability management (ALM) of a pension fund, Sharpe

and Tint (1990) define surplus returns as final surplus S1 = A1 − L1 (the difference

between assets and liabilities) relative to initial assets A0. They can be expressed as

S1/A0 = R− (L0/A0) (L1/L0) = R− b, where L1/L0 is the source of background risk.

Portfolio returns are still given by (1) but the relevant mean and variance are now

E (a) = E (r)−E (b) = δ, (9)

V ar (a) = V ar (r) + V ar (b)− 2Cov (r, b) = ω2.

Note that cash is not riskless if our risk measure is ω2 instead of σ2. The new key object is

the covariance of risky securities with background risk

γ = Cov (r, b)

and the notation F = γ′Σ−1µ will be used in some expressions.
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The previous examples might also require an explicit modelling of long-term or dynamic

portfolio choice, i.e. relax assumption 4 at the same time. The corresponding references will be

given in Section 6.4.

3.2 Background Risks in a Mean-Variance Framework

This section follows Mayers (1973), Brito (1977), and mainly Solnik (1978). We will focus on

the case of a safe asset and the reader can find the case without a safe asset in those references.

The optimal portfolio is now given by

min
w

V ar (a) s.t. E (a) = δ,

where V ar (a) and E (a) are given by (9), which can be equivalently expressed as

min
w

V ar (e)− 2Cov (e, b) s.t. E (e) = µ

and the only difference with the traditional problem (4) is the component Cov (e, b) = w′γ in

the risk criterion. We skipped the component V ar (b) in V ar (a) and E (b) in E (a) because they

are not affected by the portfolio choice. The solution can be represented as

wb (µ) = w (µ) +wh, (10)

the traditional optimal portfolio for µ in (5) plus a constant term, a hedging demand due to

background risk,

wh = Σ
−1γ−

(
F

H

)
Σ−1µ.

The componentΣ−1γ can be interpreted as the coefficients of r in the least squares regression

of b on a constant and the vector r. Let us think of a diagonal Σ to fix ideas. Then a higher

entry in γ increases the demand for that asset since it is a hedging instrument, paying relatively

more when the background risk is relatively higher. For instance, if b is similar to bonds then

this effect might motivate some investment in bonds that would be missing in mean-variance

analysis applied to historical data, where bonds’ Sharpe ratios are low.

Now the target µ is not the only object that might differ across investors. The hedging

demand wh might depend on the investor since the relevant b might do. There is two-fund

spanning of each investor’s frontier, but none of the two funds is the safe asset in general. Now

the relative weights of risky assets might change with the target µ or investor’s risk aversion.
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The background risk frontier is a hyperbola on the (δ, ω) space, but that space might depend

on the investor. It is more interesting to compare background risk and traditional frontiers on the

(µ, σ) space, where the latter is the efficient one. The representation in (10) is very convenient

for that purpose. In terms of rates of return, r′wb (µ) = r′w (µ) + r′wh or simply rb = r + rh.

The key property is that rh is independent of chosen µ, has a zero mean (E (rh) = 0), and is

orthogonal to r (Cov (r, rh) = 0).

We find the decomposition

V ar (rb) = V ar (r) + V ar (rh)

and hence the background risk frontier represents a parallel parabola with respect to the tra-

ditional frontier on the
(
µ, σ2

)
space, the size of the parallel movement to the right depends

on V ar (rh). The background risk frontier represents a hyperbola with asymptotes equal to

traditional lines in the (µ, σ) space. See Figure 3, where the arrow shows the direction of higher

hedging demand variance.

The background risk and traditional frontiers coincide (wh = 0) when the covariance of assets

with background risks γ is proportional to µ since then there is no conflict between the mean-

variance and hedging motives. One special case of that situation is a zero covariance γ between

assets and background risks. Another special case is the existence of a perfect background risk

mimicking portfolio (b = r0 +w
′

∗
e for some w∗) that lies on the traditional frontier.

Now the equilibrium implications will be briefly described. In terms of portfolio advice, the

tight link between the market portfolio and the individual portfolios is broken. If b is common

across agents then we have two-fund separation and the market portfolio might be chosen as one

of the funds, but this does not mean a constant mix of risky assets on the frontier. Moreover, a

common b will not be the general case and two-fund separation clearly breaks down with human

capital. Passive management in the sense of holding the market is not the portfolio advice in

this set-up.

We should not expect the market portfolio to be mean-variance efficient even in the case of

a common b and hence the CAPM equation (8) breaks down. However, given the structure of

(10), if we substract the (average) hedging component from the market portfolio then we have

a mean-variance efficient portfolio and hence a properly adjusted market return works in (8).
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3.3 Application to Tracking Error Optimization

There is another relevant type of background risk apart from the examples mentioned in

Section 3.1. Benchmark-relative investment management is a key ingredient of active portfolio

management (i.e. security selection and market timing) as shown in Grinold and Kahn (1999)

and Lee (2001). The investment industry usually measures performance relative to a benchmark

and a manager might care about her relative performance more than total risk and return. This

particular application of background risks might fall outside asset allocation if we think of an

active manager given an asset class as her benchmark, but it is also relevant for practical tactical

asset allocation as we will comment in Section 6.1.

This section will describe the results of Roll (1992) on tracking error optimization translated

to the case of a safe asset. We can easily study this situation in our set-up by interpreting

b = r0 +w
′

∗
e as the benchmark, and referring to a as active returns

a = r − b = (w−w∗)′ e = w′ae.

and ω as tracking error (TE)

V ar (a) = w′aΣwa = ω2,

which is a widely used measure of relative investment risk. We will also use the notation

E (b− r0) = µ
∗
and V ar (b− r0) = σ2

∗
.

Now we focus on the active portfolio instead of the total portfolio, but the problem is still

the same (a self-financing constraint should be added if there was not a safe asset),

min
wa

V ar (a) s.t. E (a) = δ,

and the optimal active portfolio can be represented as wa (δ) = (δ/H)Σ−1µ. A noteworthy

feature of the optimal active portfolio is its independence from the particular benchmark. It is

not difficult to relate (10) to the current representation

wb (µ) = wa (δ) +w∗ = [wa (δ) +w (µ∗)] + [w∗ −w (µ∗)] = w (µ) +wh.

The role of the target δ is simply to scale a vector and the efficient part of the TE frontier

on space (δ, ω) is a straight line that starts at the origin. Again, it is more interesting to face

the TE frontier against the traditional frontier on space
(
µ, σ2

)
, i.e. the mean and variance of

rb = a+ b in excess of r0. Given the previous representation of optimal TE portfolios,

V ar (rb) = σ2 (µ) +
[
σ2
∗
− σ2 (µ

∗
)
]
,
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where σ2 (·) is the mean-variance frontier (6) evaluated at a particular target. The TE frontier

represents a parallel parabola on the
(
µ, σ2

)
space, it passes through the benchmark and is

dominated at all return levels by mean-variance frontier. The distance between both frontiers

is equal to the benchmark inefficiency.

TE optimization might be detrimental to overall portfolio efficiency. On the other hand, if

b is efficient then both frontiers coincide and TE efficient portfolios are mean-variance efficient.

Roll (1992) also comments the introduction of a beta (sensitivity with respect to the benchmark)

constraint to decrease the inefficiency of the TE portfolios on the total mean-variance space.

4 Parameter Uncertainty

4.1 Estimation Error in Mean-Variance Inputs

Assumption 2 states that investors know the true mean µ and variance Σ required in the

portfolio choice problem. Obviously, those inputs are uncertain and it is common to simply plug

in (5) historical estimates of those parameters by means of a time series of size T of the relevant

returns.3 Then well-known problems of traditional mean-variance analysis show up: Extreme

long/short positions and unstable portfolios, in the sense that a slight change in the target gives

significant portfolio changes. Best and Grauer (1991) study the sensitivity in mean-variance

portfolios’ weights and moments to changes in the means.

Finding badly behaved portfolios when using sample estimates as inputs raises concerns

about estimation error in mean-variance inputs. Michaud (1989) stresses that portfolio opti-

mization based on historical estimates suffers from error maximization. Optimal portfolios take

extreme positions that are mainly driven by estimation error, e.g. extremely long in assets with

overestimated returns and/or underestimated risk, and hence they perform poorly out of sam-

ple. Chopra and Ziemba (1993) study the effect of errors in mean and variance in portfolios and

conclude that the former errors are more important.

There is a difference in the relative magnitude of estimation errors. The variance of returns

can be estimated more accurately than their mean if returns follow diffusions as Merton (1980)

shows. If we try to estimate the mean and the variance of log-returns by means of their sample

counterparts then the standard error of the mean estimator decreases with the data span (say

3 If one takes seriously the CAPM this is not necessary because the investor should simply hold the market

portfolio. This will be exploited in Section 4.3 with the Black-Litterman approach.
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the number of years), while the standard error of the variance estimator decreases with the

number of observations. For instance, stock returns are very noisy and an accurate estimation

of risk premia would require many years of data, while the estimation of variances can be made

arbitrarily accurate by increasing the data frequency.4

The simplest approach to avoid unreasonable mean-variance portfolios with historical esti-

mates is to impose constraints in the mean-variance optimization (4), e.g. lineal constraints

max
w

E (e)− 1

2λ
V ar (e) s.t. aL ≤ Aw ≤ aU ,

for some matrix A and vectors (aL,aU ). Obviously, this will enforce diversification through

portfolios that do not take extreme positions and improve out-of-sample performance as Frost

and Savarino (1988) show by means of simulations. More recently, Jagannathan and Ma (2003)

point out that short-sale constraints might decrease portfolio risk even when they are wrong

(they are not satisfied by the corresponding true portfolio).

The use of constraints is not very satisfactory a priori. They are imposed because of bad

quality of the inputs and hence improving the quality of the inputs should be a more fruitful

avenue. However, Jagannathan and Ma (2003) show that certain constraints are equivalent

to a modified estimation of Σ that can be interpreted as shrinkage estimation. This method

of estimation is based on a convex combination of a sample estimator and some constrained

estimator, and hence the sample estimator is "shrinked" to the constrained one. This estimation

tries to find an optimal trade-off between the induced bias and the gain in sampling variance.

Applications of shrinkage estimation to portfolio choice can be found in Jorion (1986), who

computes an optimal shrinkage estimator of the mean that combines the sample mean and a

common mean, and Ledoit and Wolf (2003), who apply shrinkage estimation to the variance,

computing the optimal weight between the sample variance and the estimator derived from a

single-factor model. Jorion (1986) motivates the use of shrinkage estimation in the context of

a Bayesian investor, where there is a natural interpretation of such method, and this will be

studied in Section 4.3.

Most part of the references of this section are closer to security selection than asset allocation

since they study the case of a high N , e.g. construction of a portfolio of many stocks. In that

4This result should be carefully applied. Aït-Sahalia et al. (2005) show that microstructure noise implies an

optimal finite frequency, unless that noise is also modelled and estimated. Then the highest frequency is optimal

again.
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context, there are many unknown parameters and the estimation error has stronger implications.

Factor models are the usual choice to handle the high number of parameters in Σ. Chan et al.

(1999) evaluate factor models of Σ in terms of out-of-sample performance of optimal portfolios.

The reader can find additional information on shrinkage methods, factor models, and portfolio

constraints in Section 3.1.2 of Brandt (2004).

4.2 Sampling Uncertainty in Portfolios

We have followed classic inference in our approximation to our lack of knowledge of true

mean-variance parameters. Let us make explicit what we have done so far in the context of a

single risky asset. We have a time series of its excess returns (e1, e2, ..., eT ), which we represent

by eT . We assume a simple normal model with independent and identically distributed (i.i.d.)

observations, i.e. conditional on some value of the parameters
(
µ, σ2

)

et |
(
µ, σ2

)
∼ N

(
µ, σ2

)
, t = 1, 2, ..., T.

We leave time dependence in returns for Section 6. Since we commented that an accurate

estimation of the variance is easier, we assume we know σ2 to simplify and hence our analysis

will be conditional on its value. We are interested in the distribution of the next-period excess

return given our information to compute the optimal portfolio. In the previous model, this

distribution would be

eT+1 |
(
µ,σ2, eT

)
∼ N

(
µ, σ2

)

if we knew µ. Unfortunately, we do not know µ and the traditional approach applies a plug-in

estimation in the sense of using the distribution N
(
µ̂, σ2

)
with some estimator µ̂. This is a

mean-variance framework and the optimal portfolio is given by (5). The estimator µ̂ can be the

maximum likelihood one, i.e. the statistic that maximizes ln p
(
eT | µ, σ2

)
with respect to µ,

where p (·) is the likelihood. In the previous normal model, the maximum likelihood estimator

is simply the sample mean µ̂ = ē = T−1
∑T
t=1 et.

If we base the computation of an optimal portfolio on sample data as commented above then

the portfolio is an statistic with some sampling error. Jobson and Korkie (1980) studied the

estimation of mean-variance portfolios’ weights, mean, and variance. They approximate their

mean and variance and compute their asymptotic distribution under the assumption of i.i.d.

normal returns.
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Later, Jobson and Korkie (1983) interpreted the estimation of some mean-variance parame-

ters and mean-variance efficiency tests in an OLS set-up. If we define E as a T ×N matrix with

excess return data and run OLS of a T × 1 vector of ones onto E, we get the estimator

ŵ =
(
E′E

)
−1
E′1 =

(
1

1 + µ̂′Σ̂−1µ̂

)
Σ̂−1µ̂.

We only have to rescale the regression coefficients ŵ to get the efficient portfolio (5) estimator

ŵ (λ) = λΣ̂−1µ̂,

expressed here in terms of risk tolerance λ. The regression framework gives the corresponding

standard errors of ŵ and hence we can easily construct confidence intervals and tests on w (λ),

e.g. we can test if some entries are significantly different from zero. More recently, Britten-Jones

(1999) works with the OLS set-up too and develops finite-sample inference under i.i.d. normal

returns.

The bootstrap (or resampling methods) is an alternative approach to evaluate sampling

uncertainty.5 This approach can be implemented in a nonparametric or a parametric set-up.

The former is based on resampling data with replacement (or more refined approaches derived for

time series), while the latter is based on Monte Carlo simulation from a parametric estimate of

the return distribution. Jorion (1992) uses the parametric bootstrap implementation assuming

i.i.d. normal returns to analyze the sampling variability in optimal portfolios and perform

efficiency tests under short-sale constraints.

Michaud (1998) uses bootstrap methods to compute optimal portfolios themselves instead

of standard errors, and defines this approach as resampled efficiency. A resampled efficient

portfolio associated to some risk tolerance λ is an average of mean-variance efficient portfolios

(5) associated to that λ for S different boostrapped samples with sample moments (µ1,Σ1),

(µ2,Σ2),..., (µS ,ΣS)

wr (λ) =
1

S

S∑

s=1

ws (λ) ,

ws (λ) = λΣ−1s µs, s = 1, 2, ..., S.

The size of boostrapped samples can be different from the original data to reflect high or

low confidence on historical estimates. Resampled portfolios show higher diversification and less

5See Horowitz (2001) for a survey on bootstrap methods.
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sharp changes with respect to λ than traditional mean-variance portfolios, which translates into

a better out-of-sample performance. However, this is a heuristic method to deal with estimation

error without a theoretical justification as Scherer (2002) points out.

4.3 Bayesian Portfolio Choice

This section will be devoted to a Bayesian treatment of parameter uncertainty instead of the

previous classic inference. Bayesian inference is a formal way of dealing with estimation error

in problem (3) with a strong foundation in decision theory, where we study beliefs and learning

after observing a sample instead of working with estimators and their sampling distribution. In

fact, Markowitz (1952) does not impose that the mean-variance inputs are the true ones and

simply works with beliefs.

A different approach with axiomatic foundations is robust choice. A robust investor follows

a maximin rule, choosing the best portfolio in the worst scenario. See Garlappi et al. (2007)

and Lutgens and Schotman (2007) for recent references related to mean-variance analysis.

We return to the simple model at the beginning of Section 4.2, where there is a single normal

risky asset and we know σ2. This is one of the simplest examples of Bayesian mechanics and

does not represent the power of the approach. On the other hand, it will help to motivate

the shrinkage estimation commented in Section 4.1 and the Black-Litterman formulas that are

shown later in this section. Bayesian inference needs two inputs and produces two outputs:

• Inputs: One input is the data likelihood p
(
eT | µ, σ2

)
, i.i.d. normal returns in our example,

which represents sample information and is common to classic inference. The second input

is the prior beliefs p
(
µ, σ2

)
, our beliefs about

(
µ, σ2

)
before observing eT . In our simple

example, we know σ2 and we will use the following prior p (µ)

µ ∼ N (ρ0, ϕ0) ,

where the prior mean ρ0 could be derived through a theoretical model such as the CAPM,

and the prior variance ϕ0 would measure our confidence in that model.

• Outputs: The first output is the posterior beliefs after observing eT , p
(
µ, σ2 | eT

)
, which

follows Bayes’ rule to combine prior beliefs and sample information given by the data
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likelihood.6 In our example, we are interested in p
(
µ | σ2, eT

)

µ |
(
σ2, eT

)
∼ N (ρT , ϕT ) , (11)

ϕT =

(
1

ϕ0
+

T

σ2

)
−1

, ρT = ϕT

(
ρ0
ϕ0
+
T ē

σ2

)
,

where the expression of ρT can be interpreted as shrinking ē towards ρ0. On the other

hand, these posterior beliefs are not our main object of interest. The portfolio choice

problem in (3) requires the distribution of next-period returns given eT , p
(
eT+1 | eT

)
,

which is the second output and is called the predictive distribution.7 The previous i.i.d.

normal model states that eT+1 |
(
µ,σ2, eT

)
∼ N

(
µ, σ2

)
and the relevant predictive density

p
(
eT+1 | σ2, eT

)
integrates out our uncertainty about µ. In this simple model, the predic-

tive is still normal and hence the solution to (3)8 is the mean-variance solution (5) for the

particular mean and variance in

eT+1 |
(
σ2, eT

)
∼ N

(
ρT , σ

2 + ϕT
)
. (12)

Barry (1974) is one the first references that study the effect of estimating the mean and/or

the variance in the predictive distributions of a portfolio choice problem. In those models, we

are still in a mean-variance framework and the variance matrix is simply scaled. Therefore,

estimation risk changes the selected portfolio but does not change the efficient set. Klein and

Bawa (1976) work with non-informative priors, which give a Student-t predictive distribution

with similar implications to Barry (1974), but also consider informative priors in special cases

that change the efficient set. Later, Frost and Savarino (1986) use a Bayesian set-up in the

spirit of shrinkage estimators by means of a prior where all means, variances and correlations

are equal.

Pástor (2000) and Pástor and Stambaugh (2000) represent more recent references. Their pri-

ors are based on factor pricing models and their likelihood is also given by i.i.d. normal returns.
6The general expression when we do not know σ2 is

p
(
µ, σ

2 | eT
)
∝ p

(
µ, σ

2
)
p
(
e
T | µ, σ2

)
,

where ∝ means proportional to.
7The general expression when σ2 is unknown integrates out

(
µ, σ2

)

p
(
eT+1 | e

T

)
=

∫

R+

∫

R

p
(
eT+1 | µ,σ

2
, e
T

)
p
(
µ, σ

2 | eT
)
dµdσ2.

8Some combinations of vN-M utility and Bayesian inference might not give a well defined expected utility. See

Geweke (2001) for some examples on CRRA utility.
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Pástor (2000) evaluates home bias and value and size effects by means of asset allocation. Pástor

and Stambaugh (2000) compare asset pricing models by means of their asset allocation impli-

cations when they are used as priors. They also comment briefly the case of model uncertainty

in addition to parameter uncertainty because it can also be incorporated by means of Bayesian

model averaging. Tu and Zhou (2004) extend the Pástor and Stambaugh (2000) framework to

returns that follow a Student-t and there is uncertainty about the degrees of freedom.

We have only commented computations and references related to portfolio construction,

but not to the corresponding equilibrium implications. Lintner (1969) represents one of the

first approximations to equilibrium under heterogenous expectations in a mean-variance set-up.

He shows that the CAPM holds with "market representative" beliefs even though that agents

hold different portfolios. Barry and Brown (1985) study the beta implications of a Bayesian

set-up where there is more information available for some assets than others and also different

information across agents. However, beliefs are exogenous in those references and hence they

do not define a rational expectations equilibrium. The book Brunnermeier (2001) is a good

introduction to the complex issue of asset pricing under asymmetric information.

The rest of this section will be devoted to the Black-Litterman approach, which is similar

in spirit to the Bayesian approach and is widely used in the industry nowadays. Black and

Litterman (1992) explicitly assume that the historical variance is a good estimator but not the

sample mean. They estimate the risk premia by means of a combination of equilibrium and

individual views, in such a way that the market portfolio acts as a well-behaved anchor.

Our exposition will mainly follow He and Litterman (1999). The reader can find a revision

of several issues of investment management under this approach in Litterman (2003) and the

introduction of additional views on volatilities and correlations in a slightly different set-up in

Qian and Gorman (2001). Let us return to our general situation of N risky assets:

• Inputs: An equilibrium model and investor’s views. The first input defines beliefs on risk

premia as

µ ∼ N
(
π,τΣ̂

)
,

where Σ̂ is some estimated variance matrix of excess returns using historical data, τ

reflects the degree of (lack of) confidence on equilibrium returns (we might choose it as

T−1, where T is interpreted as a sample size), and π are the implied risk premia from the

market portfolio under the CAPM. For some plausible risk tolerance λ, we can invert the
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mean-variance portfolio choice (5) evaluated at the market portfolio wM

π =

(
1

λ

)
Σ̂wM ,

which is and equivalent expression to the CAPM equation (8) if we note that λ = σ2M/µM .

The second piece of information is expressed as some subjective views on risk premia.

The investor might have several views on linear combinations of risk premia that we can

express by means of

Qµ ∼ N (q,Ω) ,

where Ω reflects the degree of confidence on those views. This matrix is usually chosen to

be diagonal and its diagonal entries can be composed by scaled historical variances as we

commented above for τΣ̂.

• Outputs: The equilibrium information might be interpreted as the prior beliefs and the

subjective views as additional information. Both pieces of information are combined into

a posterior-like distribution on risk premia

µ ∼ N (πc,Σc) ,

Σc =

[
Q′Ω−1Q+

(
τΣ̂
)
−1
]
−1

, πc= Σc

[
Q′Ω−1q+

(
τΣ̂
)
−1

π

]
,

which is similar to (11) in a general Bayesian framework. The corresponding predictive-like

distribution is normal and similar to (12)

eT+1 ∼ N
(
πc, Σ̂+Σc

)
.

The portfolio advocated by this approach applies (5) to that distribution

wc (λ) = λ
(
Σ̂+Σc

)
−1

πc

and the computed portfolios are not as extreme as in traditional mean-variance. If there is a

low confidence in subjective views with respect to equilibrium (or simply neutral views) then

the investor holds the market portfolio. Specifically, as Ω grows without bound there is more

weight in equilibrium vs. views and wc (λ) converges to λ
(
Σ̂+ τΣ̂

)
−1

π = (1 + τ)−1wM .
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5 Beyond Mean-Variance Preferences

5.1 From Expected Utility to Moments of Returns

Our general approach to portfolio choice has been the expected utility paradigm, represented

by (3). Now we are going to study the connection between expected utility and the properties

of returns distributions. We can express a general vN-M utility function u (·) through its Taylor

expansion around the mean of the portfolio return R and take expectations

E [u (R)] = u (1 + v) +

(
1

2

)
d2u (1 + v)

dr2
E
[
(r − v)2

]

+

(
1

3!

)
d3u (1 + v)

dr3
E
[
(r − v)3

]
+

(
1

4!

)
d4u (1 + v)

dr4
E
[
(r − v)4

]
+ ....,

assuming the utility function is smooth enough and the moments finite. Therefore, expected

utility depends on the mean, variance, skewness, kurtosis, etc. of portfolio returns.

There are two cases where we can rely on mean and variance and skip the rest of moments,

i.e. E [u (R)] = U
(
ν, σ2

)
. In terms of vN-M utility u (·), if this function is quadratic then the

investor only cares about mean and variance. But this utility is not a plausible description of

investor behaviour since it shows decreasing marginal utility from some point and increasing

absolute risk aversion (a risky asset is an inferior good).

The second case relies on the distribution of returns. If returns are multivariate normal

and hence final wealth is normal, R ∼ N
(
1 + ν, σ2

)
, then mean and variance fully describe the

relevant distribution. In fact, mean-variance analysis is not only constrained to normal returns.

Risky assets following a multivariate elliptical distribution is a more general justification as

Chamberlain (1983) showed. He also showed that if a riskless asset is not available then risky

assets can have a more general distribution. Owen and Rabinovitch (1983) studied the link

between elliptical returns and mean-variance analysis too.

The fact that a Student-t distribution is also compatible with mean-variance analysis (as-

suming the variance exists) points out that it is skewness or asymmetry, but not kurtosis or fat

tails the actual problem for the use of variance as an accurate measure of risk. Skewness is prob-

lematic when we work with options or under limited liability at a theoretical level. In addition,

there is a considerable amount of empirical evidence on asymmetric returns documented by the

references of this section.9 However, Peiró (1999) questions such evidence with daily returns of

some stock markets and currencies. The usual empirical evidence against symmetry is based
9This refers to the plausibility of normal univariate returns, but there is a multivariate dimension of asymmetry
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on sample skewness, but this test might not be quite reliable under non-normal distributions

and he does not find clear evidence against symmetry when using other types of tests. On the

other hand, those tests are based on i.i.d. log-returns. Sánchez-Torres and Sentana (1998) use

a skewness test that does not rely on i.i.d. normal returns. More recently, Bai and Ng (2005)

propose similar moment tests of skewness and kurtosis with time series data that are easy to

apply.

Nevertheless, we can still rely on mean-variance analysis as an approximation to choice

under expected utility. We can interpret mean-variance preferences U
(
ν, σ2

)
as the second

order approximation

E [u (R)] ≃ u (1 + v) +

(
1

2

)
d2u (1 + v)

dr2
σ2

and its ranking accuracy will depend on the vN-M utility function and return distribution. This

is an empirical question that will depend on the particular situation under study, e.g. the asset

classes and the horizon that is considered. We will focus on the former example since the role

of the investment horizon will be analyzed in Section 6.1.

Levy and Markowitz (1979) find that the approximation performs well in terms of ranking

mutual funds. Kroll et al. (1984) extend the analysis to portfolio choice with stocks and compare

the corresponding optimal portfolio, showing that mean-variance analysis works well with non-

normal returns. Hlawitschka (1994) also extends Levy and Markowitz (1979) in an application

to derivatives, which are clearly non-normal. He shows a high rank correlation between mean-

variance and other preferences and points out that third and fourth-order Taylor expansions do

not necessarily improve the portfolio choice.

There are asset classes such as of emerging markets’ stocks and bonds and more recently

hedge funds that might be quite attractive in mean-variance terms due to low correlations with

other asset classes and high Sharpe ratios. But this analysis forgets that they might have a

significant negative asymmetry (and high kurtosis) and the investor might dislike it. Bekaert et

al. (1998) study asset allocation with cash, stocks and emerging markets when the investor has

power utility. On the other hand, Fung and Hsieh (1999) show an application to hedge-funds

where mean-variance analysis preserves approximately the ranking of other preferences.

Harvey et al. (2004) and Jondeau and Rockinger (2006) are two recent references of portfolio

that is not always made explicit. For instance, Ang and Chen (2002) find asymmetric correlation in equity

portfolios, in the sense of a higher correlation between individual US stocks and the aggregate US market for

downside moves than for upside moves.
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choice without mean-variance preferences. Harvey et al. (2004) analyze the Bayesian portfolio

choice of Section 4.3 in this new set-up. They use a skew normal distribution to model returns,

which gives both asymmetry and fat tails. Jondeau and Rockinger (2006) use Taylor expansions

of expected (exponential) utility up to fourth order to easily handle asset allocation that takes

into account skewness and kurtosis. Mean-variance portfolios are close to the optimal ones with

weekly data on stock indices of different regions. However, they are a bad approximation with

weekly data on individual stocks unless risk aversion is low, while introducing skewness and

kurtosis alleviates the problem.

Finally, let us comment the equilibrium implications of a framework that does not rely

on mean-variance preferences. Ingersoll (1987) dedicates Chapter 6 to mutual-fund separation

results under restrictions on vN-M utilities or return distributions, and their respective pricing

implications. That chapter gives the relevant references for a series of important issues: Two-

fund separation holds under more general set-ups than quadratic vN-M utility and/or elliptical

returns and there are non-elliptical distributions such that the CAPM holds; on the other hand,

some of the results that look natural in a mean-variance set-up are no longer true for general

preferences, e.g. the efficient portfolio set is not necessarily convex and hence the market portfolio

might be inefficient.

Rubinstein (1973) is one of the first references that extend the CAPM to preferences that

take into account additional moments. Krawss and Litzenberger (1976) start from preferences

that depend on the first three moments of returns and develop a pricing equation similar to (8)

that requires a new term of coskewness with the market. Simaan (1993) introduces skewness in

a factor model of returns. There is three-fund separation in his model, where the third fund is

related to skewness risk, and this translates into an additional term in the pricing equation (8).

More recently, Harvey and Siddique (2000) take into account coskewness with the market as an

additional pricing factor.

5.2 Lower Partial Moments

The previous section studied the connection between mean-variance preferences and ex-

pected utility, stressing that skewness is missing in mean-variance analysis (already mentioned

by Markowitz (1952)). If two assets with the same mean and variance have different skewness

then we expect that an investor prefers the one with higher (positive) skewness.
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There have been several approaches that introduce preference for positive skewness in a set-up

as close as possible to mean-variance analysis. For instance, Ingersoll (1975) introduces skewness

as a third dimension in the analysis and recently De Athayde and Flôres (2004) characterize the

efficient set in such a context. This section will focus in a different approach that also follows

the mean-variance spirit.

We can consider variance as an overall or absolute risk measure, in the sense that it takes

into account both positive and negative outcomes. Our main concern is this might not be an

accurate risk measure in general and hence another approach is the use of another risk measure in

the problem (4).Now we will work with downside risk measures instead, i.e. we will understand

risk as falling below a reference point or shortfall risk. Specifically, we can use a lower partial

moment (LPM) for a reference point r∗ and order k

LPMk (r∗) = E
[
[Max (r∗ − r, 0)]k

]
= E

[
(r∗ − r)k I (r ≤ r∗)

]
,

where I (A) is the indicator function that returns 1 if A is true and 0 otherwise. The reference

point r∗ can be the risk-free rate, a benchmark, inflation, etc.

The choice of k = 0 gives LPM0 (r∗) = Pr (r ≤ r∗), the shortfall probability, which was

already proposed by Roy (1952) as the safety first approach. A related but different approach

is to choose value at risk (VaR) as the risk measure. VaR is the quantile given by a left-

tail probability instead and is the most famous downside risk measure in risk management.

Obviously, now we are getting close to risk management since we are looking for an accurate risk

measure. However, expected utility is always our motivation because we are studying portfolio

choice. Alexander and Baptista (2002) study portfolio choice under mean-VaR preferences,

characterizing the corresponding frontier and the equilibrium implications.

Bawa (1978) extended the approach in Roy (1952) to a general nth-order LPM and studied

the relationship of such a decision rule with stochastic dominance. Chapter 2 of Huang and

Litzenberger (1988) describes stochastic dominance, a criterion to discriminate portfolios under

the expected utility paradigm that is only based on the signs of the derivatives of an otherwise

general vN-M utility function u (·) (say a risk averse investor). Obviously, this criterion is much

more general than mean-variance analysis. Unfortunately, it is not a practical rule, while LPMs

represent a computable approximation. Bawa considers LPMs as a better risk measure than

variance for that reason. More recently, Daníelsson et al. (2006) revise the connection between

stochastic dominance and several (overall and downside) risk measures.
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An obvious critique to k = 0 is that it does not take into account the level of under-

performance. However, k = 1 does since LPM1 (r∗) = Pr (r ≤ r∗)E [r∗ − r | r ≤ r∗] and the

underperformance average shows up. The conditional mean term in LPM1 (r∗) is related to

concepts such as expected shortfall, conditional VaR, tail conditional expectation, or expected

tail loss in risk management. The reader can find their precise definition in Daníelsson et al.

(2006).

We can also criticize the choice of k = 1 since it shows risk neutrality under r∗. Mean-

LPM preferences can be represented with expected utility by means of a vN-M utility u (R) =

R − θ (r∗ − r)k I (r ≤ r∗) for some θ > 0, with a corresponding expected utility E [u (R)] =

(1 + ν) − θLPMk (r∗). A general order k is linked to risk aversion in the sense that k = 1

separates risk-seeking from risk-averse behaviour for r ≤ r∗. If we move to k = 2 then we

find the shortfall semivariance LPM2 (r∗), already commented by Markowitz (1959) as a more

robust risk measure. The concept of semivariance is sometimes reserved for r∗ = E (r). Under a

symmetric distribution, LPM2 (E (r)) = 0.5σ
2 and hence the ordering would be the same using

mean-variance preferences.

Let us focus on r∗ = r0 and the semivariance LPM2 (r0). Then we can express the optimal

portfolio in a mean-LPM framework as the solution to

min
w

LPM2 (r0) s.t. E (e) = µ.

Hogan and Warren (1972) develop some theoretical results about the mean-semivariance

frontier without a safe asset and a general r∗. They show that LPM2 (r∗) is convex and continuos

differentiable in w. Therefore, this is a standard optimization problem even though we do not

have a explicit solution like in the mean-variance context (recall (5)). The frontier is convex

on (ν,LPM2 (r∗)) space. Later, Hogan and Warren (1974) study the existence of a riskless

asset and r∗ = r0. The concepts of two-fund spanning and tangency portfolio apply also in this

context and the efficient frontier is a straight line on space
(
µ,LPM

1/2
2 (r0)

)
, i.e. we find a

similar situation to Figure 2.

Bawa and Lindenberg (1977) comment similar results for the order k = 1 too when r∗ = r0,

while Harlow and Rao (1989) analyzed a general r∗. Harlow (1991) reviews the mean-LPM

analysis and constructs an empirical application to international asset allocation. There is a

higher investment in bonds than with mean-variance preferences. Sortino and Forsey (1996)

advocate the use of semivariance but comment some problems with its implementation.
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Finally, let us describe the equilibrium implications of mean-LPM preferences. Hogan and

Warren (1974) study the translation of the CML and SML to the mean-semivariance context

when r∗ = r0. As expected from previous comments about the mean-semivariance frontier, there

is two-fund separation using the safe asset and the market portfolio, and the main novelty is that

the pricing equation (8) should use a different beta. Its numerator should be the cosemivariance

with the market, where the truncation is eM ≤ 0 (the cosemivariance is not a symmetric concept,

while the covariance is), and its denominator should be the market semivariance.

Bawa and Lindenberg (1977) comment similar results for the order k = 1 too when r∗ =

r0, while Harlow and Rao (1989) analyzed a general r̃. They also develop an econometric

implementation of the model and their empirical results show that this model performs better

than the traditional CAPM. More recently, Pedersen and Satchell (2002) review the equilibrium

implications of mean-LPM preferences as a generalization of quadratic vN-M utility instead of

elliptical distributions. The CAPM holds under two-fund separating distributions, which are

more general than elliptical distributions, and the mean-LPM pricing does not add value in

those situations.

5.3 Alternative Performance Measures to Sharpe Ratio

We will dedicate our last comments on developments beyond mean-variance preferences to

some alternatives to the Sharpe ratio, defined in (7). The main goal of those measures is to

give a similar ranking to Sharpe ratios when returns are symmetrically distributed and show

a preference for skewness when they are not. Moreover, performance measures can be used to

guide asset allocation since they can be used as the criterion to maximize with portfolio.

A natural generalization of the Sharpe ratio of a risky security is the Sortino ratio

S (r∗) =
v − r∗

LPM
1/2
2 (r∗)

,

which is based on semivariance for some threshold r∗ as the risk measure. Pedersen and Satchell

(2002) study the theoretical foundations of this measure and advocate the use of r∗ = r0. In that

context, we commented that the efficient frontier satisfies the properties of two fund spanning

and linearity on
(
µ,LPM

1/2
2 (r0)

)
. This linearity provides a single optimal trade-off between

risk and return that can discriminate portfolio efficiency, as it is the case with the Sharpe ratio.

A different performance measure based on the ratio of upper to lower partial moments of

order k = 1 is proposed in Keating and Shadwick (2002), but it is a function of the threshold r∗
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and it lacks a theoretical justification. They define the Omega function by

Ω(r∗) =
E [Max (r − r∗, 0)]

E [Max (r∗ − r, 0)]
=
UPM1 (r∗)

LPM1 (r∗)

and study its properties. Its ranking of assets with different variance, skewness, or kurtosis

depends on r∗, e.g. omega might increase with variance when r∗ is high.

Stutzer (2000) develops a performance measure that is based on the hypothesis that a fund

manager is averse to receiving a nonpositive time-averaged excess return above some benchmark.

Specifically, her objective is to minimize the probability of underperformance over the next T

periods, which is Pr (ē ≤ 0) is we simply assume that the benchmark is the risk-free asset. This

criterion is close to Roy’s safety-first approach.

If portfolio returns are i.i.d (this can be generalized) and satisfy µ > 0 then a law of large

numbers shows that Pr (ē ≤ 0) ≃ 0 for a high horizon T . This fact is not very useful to order

portfolios and a central limit theory does not provide a good approximation to that probability,

but we can rely on large deviation theory instead. This theory gives the rate of decay of that

probability

Pr (ē ≤ 0) ≃ exp (−I · T ) , I = max
θ
− lnE [exp (θe)] ,

which is related to the moment generating function of e, assuming it is well defined.

The rate of decay I ≥ 0 (I > 0 if µ > 0, and I = 0 otherwise) is the proposed performance

index, which gives the same ranking as the Sharpe ratio under normality because I = 0.5SR2

in that case. Stutzer faces the portfolio choice with criterion I against a Sharpe ratio criterion

with several stocks and finds that the portfolio chosen by I shows some skewness preference that

is not taken into account by the Sharpe ratio.

The usefulness of these alternatives is an empirical question. Recently, Eling and Schuh-

macher (2007) face the Sharpe ratio ranking of hedge funds against twelve alternative measures

that include Omega and the Sortino ratio for instance. Hedge funds are clearly non-normal, but

the Sharpe ratio gives a ranking that is similar to the other measures.

6 Multi-Period Choice

6.1 Long-Term Choice and Predictability

We have assumed a particular horizon in the previous sections but we have not been explicit

about it. Now we will study the effect of the horizon, which will be denoted by T periods,
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in buy-and-hold strategies. A textbook treatment of the following concepts can be found in

Chapter 2 of Campbell and Viceira (2002).

First, we note that there is not a universal long-term portfolio that is optimal for every

agent even though the growth-optimal portfolio might look so. That portfolio maximizes the

expected geometric return E
[
T−1 ln (R1R2...RT )

]
and hence E

[
T−1 ln

(
W g
T/WT

)]
> 0, where

W g
T is the final wealth from the growth-optimal portfolio andWT is the final wealth of any other

portfolio. If we assume i.i.d. returns and apply the corresponding law of large numbers then the

growth-optimal portfolio outperforms any other portfolio in the long run (as T goes to infinity)

with probability reaching one.

However, this choice does not necessarily maximize expected utility for preferences different

to vN-M log-utility u (R) = lnR. Similarly, we can also translate this argument to a mean-

variance context because E (lnR) ≃ (1 + ν)− 0.5σ2 and hence its maximization is optimal for

a risk tolerance of 1, which represents a fairly aggressive investor. Stutzer (2003) is a related

reference where the application of large deviation theory in Stutzer (2000) is linked to long-

horizon portfolio choice.

Another natural question is the behaviour of the mean-variance frontier as investment horizon

lengthens.10 The answer is that it does not change with the number of periods T when returns

are i.i.d. To simplify, let us assume a single risky asset class, say the stock market, and that

long-term returns are approximately equal to the sum of short-term returns. Then the efficient

portfolio (5) for horizon T expressed in terms of risk tolerance λ is

w (λ) ≃ λ
µT

σ2T
= λ

µ

σ2
,

that is, it is independent of horizon since both risk premium and variance grow linearly with time

in this random walk context. Obviously, the previous expression is an approximation and there

might be some horizon effects, but they are not relevant in practice. The previous expression is

exact in continuous time with diffusions.

This horizon-independence points out a potentially misleading use of Sharpe ratios. The

10Another interesting but slightly different question on horizon effects is the shape of the distribution of returns,

which is related to Section 5.1. Arditti and Levy (1976) studied skewness in multi-period returns under i.i.d.

returns. More recently, Levy and Duchin (2004) use goodness-of-fit tests of several models at different horizons for

both stocks and bonds. The best fitting distributions change from short to long horizons: Elliptical distributions

fit well at short horizons and hence mean-variance analysis would be justified, but some positive skewness is found

at long horizons.
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Sharpe ratio of the previous portfolio is SR ≃
√
Tµ/σ when returns are uncorrelated, that is, it

increases with time. However, we should compare Sharpe ratios across assets for a given horizon

and we should not compare Sharpe ratios across different horizons. On the other hand, Hodges

et al. (1997) show horizon effects in Sharpe ratios of stocks and bonds that signals non-i.i.d.

returns. They find that they first increase and lately decrease for each asset and also that the

ranking changes.

There are some empirical examples of clear time series dependence in financial returns:

Interest rates are autocorrelated and stock returns are conditionally heteroskedastic. We will

not discuss the empirical evidence on predictability and market efficiency in this paper. We refer

the interested reader to Chapter 20 in Cochrane (2001) and Chapters 2 and 7 in Campbell et

al. (1997).

Therefore, we will not think of i.i.d. returns in the rest of the paper and we will take

into account (stochastic) time-variation in investment opportunities in portfolio construction.

The interest rate r0 and the risky assets’ risk premia µ = E (e) and variance matrix Σ =

V ar (e) should be conditional on the relevant information set (e.g. Et (et+1) and V art (et+1),

where subscript t denotes conditioning on information up to t) and not equal to unconditional

values. Hansen and Richard (1987) developed a formal framework for mean-variance analysis

with conditioning information. That framework can be considered the conditional counterpart

of Chamberlain and Rothschild (1983). Ferson and Siegel (2001) and Sentana (2005) represent

recent applications of this set-up.

This discussion introduces econometric models of returns time series into portfolio choice.

The standard models in financial econometrics can be found in Campbell et al. (1997). Examples

of standard models in long-term portfolio choice are r0 following an AR(1) and the risk premium

of stocks µ being linear in the dividend yield. Those examples introduce two of tho most usual

predictors (or state variables) in this literature, the short-term interest rate and the dividend

yield. Another one is the slope of the term structure of interest rates or simply the term spread.

Campbell and Viceira (2005) use a VAR model of returns and predictors to analyze the

variance and correlation of stocks, bonds, and cash (Treasury-bills) across different horizons.

The volatility per period decreases with horizon for stocks and increases for cash, which are

signals of mean-reversion and reinvestment risk respectively. The global minimum-variance

portfolio at different horizons is composed of mostly cash in the short run and mostly stocks
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and bonds in the long run. Guidolin and Timmermann (2006) analyze the term structure of

different risk measures such as VaR and expected shortfall under several econometric models

such as Markov-switching and GARCH-M with Student-t innovations. There are significant

differences across models and there is not a clear best model in an out-of-sample forecasting

exercise with portfolios of stocks, bonds, and cash.

The rest of Section 6 will study multi-period asset allocation allowing rebalancing during

the investment horizon, i.e. we are interested now in a sequence of portfolio choices instead of

a single (buy-and-hold) choice. We will focus on the theoretically optimal strategy developed

in the academic literature in Section 6.2, but we will briefly comment the industry approach

before. The reader can find additional details in Sharpe (1987).

The usual practitioner’s approach decomposes the portfolio problem in two parts. The first

part is called strategic asset allocation (SAA) and defines a long-term target or benchmark.

The computation of such portfolio could follow the previous comments on long-term buy-and-

hold strategies. The second part is called tactical asset allocation (TAA) and tilts the portfolio

away from the strategic benchmark to take advantage of short-term changes in investment

opportunities. These short-term changes are interpreted as inefficiencies or deviations from

equilibrium, and hence an opportunity to active management through market timing, "beating

the market" with superior information.

We can apply results from previous sections to this framework. We can use mean-variance

analysis to compute the SAA and TAA portfolios, e.g. Clarke and de Silva (1998) show an

example with i.i.d. returns and two possible mean-variance regimes. TAA is usually implemented

with respect to a benchmark and can follow Section 3.3 and the references therein. The Black-

Litterman approach studied in Section 4.3 is also widely used for TAA by the industry, where

the market represents the SAA and the investor’s views drive the TAA.

6.2 Dynamic Asset Allocation Theory

The theoretical optimal strategy is not based on a long-term benchmark and short-term tilts.

This approach directly defines a sequence of (contingent) portfolios that is optimal given pref-

erences and return dynamics. We are going to study multi-period portfolio choice in continuous

time when returns follow diffusion processes. This context allows to compute more explicit ex-

pressions than discrete time and hence helps to clarify the difference to one-period choice. R.C.
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Merton developed the following results in a series of papers that were lately compiled in Merton

(2001). Textbook treatments of the following results can be found in Chapter 13 of Ingersoll

(1987) (Chapter 11 is dedicated to discrete time portfolio choice) and Chapter 5 of Campbell

and Viceira (2002).

Let us assume investment opportunities change over time depending on a random variable

Z, and therefore it is called state variable or predictor. There are N risky assets that pay no

income (only to ease exposition) and their prices are represented by the vector P. Let us denote

by dY the vector with entries equal to dP/P for each asset. At each point in time t, prices

evolve as

dY = ν (Z, t) dt+ Γ (Z, t) dB,

where B is a vector Brownian process and Γ (Z, t) is a lower triangular matrix, and the state

variable follows a similar equation for dZ with respect to another scalar Brownian process BZ .

Drifts (vector ν (Z, t) for dY) and volatilities (matrix Γ (Z, t) for dY) only depend on time and

the state variable.11 The instantaneous risk-free rate might change with time and the state

variable too, r0 (Z, t).

Let us define some conditional moments, where some expressions do not make explicit de-

pendence on (Z, t) to simplify notation. The risk premia and the variance matrix are given

by

µdt = Et (dY−r0dt1) = (ν − r01) dt, Σdt = V art (dY) = ΓΓ
′dt,

where subscript t denotes conditioning on information up to t, and the new relevant object is

the (conditional) covariance between prices and the state variable

γdt = Covt (dY, dZ) .

The portfolio problem is defined as follows. At some initial time 0, the investor maximizes

expected utility of final wealth at some future time W (T ) given a budget constraint. She

computes a portfolio strategy defined by the function w (W,Z, t) (continuous rebalancing until

11A discrete-time counterpart of returns might help to clarify the stochastic structure. We can think of a return

process

rt+1 = v (zt) + σ (zt)ut+1,

where v (·) and σ (·) are functions of the state variable zt (and independent of time to simplify), and ut+1 is a

standard normal shock. Conditional on zt, rt+1 is normal with mean v (zt) and variance σ2 (zt). Finally, we can

also think that zt follows an AR(1) process.
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time T ), measured as portfolio weights relative to wealth, that solves the problem

max
w

E0 [u (W (T ))] s.t. dW =W
[(
r0 +w

′µ
)
dt+w′ΓdB

]

for some initial wealth W (0) > 0. Wealth is also constrained to be positive every time. We

could introduce consumption (and think of an infinite horizon) but it is not a key issue for our

main points.

This problem was solved by Merton (1969) for the case of lack of predictability. They reader

can find in Samuelson (1969) its discrete time counterpart. Mossin (1968) also studied the

discrete time case by means of dynamic programming. Merton (1971) made several extensions

of Merton (1969) and one of them was the introduction of Z. He used dynamic programming

to solve the problem and that is what we will do. Cox and Huang (1989) show an alternative

technique based on martingales to solve the problem that is sometimes easier to apply but

requires the assumption of complete markets.

Defining the value function as expected utility at the optimum

V (W,Z, t) = max
w

Et [u (W (T ))] ,

and denoting partial derivatives of V by subindices, the optimal portfolio is implicitly given by12

wd = λmΣ
−1µ+ λhΣ

−1γ, (13)

λm = −
VW

WVWW
, λh = −

VZW
WVWW

.

In general, wd depends on (W,Z, t) but the standard choice of u (·) in the literature is the

CRRA type, which makes wd depend only on (Z, t). We have found that the portfolio strategy

is the sum of two components. The first component is similar to the one-period solution (5) that

we find in mean-variance analysis. Σ−1µ defines a mean-variance portfolio and λm > 0 is related

to relative risk tolerance. This component will be called myopic. The second component hedges

against changing investment opportunities. Σ−1γ is the portfolio with maximum correlation

with the state variable, a least squares regression, and λh is a measure of aversion to changes

in the state variable with the same sign as VZW . This component will be called intertemporal

hedging demand.
12Putting together the Bellman principle and Itô’s lemma, the optimal choice is characterized by

VWµ+WVWWΣwd + VWZγ = 0,

plus the corresponding boundary condition given by u (W (T )) in our case.

32



This structure13 is not far from the optimal portfolio in (10), where background risks intro-

duced a hedging component. Now there is an intertemporal risk instead since we care about the

future investment opportunities after the current period. If VZW < 0 we interpret that higher

Z describes better investment opportunities (a decrease in VW ). For instance, let us think of

such Z as the short-term interest rate. In that context, there is an incentive to buy bonds

because γ < 0. Their price is relatively higher when it is relatively more valuable, a scenario

of low interest rates. Therefore, we find a hedging motive to hold bonds that is missing in the

traditional mean-variance approach.

The literature describes (13) as SAA and its myopic component as TAA since Brennan et

al. (1997), which does not coincide with the industry use of those terms. It is very relevant to

study cases where the optimal dynamic strategy is equal to the myopic strategy, i.e. where we

find a zero hedging component. A first case is i.i.d. returns14, i.e. (r0,µ,Σ) do not depend on

a stochastic Z. But we already commented that this case does not fit empirical evidence. A

context with similar implications is simply that shocks to investment opportunities cannot be

hedged with available assets, γ = 0. A second case is vN-M log-utility u (W ) = lnW because

then there is no effect of Z on marginal utility of wealth, VZW = 0. This is the growth-optimal

portfolio context, which we commented above and pointed out that represents a very particular

type of preferences.

On the other hand, the relevance of the intertemporal hedging will depend on the utility

function and the return properties, like the persistence in Z. Markowitz and van Dijk (2003) show

an example in discrete time where a simple rule inspired in mean-variance analysis might perform

closely to an optimal dynamic strategy, which is much more difficult to compute. De Miguel et

al. (2005) face the out-of-sample performance of a very simple rule, the "naive" diversification

rule w = N−11 (with and without rebalancing), against several static and dynamic models,

most of them commented in this survey. They study different data sets of stocks and bonds and

conclude that the simple rule is not inefficient, e.g. it generally delivers the highest Sharpe ratio.

13Note that (13) is still an implicit solution. We must solve a second-order partial differential equation in V

to compute the explicit solution, with analytic solution in few cases. Merton (1971) gives solutions for HARA

utility and i.i.d. returns. Kim and Omberg (1996) and Wachter (2002) study some other few cases with closed-

form solutions. The former introduce mean-reversion in the drift of a single risky asset, while the latter adds

consumption to that context. The addition of consumption requires the assumption of complete markets to get a

closed-from solution using the approach in Cox and Huang (1989).
14 In discrete time, this case also requires the assumption of CRRA utility.
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The length of the estimation window needs to be quite big to alleviate the estimation error and

improve with respect to the simple rule.

Finally, let us describe the equilibrium implications of this set-up. They were studied in

Merton (1973) and the main point is the breakdown of two-fund separation. There is three-fund

separation in this context since we need a position in cash, the fund given by Σ−1µ and the

fund given by Σ−1γ to replicate any wd. In general, if there are K state variables then we need

K + 2 funds to replicate the optimal portfolios.

Therefore, the portfolio advice cannot be simply holding the market and there is not a single

optimal mix of risky assets. However, return dynamics are not interpreted as inefficiencies or

deviations from equilibrium since they are part of the equilibrium. The corresponding portfolio

advice represents a different interpretation of market timing. It is not active management as

"beating the market" through superior information, but neither passive management as "holding

the market". Similarly, the asset pricing model cannot only rely on the market portfolio, which

is not necessarily mean-variance efficient. The corresponding multifactor asset pricing model is

called the Intertemporal CAPM (ICAPM). On the other hand, under any of the (implausible)

commented cases that imply zero hedging demands, the traditional CAPM would hold.

6.3 Applications of Dynamic Asset Allocation

This section and the next one describe papers that apply and extend the set-up in Section

6.2. This is one of the areas in finance with a stronger research effort during the last years,

mainly spurred by the empirical evidence on predictability developed during the nineties (and

the required improvement in computer power). The investment industry will soon become

familiar with this approach to dynamic asset allocation.

Brennan et al. (1997) is one of the first applications of Merton (1971), solving numerically

a model with utility on final wealth. The asset classes are stocks, bonds, and cash and three

state variables (short-term interest rate, bond yield, and divided yield) drive time-variation in

expected returns. They compare three strategies to show the difference between SAA and TAA,

one with a fixed horizon of 20 years, another with a fixed horizon of 1 month, and a third one

with an horizon given by a fixed date. The first one always invests more in stocks than the

second one because of mean-reversion,15 while the second generally invests more in cash than

15When describing the sign of the hedging demand in this and the next applications, it is assumed that relative

risk aversion is higher than one, i.e. we think of an investor that is more risk averse than a log-utility agent.
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the first one because of reinvestment risk. The third strategy converges from the first to the

second one.

Campbell and Viceira (2001) explore the commented idea of bonds as a hedging instruments

of future interest rates. They study long-term portfolio choice in an infinite horizon discrete-time

model with a single source of time-variation in investment opportunities, the short-term interest

rate. They use an approximate solution to the portfolio/consumption problem, which is exact

under continuous time and unitary elasticity of intertemporal substitution. The portfolio of

risky assets is constant over time but different from a myopic portfolio, with a positive hedging

demand for bonds. The optimal ratio of bonds/stocks increases with risk aversion, which fits

the professional advice and cannot be found in the traditional mean-variance analysis.

Campbell et al. (2003) apply this type of approximate solution to a discrete-time model

where risk premia are also stochastic and the optimal portfolio is an affine function of state

variables. They analyze another conventional advice, long-term investment in stocks because

in that context stocks are relatively safer. Here the justification is that stocks can serve as a

hedging instrument of their future risk premia. In a VAR equation for stocks, the dividend yield

coefficient is positive and hence higher dividend yield implies higher risk premia, i.e. better in-

vestment opportunities or VZW < 0 in our previous notation. On the other hand, the covariance

between the residuals in stock and dividend yield VAR equations is negative, which the authors

interpret as mean-reversion in stocks and means γ < 0 in our previous notation. Another refer-

ence that explores the portfolio implications of stock predictability is Lynch (2001), but he does

not treat stocks as a single asset class and works with equity portfolios formed on characteristics

such as size and book to market. He shows the interaction between predictability and equity

characteristics in the optimal strategy.

We have commented intertemporal hedging demands derived from time-variation in interest

rates and risk premia, but volatility and learning are other relevant sources of time-variation in

investment opportunities. Chacko and Viceira (2005) analyzed the first case in a continuos-time

model of portfolio/consumption choice. The precision of stock returns is mean-reverting and

higher volatility denotes worse investment opportunities (VZW > 0) while stocks show a leverage

effect (γ < 0). Hence there is a negative hedging demand for stocks, but less important than the

ones derived from interest rates and risk premia since volatility is not so variable and persistent.

Parameter uncertainty also introduces a hedging demand through learning. The current
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estimates of the relevant parameters become state variables and the investor has incentives to

hedge their time-variation. Williams (1977) introduced heterogeneity in believes about drifts in

Merton (1973) with i.i.d. returns. More recently, Brennan (1998) studies the case of learning

about the risk premium of a single risky asset in a continuous-time model without predictability

and consumption. A higher risk premium denotes better investment opportunities (VZW < 0)

while Bayesian learning about the risk premium implies γ > 0. Hence there is a negative

hedging demand due to learning about the risk premium. Xia (2001) adds stock predictability

and consumption to the previous set-up. She finds a state-dependent relationship between

investment in stocks and the horizon and a non-monotone relationship between the position in

stocks and the predictor.

6.4 Link to Previous Sections

The final part of this survey is dedicated to papers that study issues such as predictability,

dynamic asset allocation, etc. in the set-up of previous sections. We will start with Bayesian

portfolio choice given the connection with our last point on hedging demands from learning.

Then we will explain non-normal return models and finally background risks.

• Bayesian portfolio choice: Predictability was missing in Section 4, where we generally

assumed i.i.d. returns. Kandel and Stambaugh (1996) use the asset allocation of a my-

opic Bayesian investor to study the relevance of stock predictability. They conclude that

predictability is relevant even though its statistical evidence through regressions of stock

returns on predictors is weak. Barberis (2000) analyzes long-term portfolio choice by a

Bayesian investor who has access to cash and stocks and uses the dividend yield as a

predictor. First, he studies the case of buy-and-hold strategies under both i.i.d. and pre-

dictable returns. He finds that the investor holds less stocks the higher horizon, i.e. there

are horizon effects for i.i.d. returns in a Bayesian set-up. He studies dynamic strategies

and learning too. Avramov (2002) uses Bayesian model averaging to deal jointly with pa-

rameter and model uncertainty, where the latter refers to the relevant predictors of stock

returns . He applies the model to buy-and-hold strategies of stock portfolios at different

horizons. More recently, Hoevenaars et al. (2006) also study buy-and-hold strategies and

predictability under a Bayesian (and robust) perspective.

• Nonparametric portfolio estimation: There is an alternative approach to parameter and
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model uncertainty that relies on classic inference and is developed in Brandt (1999). He

proposes a kernel estimation of the portfolio/consumption choice in a discrete time model

as a function of predictors. Ahït-Sahalia and Brandt (2001) adapt the previous set-up to a

context with many predictors, and also take into account both expected and non-expected

utility criteria. They build an optimal index that combines the different predictors and

study their relative importance.

• Markov-switching models: The empirical evidence against normal returns does not mean

we should forget about normal distributions since we can still work with a mixture of nor-

mal distributions. We can think of "bad times" as a low probability regime of higher volatil-

ity, lower mean, and higher correlation than "good times". Markov-switching models add

persistence in the regimes (as it is the case with business cycles) and hence time-variation

in investment opportunities. Ang and Bekaert (2002) show gains from international di-

versification in dynamic asset allocation even though there is a higher correlation between

international stock markets during highly volatile bear markets. They also take into ac-

count parameter uncertainty and construct tests on portfolio weights by means of classic

inference, e.g. they do not find significant intertemporal hedging. In a similar spirit, Ang

and Bekaert (2004) develop other applications but the portfolio strategy is simplified to

switching between two mean-variance choices. Guidolin and Timmermann (2005a) esti-

mate four different regimes in a VAR model with large and small stocks, bonds, and cash.

There is not a monotone relationship between the stock position and the horizon due to

the interaction between learning and predictability in a dynamic portfolio choice based on

final wealth. Guidolin and Timmermann (2005b) use two regimes and preferences defined

on the first four moments of wealth. Both features can justify the home bias of a US

investor.

• Poisson processes: Section 6.2 was meant for diffusions and another modelling device of

non-normal returns is the introduction of Poisson processes to model jumps in continuos

time. Merton (1971) already did it in different contexts such as the price of a bond. More

recently, Liu et al. (2003) study dynamic asset allocation with utility from final wealth

when there are jumps in both prices and volatility of a single risky asset. They compute

an analytical solution where the desire to hold leveraged or short positions decreases with

respect to the diffusion case. In fact, the optimal strategy can be interpreted as a mixture
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between a dynamic and a buy-and-hold strategy, as if some component of wealth was

illiquid.

• Inflation: Brennan and Xia (2002) focus on portfolio/consumption choice with nominal

assets under inflation. They use a continuous time model where the investor has access

to cash, stocks and bonds with different maturities. Risk premia are constant but the

short-term interest rate and inflation are predictable. They show how horizon and risk

aversion affect the optimal mix of stocks and bonds and also the chosen bond maturity

under short-sale constraints.

• Human capital: There is a brief comment on the impact of wages in Merton (1971). More

recently, The impact of human capital in portfolio/consumption choice is studied in Koo

(1998) and Viceira (2001). The former uses a continuous time model with several risky

securities, while the latter uses a discrete time model with uncertainty about retirement

and death and a single risky security interpreted as stocks. In both papers, human capital

is exogenous and nontradable, and investment opportunities in financial markets are i.i.d.

Bodie et al. (1992) explore the impact of labor supply flexibility in a continuous time

model.

• Housing: Real estate can be traded but its liquidity is much lower than financial as-

sets. Portfolio choice and asset pricing with an illiquid durable consumption good, that

we can interpret as housing, was analyzed in a continuous time model by Grossman and

Laroque (1990). More recent references on the interaction between housing and port-

folio/consumption choice are Cocco (2005) and Yao and Zhang (2005). They develop

discrete time models that also take into account (exogenous and nontradable) human cap-

ital. On the other hand, they only analyze stocks and cash as asset classes and assume

that investment opportunities in financial markets are i.i.d.

• ALM:We also pointed out that pension funds’ ALM has an important dynamic component.

We refer the interested reader to Ziemba and Mulvey (1998) and Scherer (2003) for details.

For instance, in former reference’s Chapter 16, R.C. Merton applies the benchmark model

of Section 6.2 to university endowment funds, computing the optimal portfolio strategy

that takes into account that the university has other (tangible and intangible) assets.
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Figure 1: Mean-variance preferences and frontier.
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Figure 2: Mean-variance frontiers with and without a safe asset.
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Figure 3: Mean-variance frontiers with and without background risks.
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