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Abstract

We introduce a general and �exible framework for hedge fund performance evaluation and

asset allocation: stochastic dominance (SD) theory. Our approach utilizes statistical tests for

stochastic dominance to compare the returns of hedge funds. We form hedge fund portfolios

by using SD criteria and examine the out-of-sample performance of these hedge fund portfolios.

Compared to performance of portfolios of randomly selected hedge funds and mean-variance

e¢ cient hedge funds, our results show that fund selection method based on SD criteria greatly

improves the performance of hedge fund portfolio.

Keywords: Alpha; Mean Variance analysis; Portfolio; Risk Return

1 Introduction

Over the last decade, the number of hedge funds has risen by about 20 percent per year to reach

around 8,500 in 2006. The amount of assets under management of the hedge fund industry has

increased from around $40 billion in 1990 to an estimated $1,130 billion in 2006. Since hedge funds

typically use leverage, the positions that they take in the �nancial markets are large enough to move

markets around the world. The rapid growth in hedge funds re�ects the increasing importance of

this alternative investment category for institutional investors and wealthy individual investors.
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Correspondingly, identifying hedge fund managers with superior skills and re�ning the tradi-

tional portfolio management tools to optimize investments in a large universe of hedge funds have

also become challenging tasks in portfolio management. If the top hedge fund performance can be

explained by superior skills owned by managers not by luck, we would expect top performance of

such managers persists. However, there is little consensus on hedge fund performance persistence in

the empirical �nance literature. A number of studies �nd that hedge fund performance only persist

at short term (one to three months) which might be due to hedge funds�illiquid exposure and there is

no evidence of performance persistence at annual horizons.(see Getmansky, Lo, and Makarov, 2004,

Brown, Goetzmann and Ibbotson, 1999, Agarwal and Naik, 2000, Liang, 2000, Bares, Gibson and

Gyger, 2003, Boyson and Cooper, 2004, Baquero, Ter Horst and Verbeek, 2005). On the contrary,

more recent study by Kosowskia, Naik and Teo (2006) �nds that sorting hedge funds on Bayesian

alphas yields a 5.5 percent per year increase in the alpha of the spread between the top and bottom

hedge fund deciles. Hedge fund performance persists at annual horizon. Using a novel GMM proce-

dure to estimate alpha for hedge fund managers, Jagannathan, Malakhov and Novikov (2006) �nd

evidence of hedge fund managers�performance persistence over three year horizons.

More practical issue facing hedge fund investors is how to construct an e¢ cient hedge fund port-

folio or add hedge funds to the existing portfolio. The standard mean�variance approach to portfolio

allocation, which is founded on the assumption of normal distributions and an objective function of

maximizing risk-adjusted return, is inadequate when dealing with portfolios of hedge funds. A num-

ber of studies (see Lo, 2001, Amin and Kat, 2003) have shown that risk characteristics of hedge funds

are substantially di¤erent from those of traditional investment pools because hedge fund managers

usually employ highly dynamic trading strategy and use short selling, leverage, concentrated invest-

ments, and derivatives. Speci�cally, hedge fund returns are not normally distributed and exhibit

signi�cant skewness and kurtosis. They also tend to display signi�cant co-skewness with the returns

on other hedge funds as well as equity. Mean-variance models ignore these higher moments of the

return distribution, and thus fail to take into consideration the bene�ts of funds that occasionally

surprise on the upside while they also underestimate the risk of funds that have asymmetric downside

risk. Despite the weakness of mean-variance frame work, it still dominates in practical hedge fund

portfolio management. The Sharpe ratio is commonly used to quantify the risk-return trade-o¤.

Amenc, Giraud, Martellini and Vaissie (2004) report that only 2% of the European multi-managers

pay attention to skewness and kurtosis; while 84% of multi-manager funds consider that volatility

is of major concern to their clients and 82% consider Sharpe ratio as an important indicator. A

number of studies also address the issue of including hedge funds in standard institutional portfolios

in mean-variance portfolio optimization. (see, Amenc and Martellini, 2002, Brunel, 2004, Kat, 2005,

Till, 2005).
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Another strand of literature develops di¤erent frameworks for hedge fund allocation, which incor-

porate a variety of investment objectives, particularly investor preferences for skewness and kurtosis of

returns, into portfolio optimization models. Using a Polynomial Goal Programming (PGP) optimiza-

tion model, Davies, Kat and Lu (2005) solve for multiple competing hedge fund allocation objectives

within a mean-variance-skewness-kurtosis frame-work and analyze di¤erent impacts of various hedge

fund strategies on the distribution of optimal portfolio. Morton, Popova and Popova (2006) study

hedge fund allocation issue by assuming a family of utility functions which are a weighted sum of

the probability of achieving a benchmark and expected regret relative to another benchmark. They

then use a Monte Carlo method to obtain a solution to the related portfolio optimization model.

Alexander and Dimitriu (2004) develop a portfolio construction model by selecting funds according

to their ranking of alpha estimated with factor models. They then allocate selected funds using

constrained minimum variance optimization.

In this paper, we introduce a more general and �exible framework for hedge fund asset allocation

� �stochastic dominance (SD) theory. Our approach utilizes statistical tests for stochastic domi-

nance to compare the returns of hedge funds. The theory of stochastic dominance (see, Hadar and

Russell, 1969, Hanoch and Levy, 1969, Rothschild and Stiglitz, 1970, and Whitmore, 1970) provides

a systematic framework for analyzing economic behavior under uncertainty. We form hedge fund

portfolios by using SD criteria. We then examine the out-of-sample performance of these hedge

fund portfolios. Compared to both randomly selected hedge fund portfolio and mean-variance e¢ -

cient hedge fund portfolio, our results show that fund selection method based on SD criteria greatly

improves the performance of hedge fund portfolio.

Our framework relying on stochastic dominance has several advantages. First, we are able to use

the information embedded in the entire empirical return distributions of hedge funds instead of a

�nite set of sample statistics. Second, while mean-variance analysis is consistent with the expected

utility theory only under relatively restrictive assumptions about investor preferences or the statistical

distribution of the investment returns, SD criteria do not require a full parametric speci�cation of

investor preferences, but rather rely on general preference assumptions which are intuitively close

to the real objectives of investors, for example, non-satiation in the case of �rst order stochastic

dominance (FSD) and risk aversion in the case of second order stochastic dominance (SSD). This

is important because the view of investors towards various hedge funds depends crucially on their

investment objectives and risk preferences.

The reminder of the paper is organized as follows. Section 2 introduces stochastic dominance

framework. Section 3 describes the data and reports the results of empirical analysis and a comparison

of performance of various hedge fund portfolios constructed by using di¤erent criteria. Section 4

concludes.
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2 Stochastic Dominance

2.1 First and Second Order Dominance

Stochastic dominance theory provides a possible comparison relationship between two stochastic dis-

tributions. Stochastic dominance relations o¤er a general decision rule for decision making when

facing the choice between random payo¤s, given that the utility functions share some common char-

acteristics such as non-satiation or risk-aversion. In this paper, we test for the �rst and second orders

of stochastic dominance.

LetX1 andX2 be two outcome variables. Let U1 denote the class of all von Neumann-Morgenstern
type utility functions, u, such that u0 � 0, (increasing). Also, let U2 denote the class of all utility
functions in U1 for which u00 � 0 (strict concavity). Let F1(x) and F2(x) denote the cumulative

distribution functions, respectively.

De�nition 1 X1 First Order Stochastic Dominates X2, denoted X1 �FSD X2, if and only if:

(1) E[u(X1)] � E[u(X2)] for all u 2 U1; with strict inequality for some u; Or
(2) F1(x) � F2(x) for all x with strict inequality for some x.

De�nition 2 X1 Second Order Stochastic Dominates X2, denoted X1 �SSD X2, if and only if either:

(1) E[u(X1)] � E[u(X2)] for all u 2 U2, with strict inequality for some u; Or:
(2)

R x
�1 F1(t)dt �

R x
�1 F2(t)dt for all x with strict inequality for some x:

For any two outcomes i; j de�ne

�ij = sup
x2X

Fi(x)� Fj(x);

where X is contained in the supports of Xi; Xj: Fund i dominates fund j if �ij � 0: If a fund X1

second order dominates fund X2 then no risk averse individual would prefer X2 to X1: First order

dominance of one outcome by another is even stronger: If a fund X1 �rst order dominates fund X2

then no individual who prefers more wealth to less would prefer X2 to X1: First order dominance

implies second order dominance. Note that these concepts do not require the existence of moments of

the underlying outcomes unlike mean variance analysis. Furthermore, both relations are transitive,

i.e., if X1 dominates X2 and X2 dominates X3 then X1 dominates X3: However, neither relation

denotes a full ordering, only a partial ordering. That is, we may not be able to rank two outcomes

at all according to either relation. In such cases, one can either say one is indi¤erent between the

two investments or one can impose more preference structure to discriminate between them. One

possibility is to increase the dominance order to third order or fourth order etc., which reduces the set

of noncomparability. Alternatively one can then supplement the partition induced by the dominance
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relation by some additional criterion like Sharpe ratio. In practice, although FSD implies strong

relationship between two outcomes, it is not very discerning because the cumulative distributions of

net returns of the two investment alternatives often intersect, in which case FSD cannot discriminate

between the alternatives. For decision making under risk more important is SSD. If investors are

risk averse and prefer more to less, SSD could be used to choose between two outcomes.

In empirical analysis, stochastic dominance analysis requires the comparison of the probability

distributions of two outcomes which are unknown and must be estimated from available data. Various

statistical tests for the existence of SD orders have been developed. Several tests proposed earlier (for

example Anderson, 1996 and Davidson and Duclos, 2000) compare the distribution functions only

at a �xed number of arbitrarily chosen points. In general, comparisons using only a small number

of arbitrarily chosen points will have low power if there is a violation of the inequality in the null

hypothesis on some subinterval lying between the evaluation points used in the test. More recent

tests proposed by Barrett and Donald (2003) and Linton, Maasoumi and Whang (2003) compare the

two distributions at all points in the sample.

3 Empirical Results

3.1 Description of the data

In this section, we provide an empirical analysis of hedge fund database under Stochastic Dominance

framework. The database used in this paper covers the period January 1994 to August 2004 and

was provided by the Center for International Securities and Derivatives Markets (CISDM). It has

two parts: a total of 1,269 live hedge funds and 1,760 dead hedge funds. To reduce survivorship

bias, we include both live and dead funds in our analysis. Each set consists of a performance �le,

containing monthly net-of-fee returns, total net assets, and net asset values, and a fund information

�le, containing fund name, strategy type, management fees, and other supplementary details. We

select only those funds with at least 2 years of monthly observations. CISDM classi�es funds according

to 10 di¤erent sub types. Funds are further separated by di¤erent investment strategies. We analyze

5 fund strategies, namely Merger Arbitrage, Distressed Securities, Equity Hedge, Market Neutral,

Convertible Arbitrage. Table 1 lists summary statistics of the hedge funds from CISDM database

during the January 1994 to August 2004 period. For each strategy, the table lists the number of

funds and means and standard deviations of basic summary statistics.
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3.2 Stochastic Dominance

To compare hedge fund returns using stochastic dominance concepts, our procedure includes two

steps. First, we take into account the systematic risk exposure of hedge funds and obtain the risk-

adjusted returns of hedge funds. Then we test for FSD and SSD relations among risk-adjusted hedge

fund returns relying on Linton, Maasoumi and Whang (2003) statistical test.

Risk adjustments for hedge fund returns are di¢ cult due to their use of derivatives and dynamic

trading strategies. Commonly used methods include using hedge fund indices and factor models.

More recently, a number of studies (see Kat and Palaro (2005)) argue that sophisticated dynamic

trading strategies involving liquid futures contracts can replicate many of the statistical properties

of hedge-fund returns. Hasanhodzic and Lo (2006) estimate linear factor models for individual hedge

funds using six common factors, and �nd that for certain hedge-fund style categories, a signi�cant

fraction of funds�expected return can be captured by common factors.

Here we use as performance benchmarks the seven-factor model developed by Fung and Hsieh

(2004). The Fung and Hsieh (2004) factors are S&P 500 return minus risk free rate (SNPMRF),

Wilshire small cap minus large cap return (SCMLC), change in the constant maturity yield of the

10-year Treasury (BD10RET), change in the spread of Moody�s Baa minus the 10-year Treasury

(BAAMTSY), bond PTFS (PTFSBD), currency PTFS (PTFSFX), and commodities PTFS (PTF-

SCOM), where PTFS denotes primitive trend following strategy. Fung and Hsieh (2004) show that

their factor model strongly explains variation in individual hedge fund returns.

In order to obtain risk-adjusted performance of hedge funds, we regress the net-of-fee monthly

excess return (in excess of the risk free rate) of a hedge fund on the seven-factor model.

Ri;t = �i + �
>
i Zt + �i;t; (1)

where �i represents the risk exposure of fund i at month t to the various factors, and Zt is the

monthly value of di¤erent factors. The risk-adjusted return of fund i at month t is calculated as:

^
�i;t = Ri;t �

^
�
>

i Zt; (2)

where Ri;t is the raw return of fund i in month t,
^
�iis the estimated risk exposure for fund i, and Zt

is the value of the various factors at month t. We obtain the risk-adjusted returns as the intercept

term of regressions. We plot the distribution of � in Figure 1.

We next conduct an analysis of the distributions of risk-adjusted returns of the funds, with a

view to establishing stochastic dominance orderings. For each fund i we compute the empirical c.d.f.
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and integrated c.d.f. [denoted s.d.f.] as follows

bFi(x) =
1

Ti

TiX
t=1

1(Xit � x)

bSi(x) =

Z x

�1
bFi(x0)dx0 = 1

Ti

TiX
t=1

(x�Xit)1(Xit � x);

where Xit =
^
�i;t is risk-adjusted return: We say that a fund i is �rst order dominated if for some

fund j

max
1�`�L

bFj(x`)� bFi(x`) < 0;
where x1; : : : ; xL is a grid of points contained in the union of the supports of the distributions.

Likewise, for second order dominance.

Let FD = fi : i is �rst order dominatedg and let FU be the complement of this set in the full set
of funds, likewise de�ne SD and SU : Clearly, FD � SD and so SU � FU :
We compute the set of all funds that are undominated across all pairwise comparisons. We

then construct a portfolio of all undominated funds. To examine the out-of-sample performance of

undominated funds, we construct portfolios of funds SU on January 1 each year (from 1999 to 2004),
based on stochastic dominance orders of risk-adjusted hedge fund returns estimated over the prior �ve

years. The portfolios are equally weighted monthly, so the weights are readjusted whenever a fund

disappears. We also construct the portfolio of �rst-order dominated funds for comparison purpose.

Given the economic intuition of stochastic dominance that any risk averse individual should choose

funds in SU and any investor who prefer more to less should not choose funds in FD, we expect
portfolio of funds in SU exhibit much better performance than portfolio of funds in FD.
To compare stochastic dominance tests with mean variance tests, we also construct portfolios

of mean-variance e¢ cient funds on January 1 each year (from 1999 to 2004), based on means and

variances of funds estimated over the prior �ve years. A fund is de�ned as a mean-variance e¢ cient

fund if no other funds have both higher means and lower variances than this fund. Hence, funds

are selected by comparing two summary statistics: the mean and the variance, which represents the

distribution of hedge fund returns.

A number of studies �nd that hedge fund portfolio return properties vary substantially with the

number of hedge funds included in the portfolio. See, Amin and Kat (2002), Davies, Kat and Lu

(2003), Alexander and Dimitriu (2004). A hedge fund portfolio including only ten funds will typically

have signi�cantly higher variance than a similar hedge fund portfolio containing 100 funds. Therefore,

to assess the robustness of SD analysis, we also construct representative portfolios containing the

same number of funds as in SU for each year (from 1999 to 2004). The funds in portfolios are

randomly selected.
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Table 2 reports the number of hedge funds held by portfolios for each year and Table 3 reports

summary statistics and alphas of portfolios constructed using di¤erent criteria. Alpha is estimated

using the seven-factor model. As we can see in table 2, the number of funds in SU is around 30 which
is close to those of mean-variance e¢ cient funds while the number of funds in FD is substantially
larger, ranging from 849 to 1225. French, Ko and Abuaf (2005) examine the current fund of hedge

funds universe, and �nd that funds of hedge funds report holding between 1 and 200 underlying

funds, and generally hold 10-30, with close to 20 on average. Hence, the number of holdings in SU
and mean-variance e¢ cient sets is actually close to practitioner standards. Amin and Kat (2003)

also �nd that the optimal size of well diversi�ed hedge fund portfolios is in the range of 15 to 20.

According to Table 3, the mean return of portfolio of funds in SU is 0.99 which is substantially
larger than those of other portfolios. The �rst two moments of returns provide a great deal of the

information about the investment outcome set of portfolios, but not everything. We �nd the skewness

for portfolio of funds in SU is 2.36 which is much larger than for other portfolios. Positive skewness
means essentially that the big outcomes are on the upside so there is relatively little chance of large

negatives. From a variety of points of view positive skewness is desirable.

Moreover, the portfolio of funds in SU generates an alpha of 9.91 percent per year. As the t-
statistics in column ten shows this alpha is statistically signi�cant. The alphas of portfolios of funds

in FD and mean-variance e¢ cient funds are also statistically signi�cant but much lower than the
alpha of portfolio of funds in SU : The alpha of the randomly picked funds portfolio is the lowest and
statistically insigni�cant.

Figure 2,3,4 plot the time series of returns of these representative portfolios. We also plot the

cumulative returns of representative portfolios in Figure 5. As we can see from the �gure, the

portfolio constructed by using SD criterion achieves a much higher cumulative return than those of

other portfolios.

To further investigate the nature of the stochastic dominance approach, we establish stochastic

orders within each investment category. We then repeat the above performance analysis. Table

4 reports the results for each category. We �nd that overall the portfolio of funds in SU display
superior performance in all categories. In particular, the portfolio of funds in SU in the Merger
arbitrage category achieve relative higher alpha than that of mean variance e¢ cient funds. For

equity neutral funds, the performance of stochastic dominance approach is not better than that of

mean-variance approach.

It is also well documented that hedge fund returns exhibit substantial serial correlation, see

Getmansky, Lo, and Makarov (2004) and Okunev and White (2003). They suggest that hedge funds�

exposure to illiquid assets is the primary source of the strong observed serial correlation in hedge

fund returns. To remove the e¤ects of arti�cial serial correlation induced by illiquidity exposure, we
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adopt the methodology in Getmansky, Lo, and Makarov (2004) to unsmooth hedge fund returns and

reduce serial correlation. Then, we re-do the above analysis on the unsmoothed sample of hedge fund

returns. Overall, the performance of stochastic dominance approach still dominates other approaches.

4 Conclusions

In this paper, we introduce a general and �exible framework for hedge fund performance evaluation

and asset allocation. Our approach utilizes recent advances in statistic tests for stochastic dominance.

The approach is able to recognize and use the information embedded in the non-normal return

distributions of hedge funds. To illustrate the method�s ability to work with non-normal distributions,

we form hedge fund portfolios by using SD criteria and examine the out-of-sample performance of

these hedge fund portfolios. Compared to performance of portfolios of randomly selected hedge funds

and mean-variance e¢ cient hedge funds, our results show that fund selection method based on SD

criteria greatly improves the performance of hedge fund portfolio.

There are a number of potential areas for improvement. First, the equal weighting of undominated

funds can be replaced by more targeted weighting based on some univariate performance criterion

like Sharpe ratio. Second, we could look at higher order dominance or asymmetric dominance

notions like Prospect or Markowitz dominance. Third, we could take account of sampling variation

in constructing the set of undominated funds by including those funds that are within some distance

(controlled according to a statistical criterion like Type 1 error using the results of Linton, Maasoumi,

and Whang (2003)) from being dominated. This would enlarge the set of undominated funds and

it may not improve performance out of sample. Finally, although our SD test shows ability in

distinguishing good funds from bad funds, it is restricted to pairwise comparison of a �nite number

of choice alternatives, and it has limitations with full diversi�cation possibilities. The problem is

that the ordering of the outcomes of a diversi�ed portfolio of funds cannot be determined in a

straightforward way from the orderings of the individual funds. Therefore, the ordering of each

portfolio has to be determined individually. A number of recent studies recently developed Linear

Programming (LP) tests for SD that do fully account for diversi�cation.1 Post and Versijp (2006)

develop tests for SSD and TSD e¢ ciency that are embedded in the Generalized Method of Moments

(GMM) framework. This test has superior statistical properties to the above LP tests and is a serious

rival to the dominant mean-variance tests. We leave the application of these tests to hedge funds as

future research.
1See Post (2003), Kuosmanen (2004), Post and Levy (2005) and Post and van Vliet (2006)
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5 Tables

Table 1

Summary Statistics of hedge fund returns

This table presents means and standard deviations of basic summary statistics for funds in the

CIDSM database over the sample period January 1994 to August 2004. SD denotes standard de-

viations. �̂1% and �̂2% denote �rst order and second order autocorrelation respectively. N is the

number of funds.

Category Mean SD Skewness Kurtosis �̂1% �̂2%

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Market neutral 0.96 0.57 3.88 2.98 0.44 1.19 6.57 5.70 13.85 17.72 7.54 15.27

Equity hedge 0.99 0.84 5.18 2.74 0.01 1.10 6.40 4.85 13.99 16.23 6.88 14.16

Distressed securities 1.08 0.59 3.82 3.01 -0.14 1.34 7.83 6.36 18.63 16.85 7.81 13.63

Merger arbitrage 0.89 0.54 3.04 3.72 -0.17 1.14 6.70 5.20 20.67 15.82 11.63 15.57

Convertible arbitrage 1.02 0.51 2.11 1.71 -0.14 1.38 7.18 5.33 30.93 17.31 12.81 16.87
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Table 2

This table reports the numbers of funds held in portfolios for each year (1999-2004). N is the

number of funds.

Year Total N of funds N of funds in FD N of funds in SU N of MV e¢ cient funds

1999 1054 849 13 29

2000 1269 947 20 27

2001 1405 1074 22 26

2002 1532 1046 37 27

2003 1582 1084 30 30

2004 1639 1225 19 28

14



Table 3

Statistical summary of returns for representative portfolios

This table reports summary statistics of returns for portfolios constructed using di¤erent criteria

over the sample period: Janury 1999 to August 2004.

Mean Median Max Min Std.Dev. Skew Kurtosis Alpha t-stat

(pct/year) of alpha

funds in SU 0.99 0.83 13.09 -3.25 2.42 2.36 11.98 9.91 3.25

MV e¢ cient funds 0.66 0.65 6.71 -2.56 1.49 1.30 7.61 6.95 3.93

funds in FD 0.48 0.50 6.07 -3.98 2.04 0.04 2.91 4.42 3.66

funds randomly picked 0.32 0.01 8.08 -4.96 2.30 0.55 4.13 2.19 1.12
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Table 4

Statistical summary of returns for representative portfolios within di¤erent styles
Mean Median Max Min Std.Dev. Skew Kurtosis Alpha t-stat

(pct/year) of alpha

Equity hedge

funds in SU 1.28 0.35 27.78 -4.49 4.43 3.57 20.59 0.89 1.96

MV e¢ cient funds 1.37 0.63 19.38 -3.34 3.98 2.32 9.59 1.05 2.53

funds randomly picked 0.9 0.62 12.01 -5.05 4.99 1.03 8.91 0.86 1.85

Equith neutral

funds in SU 0.94 0.75 11.91 -2.49 1.84 3.11 19.81 0.81 4.36

MV e¢ cient funds 0.94 0.84 9.87 -2.69 1.65 2.22 14.04 0.86 5.03

funds randomly picked 0.71 0.49 5.54 -3.58 1.75 0.19 3.62 0.64 3.82

Merger arbitrage

funds in SU 0.81 0.8 6.77 -3.05 1.59 0.74 5.75 0.71 4.38

MV e¢ cient funds 0.59 0.54 4.16 -1.65 0.84 0.93 6.82 0.53 5.73

funds randomly picked 0.53 0.52 10.54 -6.45 2.71 0.54 5.41 0.29 1.22

Distressed securities

funds in SU 1.05 0.96 4.05 -2.68 1.39 -0.15 3.37 1.02 6.78

MV e¢ cient funds 1.05 1.04 5.08 -3.38 1.53 0.01 3.41 1.02 6.59

funds randomly picked 0.92 0.65 4.97 -2.82 2.13 1.48 8.51 0.82 4.29

Convertible arbitrage

funds in SU 1.07 0.97 4.83 -0.89 0.89 1.45 7.34 1.03 8.3

MV e¢ cient funds 0.94 0.88 2.8 -0.53 0.62 0.46 4.05 0.92 9.29

funds randomly picked 0.92 0.9 3.76 -1.34 0.97 0.31 3.69 0.89 5.62
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Figure1: Cross-section estimates of alpha

Figure 2: Plot of returns of portfolio of funds in SU and of funds in FD (01/1999 to 08/2004)
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Figure 3: Plot of returns of portfolio of funds in SU and of MV e¢ cient funds (01/1999 to 08/2004)

Figure 4: Plot of returns of portfolio of funds in SU and of randomly picked funds (01/1999 to 08/2004)
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Figure 5. Plot of cumulative returns of representative portfolios
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