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Abstract

In the presence of overlapping generations, markets are incomplete because it is impossible

to engage in risksharing trades with the unborn. In such an environment the government

can use a social security system, with contingent taxes and benefits, to improve risksharing

across generations. An interesting question is how the form of the social security system

affects asset prices in equilibrium. In this paper we set up a simple model with two risky

factors of production: human capital, owned by the young, and physical capital, owned by all

older generations. We show that a social security system that optimally shares risks across

generations exposes future generations to a share of the risk in physical capital returns.

Such a system reduces precautionary saving and increases the risk-bearing capacity of the

economy. Under plausible conditions it increases the riskless interest rate, lowers the price

of physical capital, and reduces the risk premium on physical capital.



1 Introduction

The design of public pension systems is a subject of active discussion around the world.

Important questions are how to combine pay-as-you-go with prefunded pension benefits,

and how to adjust benefits and taxes to unanticipated shocks. Traditional public pension

systems set fixed benefit rates to be financed by fixed rates of payroll taxation. Economic

shocks may require adjustments in benefits, tax rates, or both, and adjustments have often

been made (McHale 2001); but the nature of these adjustments is not always spelled out

in advance. This lack of clarity is unfortunate, because pay-as-you-go pension systems with

contingent taxes and benefits can be used to improve risksharing between generations. In

effect, the government can use its powers of taxation to share capital and labor income risks

across generations. Private markets cannot accomplish this because future generations are

absent from the marketplace today.

Any analysis of a contingent public pension system, or contingent social security, should

consider the effect of the system on private asset markets. The willingness of households to

save, and to bear private investment risk, depends on their expectations about future social

security payments and the correlation of these payments with risky asset returns. Thus the

form of the social security system can influence the riskless interest rate and the pricing of

risky assets.

To analyze such effects, we need a model with overlapping generations (OLG) in order

to capture the special role of social security. Unfortunately, OLG models are hard to

work with. The classic two-period OLG model of Samuelson (1958) and Diamond (1965)

has inelastic supply of assets by the old (who have no reason to save), and inelastic demand

for assets by the young (who have no reason to consume). A three-period extension of the

model (Constantinides, Donaldson, and Mehra 2002, 2005) is more realistic, but analytically

intractable. In this paper, we follow Blanchard (1985) and Gertler (1999) and use a model

in which agents face a constant probability of death each period. Our model is most closely

related to Farmer (2002). Like Farmer, we assume that agents have log utility and own

both human and physical capital; unlike Farmer, however, we abstract from production and

depreciation in order to concentrate on the asset pricing effects of social security.3

We simplify our analysis by assuming fixed supplies of two assets, human capital that

is owned entirely by the youngest generation alive in each period, and physical capital that

is used for savings. Our assumption that physical capital cannot be accumulated is often

used in the finance literature on the pricing of the aggregate equity market, following Lucas

(1978) and Mehra and Prescott (1985). Following Lucas, we can think of our economy as

having two “fruit trees”. The first tree produces fruit that is owned by each new generation,

but no single generation owns the tree itself. The second tree is owned by older generations

and sold to younger ones. The assumption of fixed asset supplies means that the social

security system has large effects on asset prices but no effects on asset quantities; however

our model suggests the direction of quantity effects that would arise in a model with factor

accumulation.

3Athanasoulis (2006) also uses the Blanchard model to study the determination of asset prices in an OLG

model. Athanasoulis assumes constant absolute risk aversion and does not model a social security system.
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We assume that both human capital and physical capital pay risky dividends. In a

laissez-faire economy, these risks are shared across generations through their effects on the

equilibrium price of physical capital. Although the old do not own human capital, they are

affected by a low human capital dividend because this lowers the resources of the young and

thus lowers the price of physical capital that the old sell to the young. Similarly, although

the young do not initially own physical capital, the dividend on physical capital affects the

price of the capital that they buy. It turns out that in our model, the laissez-faire equilibrium

shares human capital risk, but not physical capital risk, optimally between the young and

the old. Thus there is a role for a contingent social security system to improve risksharing.

Some previous authors, including Shiller (1999) and Ball and Mankiw (2001), have as-

sumed that human capital is riskless and have concentrated on the need to share physical

capital risk across generations. Bohn (2002, 2003) points out that in a standard production

model, labor income and physical capital income are proportionately exposed to technology

shocks.4 Empirical estimates of human capital risk are often quite low (Campbell, Cocco,

Gomes, and Maenhout 2001), but cointegration between human and capital income could

increase long-run measures of human capital risk (Benzoni, Collin-Dufresne, and Goldstein

2005). Our model justifies the concentration on physical capital risk without relying on the

assumption that human capital is riskless.

2 A Simple Model

We assume that each period (1− χ) new agents are born and that each agent survives into
the next period with probability χ. This implies that there is a unit measure of agents alive

in every period. Agents stay young for one period and the young generation holds all the

human capital in the economy. Labor supply is inelastic and the aggregate stream of wages

earned by young workers is given by {ht}∞t=0, where ht > 0 for all t. There are two tradable
assets in the economy, riskfree one-period bonds and risky physical capital. There is a fixed

supply of one unit of risky physical capital which pays a dividend stream {dt}∞t=0, where
dt > 0 for all t. The ex-dividend unit price of physical capital is denoted by pt.

These assumptions could be justified by a production function of the following form:

Yt = htH + dtK, with H = K = 1, (1)

where H denotes aggregate human capital and K the total supply of physical capital.

2.1 Annuitization

We assume that individual investors purchase physical capital from annuity companies which

operate in a competitive market. The contract investors sign with the annuity company

4Bohn also assumes that physical capital can be accumulated or decumulated without adjustment costs.

This implies a stable price of physical capital, so the owners of physical capital have a lower overall exposure

to technology shocks than the owners of human capital.
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specifies that their physical capital holdings are taken over by the company at the time of

their death. In exchange for this contingent claim, the annuity company agrees to pay them

an extra income stream {At} per unit of physical capital during their lifetime.
At the beginning of every period, a fraction (1−χ) of the population dies and is replaced

by an equal measure of young agents. Since the probability of death does not change with

age in our simple model, the death rates are equal at all points of the wealth distribution.

This implies that, at the beginning of every period, the annuity companies are left with a

fraction (1 − χ) of the aggregate claims on physical capital from those who die. Given

that only a measure χ of agents survive from the previous period, the annuity companies

must make total payments of χAt at the beginning of period t. It follows that an annuity

company can break even by offering individual investors an annuity payment each period,

for each unit of physical capital, equal to:

At =
1− χ

χ
(dt + pt) (2)

in exchange for a contingent claim to their physical capital holdings in the event of their

death. This multiplies the gross return on physical capital by a factor 1/χ.

We also assume that individuals can use annuity companies to borrow or lend at a

deterministic rate. Again, the idea is that the annuity companies take over the debt or

assets of individuals when they die. With a large enough population of agents, an annuity

company can break even by offering a higher rate on savings and asking for a higher rate

on loans than the going riskless rate in the bond market. With a competitive market for

annuities and a death rate that does not vary with age, the gross interest rate in the annuities

market Ra,t+1 is 1/χ times the gross riskless rate in the bond market Rf,t+1:

1 +Ra,t+1 =
1

χ
(1 +Rf,t+1). (3)

2.2 Laissez Faire Equilibrium

We now consider how consumption and wealth are determined in laissez faire equilibrium.

We adopt the following notational convention. We denote by bCr
t the per capita consumption

in period t of an individual born in period r 6 t who survives to period t. We denote by

Cr
t the aggregate consumption of all the agents who were born in period r and who survived

to period t. We also refer to this as the aggregate consumption of generation r in period t.

Finally, Ct denotes aggregate consumption in period t of all agents alive in period t.

For tractability, we assume that all agents have log utility of consumption. Thus an

agent born at date r 6 t (a member of generation r) who survives to date t, maximizes the

following objective function at date t:

Et

( ∞X
s=0

(βχ)s log( bCr
t+s)

)
.
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The assumption of log utility implies that in period t, agents of any generation r consume a

constant fraction of their wealth at date t:bCr
t = (1− βχ)cW r

t , (4)

where cW r
t denotes per capita wealth in period t of an agent born in period r 6 t.

Summing equation (4) for all consumers alive in period t gives the following relationship

between aggregate consumption and aggregate wealth:

Ct = (1− βχ)Wt. (5)

We assume that only net output can be consumed. Then aggregate consumption needs to

equal net output in equilibrium:

Ct = Yt = (ht + dt). (6)

Finally, aggregate wealth of the economy is given by current output plus the ex dividend

value of physical capital:

Wt = (ht + dt) + pt. (7)

These equilibrium conditions pin down the current price of physical capital in terms of

current output and parameters of the model:

pt =
βχ(ht + dt)

1− βχ
. (8)

The one period return on physical capital is then given by:

1 +Rt+1 =
dt+1 + pt+1

pt.
=

βχht+1 + dt+1

βχ(ht + dt)
. (9)

These results can also be derived from equilibrium in the physical capital market. Since

all consumers invest the same fraction αt of their savings in the risky asset, the value of

physical capital and aggregate wealth need to satisfy the following relationship:

pt = αt(βχWt). (10)

But because physical capital is the only asset in positive net supply, we must have αt = 1,
which implies the solution for the physical capital price given in equation (8).

The ex dividend value of physical capital in (8) is increasing in both labor income ht and

the physical capital dividend dt. Labor income increases the value of physical capital by

increasing the desired saving of the young, while the physical capital dividend increases it by

reducing the desire of the old to sell physical capital to finance their current consumption.

That is, labor income increases the demand for physical capital, while dividend income

reduces the supply.

The consumption of the young and the old in the laissez faire equilibrium are given by

Ct
t = (1− βχ)ht (11)
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Cr<t
t = dt + βχht = (1− βχ)(dt + pt), (12)

where Ct
t denotes the aggregate consumption of the young generation and Cr<t

t denotes the

aggregate consumption of older generations. The young consume a fraction (1 − βχ) of
their wealth ht, and use the rest of their wealth to buy physical capital. The old consume

the dividend on physical capital and the proceeds from their capital sales to the young.

Equivalently, they consume a fraction (1− βχ) of their wealth (dt + pt).

2.3 Asset Pricing Under Laissez Faire

Aggregating the marginal utilities of all agents alive in both periods t and t + 1 leads to a
valid stochastic discount factor (SDF). This group’s consumption in period t is equal to a

fraction χ of aggregate consumption Ct since only a fraction χ of all agents alive in period t

survive into period t+1. In period t+1 the group’s consumption is given by Cr<t+1
t+1 . With

log utility, marginal utility is the reciprocal of consumption so a valid SDF is given by:

Mt+1 =
βχCt

Cr<t+1
t+1

. (13)

Using the equilibrium conditions from the previous section, the SDF simplifies to:

Mt+1 =
βχ(ht + dt)

βχht+1 + dt+1
=

1

1 +Rt+1
. (14)

This condition, that the SDF is the reciprocal of the gross return on wealth, is standard in

a model with log utility. It is straightforward to check that the SDF in equation (14) is

consistent with the equilibrium price for physical capital derived in equation (8):

pt = Et[Mt+1(dt+1 + pt+1)] (15)

= Et

∙
βχ(ht + dt)

βχht+1 + dt+1

µ
dt+1 +

βχ(ht+1 + dt+1)

1− βχ

¶¸
=

βχ(ht + dt)

1− βχ
.

The riskless rate in the laissez faire economy is given by:

1

1 +Rf,t+1
= Et[Mt+1] = Et

µ
1

1 +Rt+1

¶
. (16)

2.4 Risk Exposures Under Laissez Faire

Expected lifetime utility of an agent of generation t is given by:

bU t
t ≡ Et

( ∞X
s=0

(βχ)s log( bCt
t+s)

)
. (17)
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As before, hats denote per capita variables and time superscripts index an agent’s generation.

In period t, there is a measure (1−χ) of agents of generation t, a measure χ(1−χ) of agents
of generation t− 1, a measure χ2(1− χ) of agents of generation t− 2, and so on.
The first thing to note is that all generations have some exposure to both human capital

risk and physical capital dividend risk in the laissez faire equilibrium. In particular, young

agents are exposed to dividend risk indirectly through the price of physical capital, which

determines the share of physical capital they can acquire with their savings. More formally,

agents of generation t have a per capita labor income of ht
1−χ in the first period of their life

but no initial claims to physical capital. With log utility, they consume a fraction (1− βχ)
of their wealth: bCt

t = (1− βχ)cW t
t = (1− βχ)

ht

1− χ
. (18)

The remainder of their wealth is invested in physical capital. The fraction of aggregate

physical capital bθtt an agent of generation t acquires depends on the price of physical capital
in period t: bθtt = βχcW t

t

pt
=
1− βχ

1− χ

ht

ht + dt
. (19)

A high dividend in period t has a negative effect on the expected lifetime utility of agents of

generation t because it results in a higher physical capital price, which reduces the amount of

physical capital that these agents can acquire with their initial savings. High labor income

has an intuitive positive effect on the expected lifetime utility of the agents who earn it.

Older cohorts are exposed indirectly to human capital risk through its effects on the

price of physical capital and thereby on the returns on their savings. The purpose of the

remainder of this section is to derive precise expressions for the exposures of the different

cohorts to the two types of risk in this economy. In the Appendix to this paper (Campbell

and Nosbusch 2007), we show that, for an agent of generation t, expected lifetime utility at

the beginning of period t is given by:

bU t
t =

1

1− βχ
log( bCt

t)−
βχ

1− βχ
log(ht + dt) + ϕt

=
1

1− βχ
log

1− βχ

1− χ
+

1

1− βχ
log(ht)− βχ

1− βχ
log(ht + dt) + ϕt, (20)

where

ϕt = Et

∞X
s=1

(βχ)s log

(
1

χs

"
s−1Y
r=1

βχht+r + dt+r

ht+r + dt+r

#
(βχht+s + dt+s)

)
. (21)

If there is persistence in the dividend process, the term ϕt is time-varying. It becomes a

constant in the special case of i.i.d. dividends.

Agents of any generation r < t also consume a constant fraction of their wealth in period

t: bCr
t = (1− βχ)cW r

t = (1− βχ)bθrt−1 1χ(dt + pt) = bθrt−1 1χ(βχht + dt), (22)

6



where bθrt−1 denotes the share of physical capital brought forward from period t − 1 by an
agent born at date r. The factor 1

χ
is due to the fact that consumers purchase the physical

capital from annuity companies in a competitive market.

The remainder of wealth is invested in physical capital. The share of physical capital

acquired in period t by an agent of generation r is:

bθrt = βχcW r
t

pt
=
1

χ

βχht + dt

ht + dt
bθrt−1. (23)

Expected lifetime utility at the beginning of period t for an agent of generation r < t is given

by:

bU r
t =

1

1− βχ
log( bCr

t )−
βχ

1− βχ
log(ht + dt) + ϕt

=
1

1− βχ
logbθrt−1 + 1

1− βχ
log

1

χ
(βχht + dt)− βχ

1− βχ
log(ht + dt) + ϕt. (24)

The four terms in this expression may be interpreted as follows. The first term is a

function of the state variable bθrt−1 which gives the share of physical capital acquired in the
previous period by an agent of generation r < t. It incorporates the effects of all past

shocks since the birth of generation r and up to period t− 1 on the expected lifetime utility
of the agent. The second term gives the effect of the current shocks ht and dt on the unit

value of physical capital holdings (inclusive of annuity payments) brought forward from last

period. Agents of generation r consume a constant fraction of their wealth during period t

and reinvest the rest in physical capital. The amount of physical capital they can buy to

carry forward into period t + 1 depends negatively on the current price of physical capital
and thus on current output. This effect is captured by the third term and could be described

as reinvestment risk. Finally, the last term measures the expected effect of future output

realizations on lifetime utility. This term is identical for all generations. The 1
1−βχ factors

multiplying these terms arise because the effects on consumption are permanent.

Equation (24) shows that agents of all generations born before the current period have

exactly the same exposure of expected lifetime utility to current shocks. This allows us

to aggregate these generations into a single group of old agents. Furthermore, comparing

equations (20) and (24), one can see that both young and old agents are exposed to the

same reinvestment risk and the same effects of future output on lifetime utility. Hence

the only difference in risk exposure across the generations arises from the second term in

equations (20) and (24), capturing different exposures of period t wealth to contemporaneous

realizations of ht and dt.

From this argument it also follows that, in order to share the exposure to ht and dt equally

among all agents, it is sufficient to have a tax-transfer system that equalizes the sensitivity

of current wealth, and hence current consumption, to ht and dt across agents.
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3 Social Security

3.1 First Best Intergenerational Consumption Allocation

Suppose that a social planner designs a social security system behind a Rawlsian veil of igno-

rance. The purpose of the social security system is to allocate net output optimally between

the different cohorts alive in any given period. We assume that the planner places equal

weight on the welfare of all agents. The first-order conditions of the planner’s problem imply

that the expected consumption path of any individual should decline at rate β, conditional

on survival of the agent. Given that only a fraction χ of any cohort survives into the next

period, this implies the following optimal consumption allocations for the different cohorts:

Ct
t = (1− βχ)(ht + dt) (25)

Cr
t = (1− βχ)(βχ)t−r(ht + dt), for r < t, (26)

where Cr
t denotes aggregate consumption in period t of the cohort born in period r. Ag-

gregating over all the old cohorts, the solution to the social planner’s problem allocates a

fraction (1−βχ) of net output to the consumption of the young generation and the remaining
fraction βχ to the consumption of old generations.

Comparing this to the consumption allocations in the decentralized equilibrium, (11) and

(12), which divide human capital income in this way but allocate all physical capital income

to the consumption of the old, we see that the optimal policy in this economy requires a net

consumption transfer of (1−βχ)dt from the old to the young. This can be accomplished by
a wealth transfer of dt from the old to the young each period, but such a transfer is contrary

to what we usually think of as a social security system. This analysis also highlights the fact

that human capital risk is shared optimally in the laissez faire equilibrium. The old have

an optimal indirect exposure to human capital risk through the price of physical capital.

3.2 Social Security with Full Risksharing

In order to distinguish between redistribution of the average physical capital dividend and

reallocation of physical capital risk, we now write the physical capital dividend as

dt = μdt + εt, (27)

where μdt = Et−1(dt) and εt is the pure risk component of the dividend on physical capital.

We assume that εt is independent and identically distributed over time.

Suppose that, instead of implementing the first best consumption allocation, the social

planner only partially reallocates the mean consumption level between generations but still

achieves the optimal allocation of consumption risk:

Ct
t = (1− βχ)(ht + εt) + (1− θ)μdt (28)

Cr<t
t = βχ(ht + εt) + θμdt, (29)
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where θ > βχ, with θ = βχ corresponding to the first best consumption allocation. This

setup allows for deterministic transfers from old to young (θ < 1) or from young to old

(θ > 1).

In the absence of any restrictions on the dividend processes and the social security trans-

fers, the previous expressions can imply negative values for the consumption of the old or

the young. In order to avoid such a situation, we assume that the human dividend process

has a lower bound h> μdt > 0, and we restrict the range of the deterministic part of the
transfer to βχ < θ < βχ+ (1− βχ)h/μdt.

The knife-edge case of θ = 1 corresponds to “pure risksharing”. In the pure risksharing
equilibrium, the desired consumption allocations are given by:

Ct
t = (1− βχ)(ht + εt) (30)

Cr<t
t = βχ(ht + εt) + μdt. (31)

We now consider how the social planner can redistribute income between generations

to achieve full risksharing. We assume that the social planner can levy a payroll tax on

the young generation and use it to make social security payments to the old. We require

aggregate payroll tax revenue Tt to equal the aggregate social security payouts to all old

cohorts St, so that the system is balanced each period. We allow payroll taxes and social

security payouts to be negative, corresponding to a tax on physical capital income and

subsidy on labor income.

In the presence of social security, the expected lifetime wealth of agents includes expected

future social security transfers. The anticipated transfer stream accruing to the cohort that

is young in period t is given by:

{−Tt, (1− βχ)St+1, (1− βχ)βχSt+2, (1− βχ)(βχ)2St+3, ......}.
The value of this expected income stream in period t may be written as:

−Tt + (1− βχ)zt,

where zt is the value of the following stream of payments:

{St+1, βχSt+2, (βχ)2St+3, ......}.

Similarly, the value of present and future social security transfers to those who are old

in period t may be written as:

St + βχzt.

zt can be interpreted as the present value of future social security payouts accruing to all

generations currently alive.

The correct measure of wealth in the presence of social security incorporates anticipated

future payouts:

W t
t = [ht − Tt + (1− βχ)zt] (32)

W r<t
t = [dt + pt + St + βχzt]. (33)
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With log utility, individual optimization implies that consumption is a constant fraction of

wealth:

Ct
t = (1− βχ)[ht − Tt + (1− βχ)zt] (34)

Cr<t
t = (1− βχ)[dt + pt + St + βχzt]. (35)

A useful expression for the optimal transfer policy is:

Tt = St = μdt
θ − βχ

1− βχ
+ βχht − (1− βχ)(dt + pt). (36)

It is easy to verify that this policy implements the social planner’s consumption allocations

in equation (28).

The interpretation of (36) is subtle. Two points are particularly important to keep

in mind. First, the price of physical capital on the right hand side of this expression is

endogenous, so (36) is not a closed-form solution for the optimal transfer. In particular,

(36) does not show that the optimal transfer decreases with the physical capital dividend.

While this is normally the case, for certain extreme parameter values it is possible that a

high dividend justifies a high payroll tax to reduce the demand for physical capital and drive

down its price.

Second, the current-period transfer given in (36) is not the total change in wealth for

either the young or the old generation, because these generations also anticipate receiving

future transfers with current market value zt. Full risksharing requires that the total change

in the wealth of the young generation caused by the social security system is increasing in

the physical capital dividend, even though we cannot unambiguously sign the response of

the current-period transfer to that dividend. The Appendix (Campbell and Nosbusch 2007)

gives further details on these points.

3.3 Social Security and the Stochastic Discount Factor

In the presence of a social security system, the SDF is given by:

M s
t+1 =

βχCt

Cr<t+1
t+1

=
βχ(ht + dt)

(1− βχ)[dt+1 + pt+1 + St+1 + βχzt+1]
(37)

When social security achieves full risksharing, as in the previous section, the expression for

the SDF simplifies to:

M s
t+1 =

βχ(ht + dt)

βχ(ht+1 + εt+1) + θμdt+1
=

ht + dt

ht+1 +
θμdt+1
βχ

+ εt+1
(38)

In the presence of social security, aggregate consumption in period t is given by:

Ct = Ct
t + Cr<t

t

= (1− βχ)[ht − Tt + (1− βχ)zt] + (1− βχ)[dt + pt + St + βχzt]

= (1− βχ)[ht + dt + pt + zt]. (39)
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Aggregate consumption needs to equal net output in equilibrium: Ct = Yt = ht + dt. This

equilibrium condition pins down the sum of the aggregate ex dividend value of physical

capital and expected future social security payouts accruing to those currently alive:

pt + zt =
βχ(ht + dt)

1− βχ
. (40)

Thus a higher value for future social security payouts implies a lower physical capital price,

and vice versa.

The stochastic discount factor for general social security derived in equation (37) can be

used to price physical capital and the social security payout stream {St+1, βχSt+2, (βχ)2St+3, ......} :
pt = Et[M

s
t+1(dt+1 + pt+1)] (41)

zt = Et[M
s
t+1(St+1 + βχzt+1)] (42)

It is easy to verify that these equations are consistent with the equilibrium condition (40).

3.4 Social Security and the Riskless Interest Rate

The simple expressions for the SDF under laissez faire and full risksharing, presented in

equations (14) and (38), allow us to assess the effect of social security on the riskless rate

of interest. In what follows, ρhd denotes the correlation between the human and physical

capital dividends. The variances of the innovations to the human and physical dividend

processes are denoted by σ2h and σ2d.

Proposition 1 In the case of deterministic dividends to human capital, a pure risksharing
social security policy unambiguously increases the riskless rate of interest. For θ = 1 and
σ2h = 0, R

s
f,t+1 > R

lf
f,t+1.

In the case of stochastic dividends to human capital, a pure risksharing social security

policy increases the riskless rate of interest if and only if σd/σh > −ρhd(2βχ)/(1 + βχ). A
sufficient condition for this to hold is that the dividends to human and physical capital are

positively correlated. For θ = 1 and σ2h > 0, R
s
f,t+1 > R

lf
f,t+1 if ρhd ≥ 0.

Proof. See Appendix (Campbell and Nosbusch 2007).

The intuition for this effect is that pure risksharing social security is a form of insurance

whereby all future generations effectively hedge some of the rate of return risk on the savings

of those cohorts that are currently alive. As a result, those currently alive have a reduced

need for precautionary savings. Given that the riskless asset is in zero net supply in this

economy, the equilibrium riskless rate needs to rise in order to clear the bond market.

To understand the necessary and sufficient condition for this result to hold, consider what

happens if it fails. If the two dividends are negatively correlated (ρhd < 0) and if the human
capital dividend is sufficiently riskier than the physical capital dividend (σh > σd), the old

bear too little consumption risk under laissez faire. In this case physical capital is a valuable

hedge against human capital risk and the first best policy increases the consumption risk of

the old by giving future young generations the benefit of this hedge. But this perverse case
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is unlikely to be empirically relevant, since estimates of the correlation between human and

physical capital risk tend to be positive (Benzoni, Collin-Dufresne, and Goldstein 2005) and

physical capital dividends appear to be riskier than human capital dividends.

Proposition 2 The effect of a purely deterministic transfer stream from the young to

the old is to increase the riskless rate of interest. The opposite is true of a deterministic

transfer stream from the old to the young.

Proof. See Appendix.

Under a purely deterministic transfer τ , the consumption of the old and the young are

given by Ct
t = (1− βχ)ht − τ and Cr<t

t = βχht + dt + τ , where τ > 0 implies a net transfer
from young to old and τ < 0 a net transfer from old to young. The allocation of risk is

identical to the decentralized equilibrium. In the absence of restrictions on the processes for

dividends and social security transfers, these expressions can imply negative values for the

consumption of the old or the young, a problem already pointed out in Section 3.3. In order

to rule out the possibility of negative consumption in some states of the world for either age

group, we assume that the human capital dividend has a strictly positive lower bound h > 0,
and that the social security transfer τ is in the range −βχh < τ < (1 − βχ)h. These two

assumptions, together with the assumption that the physical capital dividend dt is positive,

ensure that both the old and the young have strictly positive consumption in all states of

the world.

A deterministic transfer scheme from the young to the old in all future periods reduces

the need to save for those who are currently alive. In order for the bond market to clear,

the equilibrium riskless interest rate needs to rise. The opposite holds for a deterministic

transfer from the old to the young.

3.5 Social Security and Physical Capital

The SDF derived in equation (38) can be used to solve explicitly for the price of physical

capital in the equilibrium with social security. Details are given in the Appendix. In the

case of i.i.d. dividends (μdt = μd for all t), the price of physical capital in the presence of

social security is equal to a constant multiple of the price under laissez faire:

pst = Fp
lf
t , (43)

where an explicit expression for the constant F is given in the Appendix. Depending on

the form of the social security system, this factor F can be smaller or larger than one. The

next two propositions give more precise conditions.

Proposition 3 In the case of deterministic dividends to human capital and i.i.d. div-
idends to physical capital, a pure risksharing social security policy ( θ = 1) unambiguously
leads to a fall in the price of physical capital (F<1).

In the case of i.i.d. dividends to human capital and i.i.d. dividends to physical capital, a

pure risksharing social security policy leads to a fall in the price of physical capital provided

that Covt

∙
dt+1,

1

ht+1+dt+1+
1−βχ
βχ

μd

¸
< 0.
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Proof. See Appendix.

As noted in the previous section, a pure risksharing social security system reduces the

need for precautionary savings by those currently alive. The only savings vehicle available

in this economy is the risky physical capital asset. Since physical capital is in fixed supply,

this reduction in demand results in a lower equilibrium price.

The covariance condition for Proposition 2a holds unambiguously when human capital

dividends are deterministic. It also holds for the particular stochastic processes we consider

for human capital dividends in our calibration exercise.

Proposition 4 The effect of a deterministic transfer stream from the young to the old

is to decrease the price of physical capital. The opposite is true of a deterministic transfer

stream from the old to the young.

Proof. See Appendix.

As in the previous section, these effects may be interpreted as the result of changes in

savings needs of those currently alive.

Equation (40) provides an alternative way of stating the intuition for these effects. The

sum (pt + zt) takes the same value irrespective of the particular form of the social security

system. A pure risksharing policy means that social security is valuable, implying a positive

value for zt and therefore a lower physical capital price pt compared to laissez faire. The

same is true of a social security system that consists of deterministic transfers from the young

to the old.

Given the price of physical capital with social security and i.i.d. dividends, we can solve

for the implied return on physical capital:

1 +Rs
t+1 =

ht+1 +
1+Fβχ−βχ

F
dt+1
βχ

ht + dt
. (44)

Proposition 5 When dividends are i.i.d., Et(1 + Rs
t+1) > Et(1 + R

lf
t+1) iff F < 1 and

V art(1 +Rs
t+1) > V art(1 +R

lf
t+1) iff F < 1.

Proof. See Appendix.

If the price of physical capital falls, its average return increases but its volatility also

increases because the volatile current dividend has a larger proportional impact on the return.

This result implies that a pure risksharing social security system leads to an increase in the

expected rate of return on physical capital as well as an increase in its return volatility

compared to the laissez faire equilibrium. A deterministic transfer from the young to the

old has the same qualitative effects, while a deterministic transfer from the old to the young

reduces expected returns and return volatilities on the risky asset.

Finally, we can combine our solutions for the riskless interest rate and the return on

physical capital to calculate the risk premium on physical capital. Social security has two

offsetting effects on the risk premium. First, a pure risksharing social security system

improves the allocation of risk in the economy, resulting in a higher overall riskbearing

capacity. A way to see this is to look at the portfolios of investors in the two economies. In
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the presence of social security, investors effectively hold an implicit second asset (their claim

to future social security benefits) in their portfolio. By design, this second asset hedges the

returns on the original asset (physical capital) held in the portfolio. This makes investors

less averse to the risk on the physical capital asset, thereby reducing the risk premium they

demand in equilibrium. There is however a second offsetting effect. Proposition 5 shows

that a pure risksharing social security system increases the return volatility of the risky asset,

which, by itself, would tend to increase the risk premium.

In our numerical analysis we find that, for all empirically plausible parameter values, the

first effect dominates and a pure risksharing social security system reduces the risk premium

on physical capital.5

4 Calibrating the Model

We interpret one period to last for twenty years. We set the survival probability χ equal to

2/3. This implies an expected economic lifetime of sixty years. The idea is that economic life

starts at around age twenty, there is an initial period of twenty years where agents earn labor

income, followed on average by two twenty year periods of financing consumption through

savings. The discount factor β is set to 0.96 on an annual basis.

For the purpose of the simulations, we assume i.i.d. lognormal processes. The mean

of the human capital dividend μh is normalized to one. We set the mean of the physical

capital dividend μd equal to 1/2 in order to match the relative magnitudes of capital and

labor shares in national income for the United States. The standard deviation of the human

capital dividend σh is set to 0.2 and we assume a correlation of 0.5 between human and

physical capital dividends at the 20 year horizon6. We report results for several values of

the standard deviation of the physical capital dividend; σd ranges from 0 to 0.5. These

parameter values imply that the endogenous standard deviation of the return on physical

capital is in a range between 0 and 35 per cent on an annual basis. In our figures, all

variables are plotted against the standard deviation of returns on physical capital.

Figure 1 plots the riskless interest rate in the laissez faire and pure risksharing equilibria.

It confirms the result in Proposition 1 that a shift to a pure risksharing social security

system increases the riskless interest rate. The corresponding change in the risk premium

on physical capital is plotted in Figure 2. For our range of parameter values, the risk

premium always falls as a result of pure risksharing. The effect of increased riskbearing

capacity thus dominates the effect of the increased return volatility. Indeed, Figure 3 shows

5We can find counterexamples but they are somewhat artificial. In particular, if the physical capital

dividend is lognormally distributed with low mean and high volatility (e.g. μd = 0.1, σd = 1.5), it is possible
for the risk premium to increase. This counterexample works with a deterministic human capital dividend

(μh = 1, σh = 0). However, the implied return volatilities on the risky asset are implausibly high, on the

order of 80% on an annual basis.
6In order to rule out the possibility of negative values of consumption for the young under pure risksharing,

we assume that ht follows the following process: ht = μd + z, where z is distributed lognormally with mean
(μh−μd) and standard deviation σh. This specification implies a lower bound on the human capital dividend
of h=μd.
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that the increase in the volatility of returns on physical capital is relatively modest. We

should also note that the risk premia predicted by our model are generally much lower than

those observed empirically. This is a manifestation of the familiar equity premium puzzle. It

arises here in part because of our assumption of log utility and the low associated coefficient

of relative risk aversion. Figure 4 illustrates the fact that the price of physical capital is

lower under pure risksharing, as shown in Proposition 3.

5 Conclusion

In this paper we have studied the effects of government intergenerational transfers on asset

prices. Real-world social security systems can be interpreted as combinations of determinis-

tic transfers from young to old, and contingent transfers that enable young and old to share

their income risks. We have shown that both elements of social security systems have similar

effects on asset prices. They reduce life-cycle and precautionary motives to save, and thus

increase the riskless interest rate and lower the price of physical capital. The lower price for

physical capital increases the expected return on capital, but also increases the volatility of

that return because volatile dividends have a larger proportional impact. The effect on the

risk premium is theoretically ambiguous; on the one hand the riskbearing capacity of the

economy increases when risks are better shared across generations, but on the other hand the

return risk of physical capital is greater. In realistic examples the former effect dominates,

and social security reduces the risk premium for physical capital.

We have derived these results using a stylized model in which physical capital cannot

be accumulated. A natural extension of our approach would allow capital accumulation.

Social security would then have smaller effects on asset prices, but would lower the capital

stock in long-run equilibrium7. If risky and riskless capital could be separately accumulated,

our results suggest that social security systems would have a milder negative effect on the

accumulation of risky capital because the increased riskbearing capacity of the economy

partially offsets the effect of reduced saving.

All these results apply in reverse if we consider recent proposals to reduce intergenera-

tional transfers and encourage private retirement saving. These proposals have the potential

to increase overall capital accumulation and drive down interest rates, but if they reduce in-

tergenerational risksharing the increased saving may be disproportionately directed towards

safe assets in which case the equity premium may increase.

7Krueger and Kuebler (2006) show that if this crowding-out effect of physical capital is sufficiently strong,

a social security system that reduces the consumption risk of the old may not be Pareto improving. The focus

of their paper is on the welfare properties of risksharing social security systems, while we concentrate instead

on their effects on asset prices in equilibrium. In the same context, there is an earlier literature that argues

that it is subtle to determine when welfare effects in OLG models are due to market incompleteness. Baxter

(1989), generalizing results in Marshall, Sonstelie and Gilles (1987), shows that while the introduction of

money in an OLG economy can be welfare improving, money does not complete markets.
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