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Abstract

We study technology adoption, risk and expected returns using a dynamic

equilibrium model with production. The central insight is that optimal technology

adoption is an important driving force of the cross section of stock returns. The

model predicts that technology adopting �rms are less risky than non-adopting �rms.

Intuitively, by preventing �rms from freely upgrading existing capital to the technology

frontier, costly technology adoption reduces the �exibility of �rms in smoothing

dividends, and hence generates the risk dispersion between technology adopting

�rms and non-adopting �rms. The model explains qualitatively and in many cases

quantitatively empirical regularities: (i) The positive relation between �rm age and

stock returns; (ii) �rms with high investment on average are younger and earn lower

returns than �rms with low investment; and (iii) growth �rms on average are younger

than value �rms, and the value premium is increasing in �rm age.
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1 Introduction

We investigate technology adoption and the cross sectional asset returns in a dynamic

equilibrium model in which technology adoption occurs at �rm level [Greenwood and

Yorukoglu 1997; Cooper, Haltiwanger and Power 1999].1 The central insight is that optimal

technology adoption is an important driving force of the cross section of stock returns.

This paper contributes to the literature in two folds. Theoretically, by incorporating

endogenous technology adoption and vintage capital to the investment-based asset pricing

framework (e.g., Zhang 2005), the model simultaneously explains well-document empirical

facts: (i) The positive relation between �rm age and stock returns (Zhang 2006); (ii) the

negative relation between investment and average returns (Xing 2009); and (iii) growth

�rms earn lower average returns than value �rms (Fama and French 1992, 1993). Empirically,

guided by the theoretical predictions, the paper establishes a series of new �ndings regarding

�rm age and expected returns: (i) Firms with high investment on average are younger than

�rms with low investment; (ii) growth �rms on average are younger than value �rms; and

(iii) the value premium is increasing in �rm age. These �ndings seem to suggest that �rm

age is an important characteristic of the cross sectional returns.

Our theoretical framework relies on a salient feature, costly technology adoption. In the

model, technology frontier grows exogenously to which all �rms have access. Facing both

aggregate and �rm-speci�c productivity shocks, �rms choose to adopt the latest technology

at a cost or keep operating the existing vintage capital. Costly technology adoption restricts

the degree of �rms��exibility in smoothing dividend streams. Through optimal investment,

costly adoption gives rise to the risk dispersion between technology-adopting �rms and non-

adopting �rms. The model predicts that �rms that adopt the latest technology or operate

the new vintage capital are less risky than non-adopting �rms.

Intuitively, in good times, both technology-adopting �rms and non-adopting �rms can

take the advantage of favourable economic conditions: Adopting �rms take a cost to upgrade

the latest technology whereas non-adopting �rms still operate the exiting vintage capital

1See Parente and Prescott (1994) and Laitner and Stolyarov (2003) for an analysis of aggregate technology
adoption.



as their old vintage becomes productive now. As a result, both types of �rms covary with

aggregate uncertainty and their risk dispersion is low. In bad times, equipped with the latest

vintage capital, adopting �rms (or �rms using new vintage capital) are more productive. In

contrast, non-adopting �rms cannot upgrade their old vintage capital because it is too costly

for them, so their dividend streams covary more with economic downturns than adopting

�rms. The overall e¤ect is that adopting �rms are less risky than non-adopting �rms given

that the price of risk is particularly high in bad times.2

In the model, to advance to the latest vintage capital, �rms must make an investment,

meaning that technology adoption and capital investment are directly tied together. This

relation implies that the more investment �rms make, the less risky the �rms are. Consistent

with the model prediction, �rms with higher capital investment on average earn lower

expected returns than �rms with lower investment in the data.3 Notably a few papers

also predict a negative relation between the expected returns and capital investment (e.g.,

Cochrane 1991, Liu, Whited and Zhang 2008, Li, Livdan and Zhang 2009, etc), but they rely

on a di¤erent mechanism of convex capital adjustment costs. Besides, in these models, capital

is homogeneous across di¤erent vintages. In contrast, in our paper the productivity of vintage

capital grows over time following the evolution of exogenous technological frontier. Optimal

technology adoption decisions give rise to the inverse relationship between investment and

returns.

By linking vintage capital to �rm risk, the model sheds light on the relationship between

�rm age, an important �rm characteristic, and expected returns. To adopt new technology

usually means to abandon an older technology and destroy old human capital, which is

not easy because old �rms� vintage capital is directly tied with their current practices,

organizational and human capital. Moreover, the manager of an old �rm may lack of

knowledge to know new methods or may not have the necessary skills to implement it.

In contrast, young �rms will have more incentive to adopt new frontier methods because

2In the model, price of risk is countercyclical.
3An incomplete list of papers including Cochrane 1991, Titman, Wei and Xie 2004, Cooper, Gulen and

Schill 2007, Polk and Sapienza 2008, Xing 2009, etc, document that investment and expected returns are
negatively related.
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they are not burdened with old vintage technology. For example, Hobijn and Jovanovic

(2001) document that it is the new �rms rather than incumbents that bring in the new

technology after the IT revolution in 1970�s. In addition, as is demonstrated in Jovanovic

and Rosseau (2001, 2005), young �rms are more likely to adopt the new vintage capital as

ideas and products associated with the latest technology are often brought to market by

new �rms. Hence, �rm age serves a good empirical counterpart for technology adoption,

implying that young �rms should earn lower expected returns than old �rms. Consistent

with the model prediction, we �nd that young �rms earn lower average returns than old

�rms in the U.S. publicly traded companies.4 A spread portfolio of stocks that goes long on

young �rms and short on old �rms generates a signi�cant value-weighted spread of 2.85%

per annum. In addition, we �nd that �rm age and investment are closely related: Investing

�rms on average are younger than less investing �rms. This new �nding suggests that both

�rm age and capital investment are important in characterizing the expected returns. In

standard asset pricing tests, we �nd that the unconditional CAPM is unable to explain the

cross-sectional variation in the returns of �ve age portfolios, because the spread in the market

beta is too small across these portfolios. The Fama and French (1993) three factor model

cannot capture the variation in the returns of these portfolios either.

The model also provides a fresh explanation for the value premium which is di¤erent from

the existing literature. In the model, value �rms are loaded with the old vintage machines

and are much further away from the technology frontier than growth �rms. Costly technology

adoption prevents value �rms from smoothing their dividend streams when facing aggregate

risk, particularly in economic downturns. Thus value �rms�dividends covary more with

aggregate uncertainty and hence are riskier than growth �rms. Notably the value premium

in our model hinges on costly technological adoption, which di¤ers from Zhang (2005) who

work through capital adjustment costs. On the other hand, the interaction between optimal

technology adoption and vintage capital reinforces the mechanism emphasized in Zhang

(2005) who demonstrates that costly reversibility of capital is one of key mechanisms driving

4Zhang (2006) and Jiang, Lee and Zhang (2005) document the similar �nding regarding �rm age and
the expected returns, but they attribute their �ndings to information uncertainty and behaviour bias,
respectively.

3



Capital vintage

Te
ch

no
lo

gy
 fo

nt
ie

r

Capital vintage

Ex
pe

ct
ed

 re
tu

rn

Panel A Technology Frontier Panel B  Expected Stock Return

Old firms
Low investment firms
Value firms

Young firms
High investment firms
Growth firms

Young firms
High investment firms
Growth firms

Old firms
Low investment firms
Value firms

Figure 1: Technology Frontier and Expected Return
This �gure plots the distribution of �rms on technology frontier with the related characteristics and expected
returns implied by the model. In panel A, technology frontier grows as capital evolves from the old vintage
to the new vintage. In panel B, expected returns decrease in capital vintage evolution.

the value premium. Moreover, we �nd that value �rms on average are older than growth

�rms and the value spread in increasing in �rm age in the data. These new �ndings not only

con�rm the model predictions, but also shed light on the relationship between �rm life cycle

characteristic, vintage capital and the value premium.

Finally, the model produces a series of refutable hypotheses for future empirical research:

(i) Firms�vintage capital age and expected returns are negatively related; (ii) growth �rms�

capital age is smaller than that of value �rms; and (iii) at the aggregate level, the adoption

cycle (measured as the evolution of the number of �rms adopting the latest technology over

time) is negatively related to stock market returns.

Figure 1 summarizes the distribution of �rms on the technology frontier with the related

characteristics (panel A) and their expected returns in the model (panel B). Young �rms,

high investment �rms and growth �rms are distributed on the right upper and lower end in

the panels A and B, respectively. These �rms locate on the latest technology frontier and

are associated with new vintage capital and low expected returns. In contrast, old �rms,

low investment �rms, and value �rms are distributed on the left lower and upper corner of

the panels A and B, respectively. These �rms operate the old vintage capital and earn high

expected returns.

This paper is related to a growing pool of literature investigating the link between

technological progress and stock prices (e.g., MacDonald 1994, Greenwood and Jovanovic
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1999, Jovanovic and Stolyarov 2000, Jovanovic and Rousseau 2004, and Jermann and

Quadrini 2005, etc). Most of these papers focus a great deal on innovation decisions while

we study the link between vintage capital and asset returns. Notably, Albuquerque and

Wang (2008) use investment speci�c technological change to examine asset pricing and

welfare implications of imperfect investor protection at aggregate level. Our paper di¤ers in

that we study the implications of �rms�technological adoption in asset prices and returns.

Pastor and Veronesi (2009) investigate technological revolutions and aggregate stock prices

movement by focusing on the uncertainty of technological revolutions as the driving force

for the stock price "bubbles". We di¤er because we concentrate on the relationship between

�rm level adoption of the latest vintage capital and stock prices.

Our work is related to a strand of literature of production-based asset pricing models

focusing on capital investment and expected returns.5 We di¤ers in that we study the e¤ect

of �rms�technological adoption of latest vintage capital on risk and expected returns. The

model generates a discrete decision rule for investment which is di¤erent from the existing

literature using convex adjustment cost which implies a continuous investment.

2 The Model

The economy is comprised of a continuum of �rms that produce a homogeneous product.

Firms behave competitively, taking the product price as given.

2.1 Production Technology

Production requires capital and is subject to aggregate productivity and �rm-speci�c

productivity shocks. The aggregate productivity, xt, has a stationary and monotone Markov

transition function, Qx(xt+1jxt), and is given by:

xt+1 = �x(1� �x) + �xxt + �xet+1 (1)

5An incomplete list includes Cochrane 1991, Berk, Green and Naik 1999, Carlson, Fisher and Giammarino
2004, Zhang 2005, Belo 2006, Liu, Whited and Zhang 2008, Li, Livdan and Zhang 2009, Bazdresch, Belo
and Lin (2009), etc.
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where et+1 is an IID standard normal shock.

The �rm-speci�c productivity for �rm j, zjt , has a common stationary and monotone

Markov transition function, Qz(z
j
t+1jz

j
t ), given by:

zjt+1 = �zz
j
t + �z�

j
t+1 (2)

in which �jt+1 is an IID standard normal shock and "
i
t+1 and "

j
t+1 for any pair (i; j) with i 6= j.

Moreover, et+1 is independent of "
j
t+1 for all j. In the model, the aggregate productivity shock

is the driving force of time-series economic �uctuations and systematic risk, and the �rm-

speci�c productivity shock is the driving force of the cross-sectional heterogeneity of �rms.

The production function is given by

Y jt = e
xt+z

j
t (Kj

t )
� (3)

in which Y jt and K
j
t are the output and capital of �rm j at time t, respectively. The

production function is decreasing returns to scale with 0 < � < 1:

2.2 Costly Technology Adoption

Technology frontier, denoted by Nt, represents the stock of general and scienti�c technology.

Following Parente and Prescott (1994) and Cooper, Haltiwanger and Power (1999), we

assume that the technology frontier Nt grows at a constant rate of 
 > 0: Thus,

Nt+1 = (1 + 
)Nt: (4)

All �rms have access to this technology frontier, but it is costly to adopt. Given the state

of uncertainty,
�
xt; z

j
t

�
; and the level of technology, Nt; the �rm chooses between adopting

the latest technology, Nt+1; and continue using the existing vintage capital, K
j
t ; for another

period. Hence the capital stock for �rm j evolves as follows:
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Kj
t+1 =

8><>: (1� �)Kj
t if �jt = 0

Nt+1 if �jt = 1
; (5)

where � is the rate of depreciation for capital. The choice variable in this problem is �jt

where �jt = 1 means that new technology is adopted in period t and the existing vintage

capital is replaced. Accordingly, investment is given by

Ijt =

8><>: 0 if �jt = 0

Nt+1 � (1� �)Kj
t if �jt = 1

: (6)

Equation (6) implies an inaction for investment when the �rm chooses not to adopt

the latest technology and an investment spike when the �rm does. As a result, investment

lumpiness arises in the model. Equation (6) also implies that investment is irreversible when

�jt = 0:

The gain of technology adoption is that the new vintage is more productive than old

vintage as it re�ects the current technological progress. Technology adoption incurs a cost

Cjt given by

Cjt =

8><>: FNt if �jt = 0

FAt + I
j
t +

c
2

Ij2t
Kj
t

if �jt = 1
(7)

in which FAt is the �xed cost of technology adoption, and the quadratic term c
2

Ij2t
Kj
t

is

the capital adjustment cost. Here, the �xed cost FAt captures the cost of learning new

technology, workers training costs, etc. When no adoption occurs, the �rm incurs a �xed

cost of production denoted as FNt .
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2.3 Pricing Kernel

Following Berk, Green and Naik (1999) and Zhang (2005), we directly specify the pricing

kernel without explicitly modelling the consumer�s problem. The pricing kernel is given by

logmt;t+1 = log � + 
t(xt � xt+1) (8)


t = 
0 + 
1(xt � �x) ; (9)

where mt;t+1 denotes the stochastic discount factor from time t to t + 1. The parameters

f�; 
0; 
1g are constants satisfying 1 > � > 0; 
0 > 0 and 
1 < 0.

In particular, following Zhang (2005), we assume in equation (9) that 
t is time

varying and decreases in the demeaned aggregate productivity shock xt � �x to capture the

countercyclical price of risk with 
1 < 0.

2.4 Value Maximization

Let V (Kj
t ; xt; z

j
t ) denote the cum-dividend market value of equity for �rm j. De�ne:

Dj
t � Y jt � Cjt (10)

to be the distributions to shareholders. Let us de�ne the following stationary variables:6

�
vjt ; d

j
t ; y

j
t ; k

j
t ; i

j
t ; f

A; fN
	
=

(
V jt
Nt
;
Dj
t

Nt
;
Y jt
Nt
;
Kj
t

Nt
;
Ijt
Nt
;
FAt
Nt
;
FNt
Nt

)
:

Then equation (5) can be rewritten as

kjt+1 =

8><>: �kjt if �jt = 0

1 if �jt = 1
(11)

where � = (1��)
�

is the obsolescence due to technology progress.

6Note it =
Kj
t+1�(1��)K

j
t

Nt
= (1 + 
) kjt+1 � (1� �) k

j
t if �

j
t = 1:
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The dynamic value-maximizing problem for �rm j is:

v
�
kjt ; xt; z

j
t

�
= max

f�jtg

�
vA
�
kjt ; xt; z

j
t

�
; vN

�
kjt ; xt; z

j
t

�	
; (12)

where vA
�
kjt ; xt; z

j
t

�
is the �rm value when new technology is adopted with the superscript

"A" referring to adoption:

vA
�
kjt ; xt; z

j
t

�
= yjt � fA � ijt �

c

2

ij2t

kjt
+ Etmt;t+1v

�
1; xt; z

j
t

�
;

and vN
�
kjt ; xt; z

j
t

�
is the �rm value when new technology is not adopted with the superscript

"N" denoting non-adoption,

vN
�
kjt ; xt; z

j
t

�
= yjt � fN + Etmt;t+1v

�
�kjt ; xt; z

j
t

�
:

2.5 Risk and Expected Stock Return

In the model, risk and expected stock returns are determined endogenously along with �rms�

value-maximization. Evaluating the value function in equation (12) at the optimum,

v
�
kjt ; xt; z

j
t

�
= djt + Et

�
mt;t+1v(k

j
t+1; xt+1; z

j
t+1)

�
(13)

) 1 = Et
�
mt;t+1r

j
t+1

�
(14)

where equation (13) is the Bellman equation for the value function and equation (14) follows

from the standard formula for stock return rjt+1 = v(kjt+1; xt+1; zj;t+1)=
�
v
�
kjt ; xt; z

j
t

�
� djt

�
:

Note that if we de�ne pjt � v
�
kjt ; xt; z

j
t

�
� djt as the ex-dividend market value of equity, rjt+1

reduces to the usual de�nition, rjt+1 �
�
pjt+1 + d

j
t+1

�
=pjt :

Now we rewrite equation (14) as the beta-pricing form, following Cochrane (2001 p. 19):

Et
�
rjt+1

�
= rft + �

j
t�mt (15)
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where rft � 1
Et[Mt;t+1]

is the real interest rate, and �t is the risk de�ned as:

�jt �
�Covt

�
rjt+1;mt;t+1

�
V art [mt;t+1]

(16)

and �mt is the price of risk de�ned as

�mt �
V art [mt;t+1]

Et [mt;t+1]
:

Equation (15) and (16) imply that risk and expected returns are endogenously determined

along with optimal adoption decisions. All the endogenous variables are functions of three

state variables (the endogenous state variable, kjt and two exogenous state variables, xt and

zjt ), which can be solved numerically.

3 Properties of Model Solutions

3.1 Calibration

We calibrate the model in annual frequency. Table 1 summarizes the benchmark parameter

values.

[Insert Table 1 here.]

We set the curvature parameter in the production function, �, to be 0.7, roughly

consistent with the average of the estimates in Cooper and Ejarque (2001, 2003) and Cooper

and Haltiwanger (2006). The capital depreciation rate � = 10% is from Jermann (1998).

We set persistence �x = 0:98
4 and conditional volatility �x = 0:007 � 2. These annual values

correspond to quarterly values of 0:98 and 0:007, respectively, as in King and Rebelo (1999).

The long-run average level of aggregate productivity, �x; is a scaling variable. We set the

average long-run capital in the economy at 0.5, which implies that the long-run average of

aggregate productivity �x = �0:90. To calibrate persistence �z and conditional volatility �z

of �rm-speci�c productivity, we follow Gomes (2001) and Zhang (2005) and restrict these

10



two parameters using their implications on the degree of dispersion in the cross-sectional

distribution of �rms�stock return volatilities. Thus �z = 0:79, and �z = 0:18; which implies

an average annual volatility of individual stock returns of 20%, approximately the average

of 25% reported by Campbell at al (2001).

Following Zhang (2005), we pin down the three parameters governing the stochastic

discount factor, �; 
0; and 
1 to match three aggregate return moments: the average real

interest rate, the volatility of the real interest rate, and the average annual Sharpe ratio.

This procedure yields � = 0:94; 
0 = 28; and 
1 = �300; which generate an average annual

real interest rate of 1.65%, an annual volatility of real interest rate of 4.8%, an average annual

Sharpe ratio of the model of 0.32, which are similar to those in the data.

We set the growth rate of technological frontier 
 = 0:032, consistent with the estimate

in Greenwood, Hercotwiz and Krusell (1997).7 We set the �xed cost of adoption, fA = 0:3,

and the quadratic cost of adoption, c = 0:1 to match the �rm level investment rate volatility

of 26% annually. We set the �xed cost of production with no adoption, fN = 0:1 such that

the average market-to-book ratio in the model is 1:93, which is roughly close to the data.

Table 2 reports the data moments and the model-implied moments.

[Insert Table 2 ]

3.2 Properties of the Model Solution

Using the benchmark parametrization, we discuss how the key endogenous variables such

as the cum-dividend and ex -dividend �rm value, investment, and conditional beta are

determined by the underlying state variables.

3.2.1 Value Functions and Policy Functions

Panels A, B and C in Figure 2 plot the variables against kjt and xt; with z
j
t �xed at their

long-run average level of zero. Panels D, E and F in Figure 2 plot the variables against kjt
7I choose to calibrate the growth rate 
 as that of the investment speci�c technological change, but the

notion of the technology frontier in the model is broader than the investment speci�c technological change
in Greenwood et al (1997). The quantitative implication of the model does not vary with the di¤erent values
of the growth rate 
.
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and zjt ; with xt �xed at their long-run average level �x: Each one of these panels has a set of

curves corresponding to di¤erent values of xt or z
j
t and the arrow in each panel indicates the

direction along which xt or z
j
t increases.

In Panels A and D in Figure 2, the �rms�technological adoption decision, �jt ; is more

likely to occur when the aggregate productivity is high, and �rms with higher �rm-speci�c

productivity or small capital stock are more likely to adopt.8 In Panels B and E in Figure 2,

the �rms�cum-dividend market value of equity is increasing in the aggregate productivity,

the �rm-speci�c productivity and the capital stock. More productive �rms and larger �rms

have higher market value of equity, consistent with Li, Livdan and Zhang (2009). In Panels C

and F in Figure 2, the �rms�ex-dividend market value of equity is increasing in the aggregate

productivity and the �rm-speci�c productivity, but is not monotonically increasing in capital

stock because the optimal adoption decision �jt is not monotone in capital. Combining panels

A, C, D, and F, we �nd that all else being equal, technology adopting �rms�ex -dividend

market value of equity is higher than those of non-adopting �rms, consistent with Jovanovic

and Rosseau (2005).

[Insert Figure 2 here]

In Panels A and D of Figure 3, the optimal investment ijt is decreasing in capital stock,

indicating that smaller �rms grow faster which is consistent with Evans (1987). Adopting

�rms with less capital invest more and grow faster than non-adopting �rms that do not

invest. Note that the optimal investment ijt is not continuous in capital k
j
t because the

optimal adoption decision �jt is a discrete choice variable: This prediction is in contrast with

the Q-theory of investment which implies a smooth investment continuous in capital (e.g.,

Hayashi 1982). In Panels B and E of Figure 3, adopting �rms use the latest vintage capital

while non-adopting �rms use their existing vintage capital.

[Insert Figure 3 here]

8Recall that �jt is an indicator variable which takes unity when technological adoption occurs and zero
otherwise.
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3.2.2 Risk and Expected Return

In panels E and F of Figure 3, the �rms�expected stock return Et
�
rjt+1

�
and conditional

beta �jt are decreasing in the �rm-speci�c productivity, indicating that more productive

�rms are less risky, which is consistent with Li, Livdan and Zhang (2009). Combining the

optimal adoption decision �jt in panel A of Figure 2, all else being equal, the expected returns

and conditional betas of adopting �rms are smaller than those of non-adopting �rms. As

noted, costly technology adoption plays a key role in generating the risk dispersion between

adopting �rms and non-adopting �rms. In the model, the risk of a �rm is negatively related

to its �exibility in adopting the latest vintage capital to smooth its dividends when facing

aggregate uncertainty. Technology adoption cost is the o¤setting force of dividend smoothing

mechanism. Adopting �rms are more �exible in dividend smoothing, and hence are less risky

than non-adopting �rms.

4 Quantitative Analysis

Here, the quantitative implications concerning the cross section of returns in the model are

investigated. We simulate 100 samples each with 3500 �rms and each �rm has 50 annual

observations. The empirical procedure on each arti�cial sample is implemented and the

cross-simulation results are reported. We then compare model moments with where possible

those in the data (See Appendix A1 for data construction).

4.1 Investment and Technology Adoption

In the model, adopting frontier technology requires investing in the latest vintage capital,

which gives rise to an one-to-one mapping between technology adoption and capital

investment. This relation implies that investment-intensive �rms should earn lower expected

returns than �rms investing less in capital.

We test this prediction following the empirical procedure in Xing (2009) in constructing

10 value-weighted portfolios sorted on investment.9 We sort all �rms into 10 portfolios based

9Given that there is no distinction between di¤erent capital vintage in the data, I use capital expenditure
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on �rms�rate of investment, ijt�1=k
j
t�1; in ascending order as of the beginning of year t. We

construct an investment-spread portfolio long in the low ijt�1=k
j
t�1 portfolio and short in the

high ijt�1=k
j
t�1 portfolio, for each simulated panel. Panel A in Table 3 reports the average

stock returns of 10 portfolios sorted on investment in the data, and panel B reports the model

implied moments. Consistent with Xing (2009), �rms with low ijt�1=k
j
t�1 on average earn

higher stock returns than �rms with high ijt�1=k
j
t�1 in the model. The model-implied average

value-weighted investment-spread is 3.85% per annum. This spread is short of magnitude to

the data, 12.74%.

In order to investigate if the spread in the average returns across these portfolios re�ects

a compensation for risk, at least as measured by traditional risk factors, we conduct standard

time series asset pricing tests to both the real and simulated data using the CAPM and the

Fama-French (1993) three factor model as the benchmark asset pricing models. In testing

the CAPM, we run time series regressions of the excess returns of these portfolios on the

market excess return portfolio while in testing the Fama-French three factor model we run

time series regressions of the excess returns of these portfolios on the market excess return

portfolio (Market), and on the SMB (small minus big) and HML (high minus low) factors.

We �nd that the model also replicates reasonably well the portfolio results in terms the failure

of the unconditional CAPM, and the relative better �t of the Fama and French (1993) three

factor model.

To further test the model prediction that technological change is favourable to young

�rms and renders old vintage capital obsolete, we examine the average age of 10 investment

portfolios. Following Jovanovic and Rosseau (2001, 2005), �rm age is identi�ed as the number

of months since the �rms appear on the Center for Research in Securities Prices (CRSP).

Firms with low ijt�1=k
j
t�1 on average are older than �rms with high i

j
t�1=k

j
t�1. The average

age di¤erence between the high investment and low investment portfolios is more than 60

months. In the model, there is no direct counterpart for �rm age. Instead, we use the

average capital age, the time from the last technology adoption till the current period, t. In

the simulated data, �rms with low ijt�1=k
j
t�1 on average have higher capital age than �rms

(Compustat data 128) scaled by property, plant and equipment (data 8) to measure rate of investment.
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with high ijt�1=k
j
t�1.

[Insert Table 3 here]

4.2 Firm Age and Technology Adoption

As noted, �rm age and technology adoption are positively related as young �rms are more

likely to adopt the new vintage capital, demonstrated in Hobijn and Jovanovic (2001) and

Jovanovic and Rosseau (2001, 2005). Hence, young �rms should be less risky and earn lower

expected returns than old �rms.

To test this prediction, we construct 5 value-weighted age portfolios in the data. We sort

all �rms into 5 portfolios based on �rms�age in ascending order as of the beginning of year

t. We then calculate the value-weighted annual average stock excess returns for each age

portfolio. Panels A in Table 4 report the data moments.

[Insert Table 4 here]

From Panel A in Table 4, consistent with the model prediction, young �rms on average

earn lower average stock returns than old �rms. The age spread (the return di¤erence

between old �rms and young �rms) is 2.85% per annum. This age spread cannot be captured

by either the CAPM and Fama-French 3 factor model. In Panel B in Table 4, we sort

simulated �rms on �rm capital age. The model generates a reliable age spread, which is

2.02% per annum, close to that in the data, 2.85%. The model replicates the failure of the

CAPM model in explaining the age spread, and Fama-French 3 factor model does a better

job in capturing the age spread in the model.

4.2.1 Age Premium

Here we investigate the economic mechanism in the model for generating a sizable capital

age premium. Since �rm age and technology adoption are positively related, this analysis

can also shed light on the economic mechanism for the �rm age premium.10 Our quantitative
10In principal, capital age and �rm age are not exactly the same, but empirical studies suggest that they

are closely related: Young �rms tend to use new vintage capital and hence their capital age is smaller than
old �rms.
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results show that costly technology adoption is the key driving force. Table 5 reports the

comparative statics of the age premium across di¤erent parametrizations. When technology

adoption is cost-free, fA = 0; age spread is close to zero. The intuition is the following: In

good times, both young �rms and old �rms can take the advantage of the positive aggregate

shock, so they both covary with aggregate risk, meaning that their risk di¤erence is low. In

bad times, young �rms with positive �rm-speci�c shock either adopt the latest technology

incurring a �xed cost or they have already upgraded their capital to the technology frontier.

As a result, young �rms are able to smooth their dividend streams using their productive

capital. However old �rms cannot upgrade their old vintage because it is too costly for

them (with unproductive capital stock, their operating income is low in bad times). So their

dividend streams covary more with economic downturns than do young �rms, and hence are

riskier. With fA = 0; both young �rms and old �rms can adopt the new technology freely

to smooth dividends facing bad aggregate shock, implying a tiny risk dispersion. Fixed

production cost, fN ; and quadratic adoption cost, c
2
i2

k
; are both quantitatively important

in generating the di¤erence in the expected returns across the age portfolios, but with a

secondary e¤ect.

[Insert Table 5 here]

4.3 The Value Premium

4.3.1 One Way Sort

Here, we explore the relation between technological adoption and the value premium.

First we investigate if the model can generate a positive relation between the book-to-

market ratio and expected stock returns. We construct 10 value-weighted book-to-market

portfolios. The book value of a �rm in the model is identi�ed as its capital stock. We sort all

�rms into 10 portfolios based on �rms�book-to-market ratio, kjt�1=p
j
t�1; in ascending order

as of the beginning of year t. We construct a value-spread portfolio long in the high book-

to-market portfolio and short in the low book-to-market portfolio for each simulated panel.

Table 6 reports the average stock returns of 10 portfolios sorted by book-to-market ratio.
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Consistent with the �ndings of Fama-French (1992, 1993), �rms with low book-to-market

ratios earn lower stock returns on average than do �rms with high book-to-market ratios.

The model-implied average value-weighted value-spread is 8.84% per annum. This spread is

close to that documented in the data, 8.72%. Moreover, we �nd that growth �rms on average

are younger and invent more than value �rms, implying that growth �rms on average are

more frequently adopting the latest vintage capital, consistent with the model prediction.

4.3.2 Comparative Statics

We then investigate the mechanism driving the value premium. Both �xed technology

adoption cost, fA; and the �xed production cost without adoption, fN ; are critical. The

mechanism driving the value premium is as follows: In good times, both growth �rms and

value �rms can use their capital to smooth their dividend streams when facing the favourable

economic conditions. So they all covary with aggregate risk and their risk disparity is low.

In bad times, growth �rms are equipped with the latest vintage capital which are more

productive than those of value �rms. Value �rms are loaded with old vintage capital and

are unable to adopt the latest technology because it is too costly for them. Hence, they

have to use the old vintage machine which depreciate faster as new technology renders them

obsolete. In addition, the implied investment irreversibility in equation (6) prevents value

�rms from disinvesting to smooth dividends. As a result, growth �rms are more �exible

in smoothing their dividend streams than value �rms, particularly in economic downturns,

implying that value �rms are riskier than growth �rms.

[Insert Table 6 here]

4.3.3 Vintage Capital and the Value Premium

Here we investigate the relation between vintage capital and the value spread. In the model,

value �rms are further away from the technology frontier than growth �rms, hence the risk

dispersion between value �rms and growth �rms is in increasing �rms�vintage capital age. As

noted, �rm age and vintage capital (technology adoption) are directly linked, we explore this
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prediction using �rm age in the data. We �rst sort all �rms in Compustat into three portfolios

based on �rms�book-to-market ratio, kjt�1=p
j
t�1; in ascending order as of the beginning of

year t. Meanwhile we sort all �rms into three portfolios based on �rm age in ascending order

as of the beginning of year t. The intersections give nine portfolios sorted on book-to-market

and �rm age. We construct value-spread portfolios long in the high book-to-market portfolio

and short in the low book-to-market portfolio given each �rm age portfolio. Panels A and

B in Table 7 reports the average stock returns of nine portfolios in the data and implied by

the model, respectively.

The sorting procedure generates an impressive spread in the average excess returns of

these portfolios. For example, the high book-to-market and high age portfolio (high-high)

has a value weighted excess return of 14:17% in the data whereas the low book-to-market

and low age portfolio (low-low) has a value weighted excess return of only 8:46%, implying

a di¤erence of 5:71% per year. This �nding is consistent with the model prediction: Value

spread increases in �rm age. Moreover the model generates a reliable spread between high-

high and low-low portfolios of 5:94% per year, close to the data.

We also conduct standard asset pricing tests on these nine portfolios. The unconditional

CAPM is clearly rejected on these portfolios both in the real and simulated data, because the

spread in the market betas (not reported) is too small relative to the spread in the realized

average excess returns. As a result, the model generates large statistically signi�cant alphas.

[Insert Table 7 here ]

The test results for the Fama and French (1993) model presented in Table 7 con�rm

the better �t of this model, as in the real data. The alphas between high-high and low-low

portfolio is not statistically signi�cant.

5 Summary and Future Work

We study the relationship between technology adoption and expected stock returns in a

dynamic vintage capital model. Our results suggest that technology adoption is an important
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determinant of the cross section of returns. In our setting, technology adopting �rms are

less risky than non-adopting �rms because costly technology adoption restricts the degree

of �exibility of non-adopting �rms in smoothing their dividend streams. We use capital

investment to identify technological adoption decisions, and �nd the empirical results are

consistent with the model prediction: In the U.S. publicly traded �rms, investing �rms earn

lower stock returns than less-investing �rms. Moreover, the positive relation between �rm

age and expected returns is also supportive to the model prediction, as technological change

destroys old vintage capital and favours young �rms. By linking technological adoption to

the di¤erences between value �rms and growth �rms, the model also sheds light on the value

premium and the evolution of �rms�vintage capital.

Future research can proceed in a few directions. First, in our setup, we assume adopting

new technology renders old vintage capital completely obsolete and worthless. One can

extend the current framework to allow for a resale market for old capital to better capture

investment dynamics. Second, for simplicity, we assume that �rms�capital stock are of the

same size when adopting the frontier technology following Parente and Prescott (1994) and

Cooper, Haltiwanger and Power (1999). A richer model with di¤erent size of vintage capital

can follow Greenwood and Yorukoglu (1997) and Cooley, Greenwood and Yorukoglu (1997).

Lastly, the relations between �rms�plant-level decisions and the expected stock returns is

also worth investigating. Firms�establishment level data has been extensively studied in the

investment literature (e.g., Caballero and Engel 1993, 1994 and 1999, Caballero, Engel and

Haltiwanger 1997, Cooper and Haltiwanger 2006, etc). Examining the relationship between

plant investment, employment, age, etc., and asset returns would open up new avenues for

empirical research, and provide new insight for the driving forces of the cross section of

returns.
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Appendix

A1 Data

Monthly stock returns are from the CRSP and accounting information is from the

CRSP/COMPUSTAT Merged Annual Industrial Files. The sample is from July 1971 to

June 2006. We exclude from the sample any �rm-year observation with missing data or for

which total assets, the gross capital stock, or total employees are either zero or negative. In

addition, as standard, we omit �rms whose primary SIC classi�cation is between 4900 and

4999 (regulated �rms) or between 6000 and 6999 (�nancial �rms). Following Vuolteenaho

(2002) and Xing (2008), we require that a �rm must have a December �scal-year end in

order to align the accounting data across �rms. Since most �rms have a December �scal-

year end, this selection requirement does not bias the representativeness of the sample.

Finally, following Fama and French (1993), we also require that each �rm must have at least

two years of data to be included in the sample.

We construct the key variables as follows. Firm level capital investment it is given by

COMPUSTAT data item 128 (Capital Expenditures). The capital stock kt is given by the

data item 8 (Property, Plant and Equipment). Firm age is de�ned as the number of months

after a �rm appears in CRSP; following Fama and French (1993), we de�ne book value of

equity as the Compustat book value of common equity (data item 60) plus balance-sheet

deferred taxes (data item 74) and investment tax credits (data item 208), minus the book

value of preferred stock. Depending on availability, we use the redemption (data item 56),

liquidation (data item 10), or par value (data item 130) of preferred stock. When data

item 60 is not available, the liquidation value of common equity (data item 235) is used.

COMPUSTAT data item 128 is used for capital investment, i; the net book value of property,

plant, and equipment (data item 8) is used for the capital, k; the investment rate is given by

the ratio of investment to beginning of the period capital stock (it/kt) (as in Xing (2008));

Book-to-market equity is the ratio of the book value of equity to the market value of equity;

market equity is price times shares outstanding at the end of December of t, from CRSP;

size is the price times shares outstanding at the end of June of year t, from CRSP. The data
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for the three Fama-French factors (SMB, HML and Market excess returns), the six Fama-

French factors and the risk-free rate is from Prof. Kenneth French�s webpage. See Fama

and French, 1993, �Common Risk Factors in the Returns on Stocks and Bonds,�Journal of

Financial Economics, for a complete description of these factor returns.

A2 Numerical Algorithm

To solve the model numerically, we use the value function iteration procedure to solve the

�rm�s maximization problem. The value function and the optimal decision rule are solved

on a grid in a discrete state space. We specify a grid with 10000 equi-distanced points for

the capital with upper bounds kmax=1.

The state variable x is de�ned on continuous state space, which has to be transformed

into discrete state space. Because both aggregate and idiosyncratic productivity processes

are highly persistent, we use the method described in Rouwenhorst (1995). The method of

Tauchen and Hussey (1991) does not work well when persistence level is above 0.9. We use

11 grid points for the x process and 21 grid points for the z process. In all cases the results

are robust to �ner grids as well. Once the discrete state space is available, the conditional

expectation can be carried out simply as a matrix multiplication. Finally, we use a simple

discrete, global search routine in maximizing problems.
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Table 1:
Parameter Values under Benchmark Calibration

This table presents the calibrated parameter values of the benchmark model.

Parameter Value Description

Preferences

� 1.06 Subjective discount factor


0 28 Constant price of risk


1 -300 Time-varying price of risk

Technology

� 0.70 Production function curvature

� 10% Rate of depreciation


 0.032 Growth rate of technology frontier

Adoption Costs

fA 0.3 Fixed cost of technology adoption

c 0.1 Size of quadratic cost of technology adoption

fN 0.1 Fixed production cost without technology adoption

Productivity Shocks

�x -0.90 Long run average of aggregate productivity

�x 0.984 Persistence of aggregate production

�x 0.014 Conditional volatility of aggregate productivity

�z 0.79 Persistence of �rm-speci�c productivity

�z 0.18 Conditional volatility of �rm-speci�c productivity
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Table 2:
Unconditional Moments under the Benchmark Calibration

This table presents the selected moments in the data and implied by the model under the benchmark
calibration. The simulated results is based on 100 arti�cial panel with 3500 �rms and 50 periods of data.
We report the cross-simulation averaged annual moments. The data moments are estimated from a sample
from 1971 to 2006.

Moments Data Benchmark Model

The average annual risk-free rate 0.022 0.028

The annual volatility of risk-free rate 0.029 0.042

The average annual Sharpe ratio 0.39 0.32

The average annual rate of investment 0.33 0.16

The volatility of annual rate of investment 0.25 0.26

The average annual market to book ratio 1.49 1.93

The volatility of annual of market to book ratio 0.23 0.40
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Table 7:
Nine Portfolios Double Sorted on Book-to-Market and Firm Age

This table reports the CAPM and the Fama-French three factor model asset pricing test results on nine
value-weighted portfolios double sorted on book-to-market ratio and �rm age (in the data, on Panel A) and
(capital age in the simulated data, on panel B). The table reports the intercept of a time series regression of
the portfolio excess returns on the market excess return (if CAPM) or the Market, SMB and HML factors (if
Fama�French three factor model (1993)), the corresponding t-statistics with Newey-West standard errors in
parenthesis, and the factor betas. The reported statistics are averages from 100 samples of simulated data,
each with 3500 �rms and 50 annual observations.

Characteristics Excess Return CAPM � t-statisitics Fama-French � t-statisitics

BM AGE Panel A: Data

Low Low 8.46 -7.79 -3.14 -3.00 -1.65

Low Mid 8.54 -3.44 -1.74 -5.78 -3.2

Low High 11.27 2.17 1.13 -1.29 -0.72

Mid Low 8.52 -4.60 -2.63 -1.10 -0.72

Mid Mid 15.34 3.93 2.33 0.80 0.56

Mid High 16.91 6.13 3.43 0.98 0.74

High Low 9.11 -0.55 -0.57 1.30 1.59

High Mid 10.85 1.98 1.68 -0.14 -0.12

High High 14.17 4.84 2.5 -1.13 -0.83

HH - LL 5.71 12.62 3.58 1.87 0.98

Panel B: Model

Low Low 3.60 -0.53 -2.07 0.16 1.33

Low Mid 4.47 -0.16 1.93 -0.15 -1.17

Low High 4.59 -0.13 1.15 -0.03 -0.17

Mid Low 4.81 -0.14 -2.88 0.38 2.21

Mid Mid 5.76 0.27 2.13 -0.20 -1.62

Mid High 5.74 0.14 1.68 0.07 0.52

High Low 8.33 1.15 -1.94 0.41 1.32

High Mid 9.76 1.92 1.79 0.20 0.67

High High 9.54 1.60 -0.11 -0.45 -1.55

HH - LL 5.94 2.13 0.76 -0.62 -1.71
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