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ABSTRACT

We develop an optimal dynamic contracting theory of overpay for jobs in which moral hazard

is a key concern, such as investment banking. Overpaying jobs feature up-or-out contracts and

long work hours, yet give more utility to workers than their outside option dictates. Labor

markets feature “dynamic segregation,” where some workers are put on fast-track careers in

overpaying jobs and others have no chance of entering the overpaying segment. Entering the

labor market in bad economic times has life-long negative implications for a worker’s career

both in terms of job placement and contract terms. Moral hazard problems are exacerbated in

good economic times, which leads to countercyclical productivity. Finally, workers whose talent

would be more valuable elsewhere can be lured into overpaying jobs, while the most talented

workers might be unable to land these jobs because they are “too hard to manage”.
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The last few years have seen heated debate about the level of financial sector pay. There is no

doubt that financial sector pay is indeed extremely high. Broadly speaking, there are three potential

explanations: high pay as a return to skill; high pay as a compensating differential for stressful

work conditions; and high pay as overpay—in the sense of being neither a return to skill nor a

compensating differential. As we review in more detail below, we think there is substantial evidence

against the first two hypotheses. However, a coherent explanation of the third hypothesis—that

workers in the financial sector are overpaid relative to their outside options—requires explaining

why market entry does not eliminate the pay premium.

In this paper we develop an equilibrium theory of overpay. We build on a strand of an older

efficiency wage literature,1 which points out that a wage premium may exist in one sector of the

economy (employed workers), because incentive problems prevent workers from other sectors of

the economy (unemployed workers) from bidding these wages down. However, this older literature

attracted criticism for its focus on simple wage contracts, and its neglect of the role of dynamic

incentives (a criticism broadly know as the “bonding critique”).2 This criticism strikes us as

particularly important with respect to the current debate about financial sector pay, because age-

compensation profiles are often very steep, consistent with dynamic incentives; and moreover, many

policy proposals call for increased use of back-loaded incentive pay.

In this paper we develop a parsimonious dynamic equilibrium model based on the single friction

of moral hazard, in which some workers are overpaid relative to other workers, even when firms

employ fully optimal dynamic contracts. We further show how this same model matches a variety

of empirical observations about both cross-sectional variation of job characteristics, and time-series

variation of labor force conditions. All of these predictions hinge crucially on solving for the optimal

dynamic contract. For example, our model predicts that overpaid jobs rely heavily on up-or-out

promotion, and demand long hours for entry-level workers, often on surprisingly mundane tasks.

They are most commonly entered when young, implying that cross-sectional variation in workers’

initial employment conditions have long lasting effects. In the time-series, our model predicts that

workers who enter the labor force in bad economic times are less likely to get an overpaid job; that

even if they do, the overpaid job is worse; and that they work harder, implying countercyclical

productivity. We review the empirical evidence supporting these results in the main body of the

paper.
1See especially Shapiro and Stiglitz (1984). Katz (1986) provides a useful review.
2See Katz (1986) for a discussion of the bonding critique.
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That overpay persists in a model with optimal dynamic incentives is not a foregone conclusion.

The basic rationale for overpay is that when tasks are such that the difference between success and

failure is large and effort is unobservable, a profit maximizing firm may find it optimal to use bigger

monetary incentives than the outside option of a worker dictates. Dynamic incentives can help to

reduce the need for overpay in two ways. First, the firm can backload pay to the end of a worker’s

career and threaten him with separation in case of failure. Second, tasks can be sequenced such

that all workers start out on jobs characterized by relatively low moral hazard, and only gradually

get employed on more important tasks as a reward for earlier success. Indeed, the latter is what

one would prescribe based on an important insight of contract theory: workers who have built up

wealth over time are easier to employ on high moral hazard tasks, because the wealth can be used

to acquire an equity stake in the firm and lessen the split between ownership and control that lies

at the heart of the moral hazard problem.3 If all workers in the economy were forced to “work

their way up” in this manner, there would be no sense in which some workers are overpaid relative

to other workers.

Our key result is to show that when moral hazard problems are severe enough, putting all

workers on the same job ladder is suboptimal. Instead, some workers will be singled out for fast-

track careers that feature high moral hazard tasks even early on, and these workers are indeed

overpaid. Workers who are not lucky enough to be placed on the fast track when young will never

get the chance to work on overpaying tasks. We denote this phenomenon “dynamic segregation” of

the labor market. Loosely speaking, dynamic segregation reflects a second insight of contracting

theory: the prospect of wealth accumulation in the future can be used to ameliorate moral hazard

problems in the present.4 Workers on fast-track careers expect lucrative job placements in case of

success, which in turn makes it easier to motivate them to perform difficult tasks early on in their

career.

Our basic model has no aggregate uncertainty, and accounts for the existence and characteristics

of overpaid jobs. We next examine the effects of aggregate shocks, which allows us to develop time-

series implications for job allocation, contract characteristics, and firm productivity. Our model

delivers two types of cohort effects, both of which have considerable support in the empirical labor

market literature.5 First, entering the labor market in bad times leads to worse job placement on
3The idea that wealth possessed by the agent ameliorates the moral hazard problem dates back at least as far as

Jensen and Meckling (1976). Recent papers that explicitly model the reduction in inefficiency associated with the
dynamic accumulation of wealth by the agent include DeMarzo and Fishman (2007) and Biais et al (2007).

4Early observations of this point include Becker and Stigler (1974), Akerlof and Katz (1989), and Lazear (1981).
5See Oyer (2008), Kahn (2010), Baker, Gibbs, and Holmström (1994), and Beaudry and DiNardo (1991).
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average because there are fewer overpaid jobs available, and this has life-long effects on a worker’s

career because of dynamic segregation. Second, even if an entering worker does land one of the

few good jobs available in bad times, this job will pay less and the worker’s future wages will

also be depressed relative to workers who entered the economy in good times. Our model further

predicts that productivity in good jobs is countercyclical, for two reasons. First, in bad times a

higher fraction of a firm’s workers are old, and old workers in our model are (endogenously) more

productive. Second, in bad times the threat of being fired is more powerful, leading to greater

effort. In contrast, in good times workers are more reckless because they are confident that they will

“land on their feet,” a prediction that accords well with anecdotal accounts of the recent financial

boom.

As an extension, we also analyze how observable differences in talent affect job placement. Our

model naturally generates two commonly noted forms of talent misallocation. The first one, which

we call “talent lured,” is the observation that jobs like investment banking tend to attract talented

workers whose skills might be socially more valuable in other jobs, such as engineers and PhDs.

In our model, this type of misallocation follows immediately from the fact that overpaying firms

can outbid other employers for workers even if their talent is wasted in investment banking. The

second phenomenon, which we call “talent scorned,” is the opposite—overpaying jobs often reject

the most talented applicants on the grounds that they are “difficult” or “hard to manage.” In our

model, this effect arises because talented workers, when fired, have higher outside opportunities.

Finally, a contribution of a more technical nature is to prove existence of equilibrium in an

economy with overpay. As we explain in Section VI, the same features of our model that imply

overpay also imply that the excess demand correspondence of the economy may fail to be upper-

hemi continuous in prices, which considerably complicates the existence proof.

As stated in our opening paragraph, we describe a worker as overpaid if his pay represents

neither a return to skill nor a compensating differential, i.e., if his expected utility exceeds that

of another worker with identical skills. It is worth highlighting that under this definition the

existence of overpaid workers is not necessarily socially inefficient. In particular, since contracts

are set optimally in our model, shareholders would not gain by reducing the amount paid to workers.

In this, our notion of overpay is very different from the criticisms of executive pay advanced by,

for example, Bebchuk and Fried (2004). Also, our model does not imply that the financial sector

as a whole is too large, as suggested by, for example, Murphy, Shleifer and Vishny (1991), or more

recently by Philippon (2010), or Bolton, Santos and Scheinkman (2011).
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We conclude with a discussion of why we believe some jobs are truly overpaid, i.e., why high

compensation is neither a return to skill nor a compensating differential. In the particular context of

finance jobs, Oyer (2008) and Philippon and Reshef (2008) provide evidence against high pay being

a return to skill: Philippon and Reshef (2008) control for unobserved worker characteristics using a

fixed effect regression, while Oyer instruments for worker characteristics using aggregate economic

conditions when an MBA student graduates. More generally, these conclusions are consistent with

a large empirical literature arguing that different jobs pay otherwise identical workers different

amounts.6

High pay as a compensating differential for bad work conditions may seem a plausible explana-

tion at first sight, since investment banking jobs feature notoriously long hours and low job security.

However, these onerous work conditions are chosen by the employer rather than being an intrinsic

feature of the job (as they are in, for example, mining). Hence one must explain why employers

do not make the job more attractive, rather than paying very high amounts to compensate for

unattractive job characteristics of their own choosing.7 Moreover, Philippon and Reshef (2008)

control for hours worked, and still find excess pay in the financial sector. Finally, and less formally,

the pay differences between finance and other (themselves high-paying) occupations documented

by Oyer and others strike us as too large to be easily explained as compensating differentials; and

related, students who obtain investment banking jobs act as if they have won the lottery (consistent

with our model) rather than as if the high compensation is a compensating differential.8

Related literature: As noted, our paper is related to the efficiency wage literature. Relative to this

literature, our contribution is to fully evaluate optimal dynamic contracts for finite-lived agents,

and to analyze both how a worker’s prospects evolve over his career, and how contracts respond

to business cycle conditions. In addition, our main interest is in understanding cross-sectional

variation in job characteristics, rather than unemployment;9 hence our model also features mul-

tiple tasks, a further distinguishing feature. Separately, the extensive search literature in labor

economics also predicts heterogeneity in wages for homogenous workers.10 In common with the
6See, e.g., Krueger and Summers (1988) and Abowd et al (1999).
7In our model, unattractive job characteristics such as low job security and long hours emerge endogenously.
8Of course, the compensating differential explanation says only that the marginal worker is indifferent. We have

yet to meet the marginal student who is just indifferent between receiving and not receiving an investment banking
offer.

9Bulow and Summers (1986) explore some microeconomic predictions of efficiency wage models. Also, much of the
empirical efficiency wage literature is concerned with examining whether different industries pay otherwise identical
workers different amounts (see, e.g., Abowd et al, 1999).

10See, e.g., Mortensen (2003).
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efficiency wage literature, this literature largely ignores the possibility of dynamic contracting.

Tervio (2009), in a very interesting and related recent paper, explains high income in a model

that builds on talent discovery rather than incentive problems. In his setting, overpay arises because

young, untried workers who get a chance to work in an industry where talent is important enjoy a

free option: If they turn out to be talented, competition between firms drives up their compensation,

while if not, they work in the normal sector of the economy. Firms cannot charge for this option

when workers have limited wealth. Hence entry into the sector is limited, and compensation for

“proved” talent very high. Because Tervio’s main focus is the wage and talent distribution of

a sector rather than career dynamics, he does not attempt to explain dynamic segregation: In

fact, an important assumption in his model is that a worker can only enter the high-paying sector

when young. In contrast, endogenizing dynamic segregation is at the heart of our analysis. In

terms of applications, while we find his exogenous dynamic segregation assumption realistic for

the entertainment business (which is his main example), this assumption seems less realistic for

many professional jobs such as banking, where the skills needed for success are less sector-specific.

In contrast, incentive problems strike us as of central importance in the financial sector, and are

correspondingly central to our analysis.

Paper outline: The paper proceeds as follows. Section I describes the model. Section II derives

the structure of equilibrium contracts. Section III derives the dynamic segregation result, along

with the characteristics of career paths in overpaying jobs. Section IV studies the effects of demand

shocks on careers and incentives. Section V introduces observable talent differences. Section VI

deals with equilibrium existence. Section VII concludes.

I Model

To study the labor market phenomena we are interested in, we need two key elements: Workers of

different age, and tasks that vary in their degree of moral hazard problems. There is a continuum

of workers of measure 1, and we assume a measure 1
2 of young workers enter the labor market each

period, work for two periods, and then exit. Except for age, workers are identical. They all have

the same skill, are risk neutral over both consumption and leisure, start out penniless, and have

limited liability. (We analyze an extension where skills differ across workers in Section V.)

There are two tasks denoted as H (the “high stakes” task) and L (the “low stakes” task). A

task can either succeed or fail, where the failure cost is what differs across tasks. For task H, the
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failure cost is kH > 0, while for task L the failure cost is kL = 0. For each task i ∈ {H,L} , we

write the success payoff as gi − ki, where gi is determined in equilibrium (see below). One way to

think about these payoffs is that ki is an input cost (e.g., funds provided to a trader) and gi is the

value, or market price, of output produced when the task succeeds (e.g., gross value after trading).

Alternatively, ki is the value destroyed if a task fails (e.g., a takeover fails), and gi− ki is the value

created if a task succeeds (e.g., takeover succeeds). We write g for the price vector (gL, gH).

A worker can spend time on one task per period. If a worker spends time h on the task, it

succeeds with probability p (h) and fails with probability 1 − p (h). Hence, we can think of gi as

the marginal product of labor. Workers have a per-period time endowment of 1, which they can

split between work and leisure, and have linear preferences over leisure. The success probability

p(h) is a strictly increasing and strictly concave function with p′ (0) = ∞ and p′ (1) = 0. While

output (i.e., success or failure) is fully observable, effort is private information to the worker, which

leads to a standard moral hazard problem.11 Analytically, it is slightly easier to express everything

in terms of probabilities instead of hours worked: let γ ≡ p−1, so that the utility cost of a worker

achieving success probability p is γ (p). The function γ is strictly increasing and strictly convex,

with γ′ (0) = 0 and γ′ (p (1)) = ∞.

For the case of the financial sector, the following specific interpretation of the moral hazard

problem is worth spelling out. The success payoff gi is a target (gross) rate of return. A financial

sector worker can meet this target either by working hard and discovering genuinely profitable

trading opportunities, or by taking “tail” risk. When tail risk is realized all the input funds ki are

lost. By working h hours, the amount of tail risk a worker needs to achieve his target return is

such that the probability of tail risk being realized is 1− p (h).

We make the following assumption on the shape of the effort cost function. Part (i) ensures

that a firm’s marginal cost of inducing effort is increasing in the effort level. Part (ii) ensures that

old workers exert strictly positive effort, even given the agency problem.12

Assumption 1 (i) pγ
′′′(p)
γ′′(p) > −1, and (ii) limp→0 γ

′′ (p) <∞.

A firm in the economy can operate one or both tasks. To close the model, we need to determine

the aggregate supply of the two tasks. For simplicity, we assume there is free entry and perfect
11As formulated, the only difference in the degree of moral hazard in the two tasks stems from kH > kL, which in

equilibrium implies gH > gL. However, we would obtain qualitatively similar results if instead moral hazard varied
due to different costs of effort, or different degrees of observability of output.

12Moral hazard means that the marginal cost to the firm of inducing effort for an old worker is γ′ (p)+ pγ′′ (p) (see
contracting problem below). Part (ii) of Assumption 1 ensures that this quantity approaches 0 as p → 0.
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competition. The output prices gH and gL are determined in equilibrium by the standard market

clearing condition that excess demand must equal zero. (Alternatively, if task i involves trading

financial securities, then gi is inversely related to how many people are following a given trading

strategy.) We write yi for total task i output. We write ζi for the inverse demand curve for task

i output, i.e., ζi (yi) is the price such that total demand is yi.

As will be clear below, the task L moral hazard problem causes no distortion, since when firm

profits are zero, there is enough surplus available for the worker to induce him to exert first-best

effort. In this sense, task H is the more interesting task, and in order to focus our analysis we make

the simplifying assumption that demand for task L output is perfectly elastic, i.e., ζL ≡ gL > 0.

(Our results are qualitively unaffected if this assumption is relaxed; details are available on request

from the authors.) For task H output, the demand curve slopes strictly down, i.e., ζH is strictly

decreasing. We also impose the standard Inada condition that ζH (yH) →∞ as yH → 0.

The above specification of demand is partial equilibrium, in the sense that demand comes from

outside the model. Because we view the model as relating to a subset of the labor market, this

seems appropriate. Nonetheless, one can show that our model is isomorphic to an alternate model

in which demand is determined in general equilibrium.13

Finally, as a benchmark, consider an economy where worker effort is observable so that there is

no moral hazard problem. Effort is at the first best level where the marginal product of labor gi is

equated with the marginal cost of labor γ′(pi). Since there is free entry, equilibrium prices must be

such that the surplus from each task is equalized, i.e., pHgH − γ(pH)− kH = pLgL− γ(pL). Firms

break even and workers earn the surplus. Task H aggregate output is determined by the market

clearing condition ζH (yH) = gH . Critically, and in contrast to the outcome of the moral hazard

economy analyzed below, which task a worker is assigned to over his life time is indeterminate and

independent of age and success, and all workers earn the same utility.

II Contracts and equilibrium

Taking output prices gH and gL as given, firms compete to hire young workers by offering them

employment contracts. Consistent with reality, we rule out indentured labor and model workers as
13Specifically, consider the following economy: Workers consume only when old, and have utility cL + ln cH−

γ (p1)−γ (p2), where p1 and p2 are effort levels in period 1 and period 2 respectively. Task L output is the numeraire
good (we normalize gL = 1), and gH is the relative price of task H output. In the production technology, the cost
kH is paid in task L output. Finally, although cL is allowed to be negative, workers have limited liability in the
sense that cL + gHcH must be nonnegative.
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having limited commitment, in the sense that they can walk away from the contract after the first

period if another firm is willing to hire them at better conditions. In contrast, we assume that

firms are able to commit to contract terms.14 In other words, we assume one-sided commitment.15

We allow firms to offer arbitrary dynamic contracts, subject only to the constraint of satisfying

one-sided commitment. We allow contracts to specify lotteries, although only ones in which the

firm (but not necessarily the worker) is indifferent over lottery outcomes, since any lottery in which

the firm is not indifferent would be subject to manipulation by the firm.

Any contract offered in equilibrium must satisfy the following no-poaching condition, which we

formalize below: there is no alternate contract satisfying one-sided commitment that both strictly

raises worker utility and gives a firm strictly positive profits. The no-poaching condition replaces

the usual condition that firms maximize worker utility subject to breaking even. We work with the

no-poaching condition because the equilibrium of our model often features some workers receiving

strictly more utility than others, which is inconsistent with the usual utility maximization condition.

This equilibrium feature is exactly the “overpay” of our title.

We next characterize the contracting problem in more detail. In Appendix A, we show that in

our setting dynamic contracts can be represented in the following sequential way:

• The first period contract consists of a task assignment i ∈ {L,H} , a payment wS ≥ 0 to the

worker after first-period success, and a payment wF ≥ 0 after first-period failure.

• The worker enters the second period with wealth w from his first-period payment, which he

uses to “buy” a one-period contract {i, wS , wF } from the firm such that the firm just breaks

even and such that the following second-period no-poaching constraint is satisfied: There is

no other contract {ı̃, w̃S , w̃F } that the worker can buy from another firm with his wealth w

such that the firm makes strictly positive profits and the worker is strictly better off.

This representation of contracts turns out to be quite useful for describing the economics of the

model in the most transparent way.16 But we emphasize that although it is analytically useful to
14Concretely, in order for a firm to commit to a long-term contract it is sufficient for the firm to be able to commit

to severance payments at the end of the first period, where the size of the severance payment is potentially contingent
on the first-period outcome.

15See, e.g., Phelan (1995), and Krueger and Uhlig (2006).
16It might seem as if this representation imposes a stronger condition than one-sided commitment as it allows the

worker to take wealth earned in the first period with him if he walks away from the firm. As we show in the appendix,
this is not the case. Allowing the worker to take wealth with him is simply the firm’s way of commiting to deliver a
certain continuation utility to the worker.
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think of dynamic contracts in this way, most actual contracts are likely to instead make use of the

equivalent device of partially deferring compensation until the end of the second period.

IIA Incentive contracts for old workers

We start by analyzing contracts for old workers, and then use the solution to the old worker problem

to analyze the young worker problem. Using the representation of contracts above, we assume that

the old worker enters with wealth w, earned in the first period. The wealth is posted with the firm

in exchange for an employment contract on which the firm breaks even. Taking the task assignment

as given, the second-period no-poaching constraint implies that the firm must give the worker the

maximum possible utility.17 After solving for this maximal utility given a task assignment, we show

how the entering wealth determines the task assignment itself.

Conditional on a task assignment, the contracting problem for the old worker is very standard:

A one-period contract consists simply of a payment wS after success and a payment wF after failure.

This gives the worker utility maxp pwS + (1− p)wF − γ (p), and the effort level p is determined by

the incentive constraint

γ′ (p) = wS − wF . (IC-O)

As a benchmark, we define vFBi (gi) ≡ maxp pgi − γ(p) − ki as the maximum—“first-best”—one-

period total surplus attainable in task i, conditional on the price gi. Similarly, define the effort

level at the first best as pFBi, given by γ′ (pFBi) = gi.

First, consider assigning the old worker to task L. Since kL = 0, the firm can pay the full

revenue after success, gL, to the worker and still break even. This makes the worker fully internalize

the effects of his effort, so he exerts the first-best effort level pFBL, and the first-best surplus level

vFBL is attained. Because first-best surplus is attained even when the worker has no wealth, a

fortiori first-best surplus is also attained when the worker enters the second period with positive

wealth. Hence when an old worker with wealth w is assigned to task L, his expected utility is

vFBL + w; for use throughout the paper, we denote this by vL (w).

Second, consider assigning the old worker to task H. If the worker has wealth w ≥ kH , he

can fund the cost kH in entirety. In this case, exactly the same argument as for task L applies,

and the worker’s utility is vFBH + w. For lower levels of wealth w ∈ [0, kH), the worker can fund
17Formally, this follows from the fact that, holding the task assignment fixed at i ∈ {L, H}, firm profits are either

strictly concave or strictly decreasing as a function of worker utility. However, this property does not hold once the
choice of task is endogenous.
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only part of the cost kH . Consequently, the firm must pay strictly less than gH for success, and

the worker exerts strictly less effort than the first-best pFBH . Specifically, the firm pays nothing

after failure, and the success “bonus” that a firm must pay to induce effort p is γ′ (p). To get as

close as possible to the first-best effort level, the firm raises the bonus as high as possible subject

to satisfying its break-even constraint given that the worker has partially funded the cost kH , i.e.,

p(gH − γ′ (p))− (kH − w) = 0. (1)

Define p (w) as the largest solution to (1). The worker’s utility level is then p (w) γ′ (p (w)) −

γ (p (w)). Note that the firm cannot break even under any contract when the agent’s wealth is

below the critical level w, defined as the minimal value w such that equation (1) has a solution in

p. We denote an old worker’s utility when assigned to task H by vH (w).

Lemma 1 The function vH satisfies: (i) v′H (w) > 1 for w ∈ (w, kH); (ii) v′′H (w) ≤ 0, with strict

inequality for w ∈ (w, kH); (iii) v′H (w) →∞ as w → w; (iv) v′H (w) decreases in the price gH .

The functions vL and vH give the maximum utility that an old worker with wealth w can be

given if assigned to tasks L and H respectively. We now show how task assignment and ultimate

utility is determined. If w < w, there is no other choice but to employ the worker on task L. If

w > w, the no-poaching condition implies that the firm must assign the worker to whatever task

gives higher utility. The only tricky case is when w = w and vL (w) < vH (w) . For this case, even

if the firm allocates the worker to the lower utility task L, there is no competing firm that can

deliver higher utility to the agent and make strictly positive profits. The firm is therefore free to

randomize the task allocation. It may indeed be optimal for the firm to allocate the worker to task

L for ex ante incentive reasons.

The case of old workers with wealth w illustrates how overpay can emerge with one-period

contracts. Two equivalent workers with wealth w could in principle end up with job placements

that give them different utilities (vL (w) or vH (w)). This difference is not eliminated in equilibrium,

because a firm employing a worker with wealth w on task H cannot break even if it pays the worker

less, even if a worker currently employed on task L would gladly agree to such a contract. The

reason is that such a contract would lead to inefficiently low effort.18,19 This economic force is also
18This is essentially the same argument as in Shapiro and Stiglitz (1984) and subsequent papers.
19Related, it is straightforward to use a one-period version of our model to show that efficiency wages can arise even

when firms write output-dependent contracts—a question that provoked some debate in the existing literature, as
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necessary for moral hazard to generate overpay in dynamic contracts, but as we discuss in depth

below, is not sufficient.

To summarize, the utility v (w) as a function of entering wealth of the old worker is determined

by the following correspondence, which to reiterate is multivalued only at w = w:

v (w) =


{vL (w)} for w ∈ [0, w)

[vL (w) ,max {vL (w) , vH (w)}] at w = w

{max {vL (w) , vH (w)}} for w > w

. (2)

IIB Incentive contracts for young workers

We next consider the young worker problem. A contract for a young worker specifies a first-period

task assignment i ∈ {L,H}, and first-period payments to the worker of wS , wF ≥ 0 after first-period

success and failure. For the case where either payment equals the threshold wealth w consistent

with employment on task H when old, the firm also has to pick a continuation utility in the set

v (w) described above; we encompass this by having the firm pick continuation utilities vS ∈ v (wS),

vF ∈ v (wF ) as choice variables in addition to the payments. Except at w = w, the effort level p

for the young worker is given by the incentive constraint

γ′ (p) = v (wS)− v (wF ) . (IC-Y)

(At w we write this as γ′ (p) = vS − vF .) A contract also has to satisfy the no-poaching con-

dition, which we can now write formally as follows: There does not exist an alternate contract

(̃ı, w̃S , w̃F , ṽS , ṽF ) and an effort level p̃ determined by (IC-Y) where p̃ (gı̃ − w̃S)−(1− p̃) w̃F−kı̃ > 0

(firms make positive profits) and p̃ṽs + (1− p̃) ṽF − γ (p̃) > pvs + (1− p) vF − γ (p) (the worker

gets strictly higher utility than under the old contract). The one-sided commitment constraint is

embodied in the definition of the correspondence v(w) together with wS , wF ≥ 0.

Our formulation of the dynamic contracting problem, using the wealth of the worker as a state

variable, is closely related to the standard way of writing dynamic contracting problems using

the promised continuation utility of the agent as a state variable (see, for example, Spear and

Srivastava (1987) and Green (1987)), where the firm’s continuation payoff is the cost-minimizing

way of delivering this promised utility. The correspondence v defined in (2) is simply the inverse

discussed by Moen and Rosen (2006), who develop a model along these lines. (Although workers live many periods
in their model, their informational assumptions make dynamic contracts degenerate, and so the model essentially
reduces to a one-period model.)
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of the usual mapping from promised utilities to firm costs (see Lemma A-1 in the appendix). In

other words, v specifies a worker’s promised utility as a function of the firm’s cost w; and the

firm’s cost w is in turn equivalent to paying the worker in cash at the end of the first-period, then

recontracting.

The big gain from inverting the usual promised-utilities approach is that it makes the intuition

for our main results much easier to give. The cost is that the inversion produces a correspondence

so that agent wealth is not always a sufficient statistic for the state. However, in our case the cost is

small, because the correspondence is degenerate everywhere except at w. In fact, whenever contracts

specify wS , wF 6= w, it is enough to keep track of only wealth as a state variable. Economically,

the simplicity of the correspondence follows from the fact that continuation contracts in our setting

are renegotiation proof. Renegotiation proofness is not assumed in our setting, but rather is a

consequence of one-sided commitment (see appendix).

We conclude this subsection with a couple of remarks. First, from the definition of v, the

minimum utility a firm can threaten a worker with is at least vL (0) = vFBL > 0. Economically,

one-sided commitment ensures firms bid up the utility they would give to an old worker with zero

wealth to at least this amount.20

Second, the definition of v highlights two ways in which higher wealth raises worker utility. One

effect is that high wealth reduces inefficiency in the second period, so each extra dollar given to the

worker raises his utility by more than a dollar (see Lemma 1), up to the point where the worker

has wealth w = kH and full efficiency is achieved. The second effect is that as wealth crosses the

critical level w, the old worker’s employment prospects qualitatively improve, since he can now be

assigned to task H as well as task L.

IIC Equilibrium

Before proceeding with our analysis of the young worker problem, we state equilibrium conditions.

An equilibrium specifies a price gH , and at most two distinct contracts (i, wS , wF , vS , vF ) where,

if there are two contracts, a young worker is allocated with probabilities q and 1 − q over the

two contracts, and q is specified as part of the equilibrium description. The continuation values

{wS , wF , vS , vF } determine the worker’s task allocation and production when old as described

above. Hence, aggregate supply of the two tasks is also determined. A price gH , the contract set,

and the allocation probability q together constitute an equilibrium if the no poaching condition is
20Moreover, when w ≤ 0, an even tighter minimum utility bound may arise.
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satisfied and the supply of task H matches demand ζH (gH).

III Career Paths and Efficiency Contracts

We can now state the core result of the paper, which shows how overpay emerges in our setting

and how career paths are intrinsically linked to the degree of overpay in the economy:

Proposition 1 For all sufficiently large task H stakes kH we have:

• Overpay: A strict subset of young workers start on task H, and receive strictly greater expected

utility than young workers starting on task L.

• Up-or-out for overpaid workers: Task H workers remain on task H if they succeed, exert

more effort and are paid more than when young. If they fail they are “demoted” to task L.

• Dynamically segregated labor markets: Task L workers are never “promoted:” they remain in

task L when old, and exert the same effort as when young.

IIIA Dynamic segregation

The existence of overpaid workers is intimately connected to Proposition 1’s prediction of “seg-

regated” career tracks: If a worker is not lucky enough to be assigned to the overpaying task H

when young, he will never again have the chance to be assigned to it. At first sight, this dynamic

segregation result flies in the face of an important insight of contract theory: Workers with more

wealth are easier to employ, because the wealth can be used to acquire a stake in the firm and

lessen the split between ownership and control that lies at the heart of the moral hazard problem.21

In our framework, it is old workers who succeeded when young who have wealth. Consequently, it

might seem that any old worker who succeeded when young should be assigned to task H, while

all young workers, who have no wealth, should be assigned to task L. Under these career paths,

neither dynamic segregation nor equilibrium overpay arises, since all young workers enter the labor

force with the same expected utility.

Hence establishing dynamic segregation is the key to explaining why efficiency wages are not

eliminated by dynamic contracts. Loosely speaking, dynamic segregation reflects a second insight
21See footnote 3.
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of contracting theory: the prospect of wealth accumulation in the future can be used to ameliorate

moral hazard problems in the present.22

Here, we sketch the argument for why dynamic segregation occurs when kH is large. Consider

two potential ways in which demand for task H could be met. First, as in Proposition 1, some

young workers can be assigned to task H and remain on task H if successful. Denote this the “HH”

career path. Second, all young workers can be assigned to task L, and some successful old workers

get promoted to task H. Denote this the “LH” path. (We explain below why the third alternative,

“HL”, where young workers start on task H and move to task L after success, is never used.)

To sketch the argument, it is easiest to show that the HH career path maximizes firm profits,

ignoring the worker’s outside option—which is determined by competition from other firms, and

formalized by the no-poaching condition. As we explain further below, the no-poaching constraint

is non-binding for young task H workers. Moreover, the equilibrium price gH must be such that

firms make zero profits, so no career path that fails to maximize profits is viable.

The maximal profits a firm can generate by employing a young worker using the HH path is

given by the following problem:

max
wS≥w

p (gH − wS)− kH subject to the incentive constraint γ′ (p) = vH (wS)− vFBL.

The incentive constraint follows from the fact that when successful, the worker has wealth higher

than w and so stays on task H, while he has zero wealth after failure and so moves to task L and

earns surplus vFBL. Contrast this with the maximal profits a firm can attain by employing an

old successful L-worker. Note that this worker has at most wealth w = gL to reinvest, since firm

profits in the young worker problem would be negative otherwise. Hence the firm’s profits when

employing the old worker on task H are at best given by:

max
wS≥0

p (gH − wS)− (kH − gL) subject to the incentive constraint γ′ (p) = wS .

The benefit of the LH path is that the reinvested wealth helps the firm cover the cost kH . The

benefit of the HH path is that the agent has stronger incentives to work for a given bonus w. To
22See footnote 4.
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see this, we can rewrite the incentive constraint for the HH path as

γ′ (p) = wS︸︷︷︸ +(vH (wS)− vFBL − wS)︸ ︷︷ ︸
Bonus incentive Up-or-out incentive

Over and above the direct incentive effect from the bonus, the young worker potentially has an

extra incentive to work in order to ensure further employment on task H. This is captured by the

up-or-out incentive term, which is the utility difference from employment on task H with reinvested

wealth wS relative to consuming the wealth and being employed on task L. (Note that the HL path

has neither of these advantages since young workers have no wealth, and assignment to task L after

success eliminates up-or-out incentives, since vL (w) = vFBL + w.)

We now show that the up-or-out incentive benefit of the HH path dominates the reinvestment

benefit of the LH path when the amount at stake kH is large. On the one hand, when kH is

large relative to gL, the benefit of the LH path—being able to reinvest wealth gL—is relatively

unimportant. On the other hand, when kH is large the equilibrium price gH is likewise large (in

order for firms to break even), which in turn means that vH (wS) must be large since when the

price is high it is optimal for the firm to give high incentive pay. Hence the up-or-out incentive

benefit of the HH path is large when kH is large. These two forces act in the same direction, and

so when kH is large the HH path is the profit-maximizing one, and dynamic segregation occurs.

The same force that makes up-or-out incentives large when kH is large also, and directly, implies

that the expected utility of a young worker placed on the HH path is high. In other words, such

a worker is overpaid relative to his unfortunate contemporaries stuck on task L. The no-poaching

condition determines the equilibrium utility of workers starting in task L, but not of workers starting

in task H—even if firms paid these workers less, they could still not be profitably poached away.

Instead, compensation for young workers starting in task H is determined purely by the need to

set incentives so as to maximize profits, and the no-poaching constraint is non-binding.

The dynamic segregation result shows that there is a complementarity between working on task

H when young and when old. Working on task H when young gives workers more wealth because

gH is greater than gL, and this makes the worker more employable on task H when old. Conversely,

having the chance of working on task H when old gives high up-or-out incentives, which makes the

worker more employable on task H when young.

Although dynamic segregation always occurs when the stakes kH are sufficiently high, it is not
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inevitable. When kH is small relative to gL, up-or-out incentives become weaker because the utility

difference between tasks becomes smaller. Because the wealth accumulated on the L-task at the

same time becomes more significant relative to the task H stakes, promoting people from task L to

task H becomes efficient. This captures the point we made at the start of this subsection, namely

that there is a force pushing firms to assign only workers with already accumulated wealth to task

H. In this case, there is no dynamic segregation, and no equilibrium overpay.

Proposition 2 Fix kH < gL. For all sufficiently low levels of demand for task H output, there is

an equilibrium in which all workers start on task L, and some are promoted to task H after success.

All workers have the same expected life-time utility.

Propositions 1 and 2 illustrate the trade-off between starting people on low-stakes tasks and

letting them work their way up (the LH path), relative to starting some people on a “fast-track”

career (the HH path). When tasks are more similar in moral hazard costs, it is efficient to sequence

lower moral hazard tasks early in a worker’s career and have him work his way up. When tasks

differ sufficiently in moral hazard relative to the length of a worker’s career, dynamic segregation

and overpay emerge as in Proposition 1. For the rest of paper we focus on the case in which kH is

large, and dynamic segregation and overpay arise.

Our dynamic segregation result has the direct implication that random variation in a worker’s

initial job placement has long-term consequences. Several recent empirical papers strongly support

this. Oyer (2008) shows that a missed opportunity to enter investment banking upon MBA grad-

uation due to temporarily lower demand from Wall Street significantly reduces expected life-time

income, mainly due to the fact that the worker is very unlikely to enter investment banking later

on in his career even if Wall Street recovers. Kahn (2010) shows more generally that graduating

college in a recession has a very long-lasting negative impact on salaries and job attainment. Al-

though Proposition 1 is formally about cross-sectional variation in initial conditions, whereas these

empirical results relate to time-series variation, in Section IV we introduce aggregate uncertainty

and formally derive these and other time-series implications from dynamic segregation.

IIIB Contract characteristics of overpaid jobs

We next discuss characteristics of overpaid jobs relative to normal jobs when dynamic segregation

occurs. We discuss three related phenomena: The reliance on up-or-out contracts, the role of
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promotion, and the inefficient overallocation of menial tasks to overpaid workers early in their

careers.

Up-or-out contracts: Proposition 1 states that young workers who start on task H face “up-or-out”

promotion prospects. If they fail, they move to task L. If they succeed, they remain on task H,

and are promoted in the sense that they now have more responsibility (i.e., are expected to work

harder), and receive more pay. In contrast to these workers, workers who spend their entire careers

on task L are never promoted. Instead, in both periods they receive a bonus of gL if they succeed,

and in both periods exert exactly the same effort.

The “out” half of “up-or-out” is a direct consequence of overpay. Because the no-poaching

condition is not binding for an overpaying contract, the payment after failure when young must be

set to zero since this enhances effort and increases firm profits. When wF = 0, the worker is “out”

in the sense that he is allocated to task L when old.23

For the “up” half, observe that because workers reinvest their success payments wS with the

firm, all success payments up to kH are effectively paid as deferred compensation that is received

only if the worker succeeds again when old. For exposition, we focus here on the case of wS ≤ kH

(the general case is handled in the appendix). The worker’s effort when young is given by γ′ (p) =

vH (wS)−vFBL. Writing pS for the worker’s effort when old after he succeeds, vH (wS) = pSγ
′ (pS)−

γ (pS) , so that γ′ (pS) = (vH (wS) + γ (pS)) /pS , which is larger than γ′ (p) . Consequently, p < pS ,

meaning the worker exerts less effort when young than when old (after succeeding). Effectively, the

worker is paid a bonus only after two successes, so that when he is young he discounts that bonus

by the probability that he fails when young, and by the effort he will have to exert when old; and

also by the fact that if he fails, he still receives utility vFBL.

The role of promotion: Both Proposition 1, where dynamic segregation occurs, and Proposition 2,

where it does not, have promotion as part of the optimal contract. The promotion result matches

the received wisdom that senior employees in organizations such as investment banks and law firms

are both especially productive, and compensated especially well.

Our explanation for promotion is new in that it builds solely on the presence of moral hazard.

Existing theories such as Landers, Rebitzer, and Taylor (1996), Lazear (2004), Levin and Tadelis

(2005), and Waldman (1990) all emphasize screening of talented workers into important jobs as the

economic rationale for promotion. Although promotion policies are also used for incentive purposes
23This is related to the result in Spear and Wang (2005) that a worker should optimally be fired after failure

because further employment leads to too high a continuation utility.
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in practice, there has been no good theoretical explanation for why promotion would dominate pure

monetary rewards as an incentive device (see Baker, Jensen, and Murphy (1988) for a discussion).24

Up-or-out incentive schemes for overpaid workers and the fact that task L workers cannot move

to task H (see Proposition 1) together imply that moving “up” to a better job is harder than

moving “down” from a good job. This implication fits well with many anecdotal accounts of the

labor market, especially in prestigious occupations such as investment banking and management

consulting. Hong and Kubik (2003) offer more systematic evidence for security analysts. They show

that it is much more common for security analysts to move from a high-paying, more prestigious

brokerage firm to a lower-paying, less prestigious one than the other way around.

We also note that our model features a particularly simple explanation for the Peter Principle

(Peter and Hull (1969)). The Peter Principle states that workers are promoted to “their level

of incompetence”, and is based on the empirical observation that workers who perform well get

promoted, until they get stuck at a level in which their performance appears worse than before

promotion. This is true in our setting in the following sense: workers are promoted only after

success, and so the conditional success probability after promotion is necessarily lower than a

worker’s previous realized success probability.25

Dog years: Many anecdotal accounts suggest that overpaid workers often start their careers working

extremely long hours on very straightforward and boring tasks. As we show, this characteristic

of overpaid jobs emerges naturally as a way for the firm to reduce the surplus it surrenders to

workers. Crucially, our model predicts that this surplus extraction occurs only at the start of

overpaid workers’ careers.

To capture these ideas, we introduce what we call menial tasks to workers, over and above

the regular task. This menial task could involve gathering data, preparing spreadsheets, copying

papers, or fetching lunch for more senior employees. The menial task is also easily monitored: the

employer can simply stipulate how much of the menial task it wants a worker to do.

We take the equilibrium of the economy without menial tasks, and then introduce menial tasks

to a null set of firms (this allows us to hold the overall structure of the equilibrium unchanged).

To ensure that the menial task is truly menial, we assume that if a worker spends time m on the

menial task he produces εm, where ε is very small but positive. A worker can work on both the
24An exception is the theory in Fairburn and Malcomson (2001), in which promotion is preferrable to monetary

rewards when managers who make the promotion decision are subject to influence costs.
25For alternate but more complicated explanations, see Lazear (2004), Faria (2000), and Fairburn and Malcolmson

(2001).
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menial and important tasks: his total hours worked are γ (p) +m, which must be less than 1, his

total time endowment.

We show that the menial task is assigned only for young workers starting on the overpaid task;

in all other circumstances, firms prefer workers to work on the more efficient tasks:

Proposition 3 Suppose kH is high enough such that there is dynamic segregation. Then, whenever

the menial task is sufficiently menial (i.e., ε below some level ε̄ > 0), it is assigned only to young

overpaid workers. Young overpaid workers perform the menial task up to the point where either

their time endowment constraint binds, or their utility is reduced to the level of task L workers.

We want to stress two features of this result. First, the menial task is only used in the early

stage of the career. If the worker is promoted, he is assigned only to important tasks. The reason

is that in the second period, the worker must be promised some surplus to motivate work in the

first period, so extracting surplus from the worker in the second period is counterproductive.

Second, since the menial task is used as an inefficient surplus extraction mechanism, its use is

concentrated in overpaid industries. This is our “dog years” result: in overpaid industries, such

as investment banking or law, there are typically very long hours early on in the career, much of

which is spent on less prestigious tasks. This can be a second best solution even when work hours

are inefficiently long, and even when the menial task can be performed better or cheaper with less

qualified workers.

Our “rent dissipation” explanation for overwork is different from, and arguably substantially

simpler than, explanations proposed in the previous literature on inefficiently long hours, such as

Holmström (1999), Landers, Rebitzer, and Taylor (1996), or Rebitzer and Taylor (1995), who build

on either signalling or screening motives when workers are heterogenous in skill or preferences.

IV The effect of aggregate shocks on career dynamics

We now extend our basic model to allow for aggregate shocks to the economy. This allows us to

study the time series implications of our model along three dimensions: Job placement, employment

contracts, and firm productivity.

First, we show that entering the labor market in bad economic times has life-long negative effects

on job placement, consistent with empirical evidence in Oyer (2008) and Kahn (2010) discussed

above.
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Second, we show that even if a worker is lucky enough to land an overpaid job in bad economic

conditions, the overpaid job is worse than it would be in good times. The employment contract pays

less not only initially but also later on in the worker’s career, even if economic conditions recover.

This is consistent with well-established cohort effects as in Baker, Gibbs, and Holmström (1994)

and Beaudry and DiNardo (1991). We also show that employment contracts do not insulate the

worker from risk beyond his control; there is an element of “pay-for-luck” in the optimal contract.

Last, we show that the productivity on task H is countercyclical, consistent with evidence for

the latest three decades in the US (see Gali and van Rens (2010)).

We start with a specification of our basic model in which kH is sufficiently large that young

workers who start in task H are overpaid. To keep the analysis as simple as possible, assume the

aggregate state of the economy is either “Good” (G) or “Bad” (B), with demand higher in the good

state, i.e., ζGH (·) ≥ ζBH (·) and gGL ≥ gBL . We assume throughout that ζGH is sufficiently close to ζBH

and gGL is sufficiently close to gBL so that—as we explain below—the stochastic economy continues

to feature overpaid workers.

Throughout, we let all contracts be fully contingent on the aggregate shock realization.

IVA Time series implications: Initial conditions matter

We first extend our dynamic segregation result to a setting with aggregate shocks, to show formally

that prevailing labor market conditions at the time when a worker enters the labor force have long-

lasting effects on his career. In particular, we show that when demand for task H goes down, firms

respond by enacting hiring freezes rather than by firing old workers, so that entering young workers

have a lower chance of landing an overpaid job. Furthermore, because of dynamic segregation, they

are unable to enter this job later on even if the economy recovers. Instead, it is the next generation

of young workers that get these jobs. This hiring pattern (consistent with the evidence in Oyer

(2008) and Kahn (2010)) across the business cycle affects the workforce composition of a firm,

which in turn affects productivity; we show the net effect is that productivity is countercyclical for

the overpaying sector of the economy.

We can make these points by studying the particularly simple case in which the demand shock

only affects task H, i.e., gGL = gBL and ζGH (·) > ζBH (·). For this case, prices and hence contracts

remain the same regardless of the state of the economy, as we now show. When gGL = gBL , a worker’s

minimum continuation utility vFBL is independent of the state. When vFBL does not vary, the

minimum price gH where a profit-maximizing firm can break even on a young worker employed on
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task H is also state independent. Importantly, at this price supply is perfectly elastic: Firms are

willing to hire any number of workers into task H at price gH using the profit maximizing contract,

but no workers below this price. Since we assume that workers on task H are overpaid at the profit

maximizing contract, firms have no difficulty in attracting workers to task H. Therefore, as long as

demand yωH at price gH does not vary too much over the two states ω ∈ {G,B} , supply responds to

demand shocks purely via changes in the number of young workers hired into task H, while prices

and contracts remain unaffected.

To be more specific, let λt be the number of overpaid young workers hired for task H at date t.

From the demand equation, date t output from task H must equal yωtH . Denote by p1 and p2 the

success probabilities for workers on task H when young and old, respectively: given the conjecture

that prices are independent of the state, optimal contracts and hence effort levels are also state-

independent. From the supply equation, date t output from task H must equal p1λt + p1λt−1p2,

where p1λt is the output by the λt just-hired young workers and p1λt−1p2 is the output from the

λt−1 old workers who were hired last period and succeeded when young. Consequently, the number

of workers hired for task H at date t is

λt =
yωtH
p1

− λt−1p2. (3)

As one would expect, more young workers are assigned to task H in good states, and when fewer

workers were hired at the previous date. We verify in the appendix that it is indeed possible to

vary the number of workers hired by a sufficient amount to fully absorb the demand shock, as long

as demand is not too volatile.26

It is easy to see from (3) that if the economy remains in state ω ∈ {G,B} for a long time,

the number of young workers assigned to task H converges to λω, defined by λω ≡ yωH
p1(1+p2) , and

the age-profile of task H workers converges to p1 old workers for every young worker. As one

would expect, a sustained period in the good state leads to greater hiring of young workers into

the overpaid task H jobs, i.e., λG > λB. Average productivity, on the other hand, is the same in

both scenarios.

Proposition 4 Suppose that after many periods in the good state, the economy suffers an aggregate

shock and enters the bad state. Hiring of young workers into task H falls below even λB, and young
26Formally, this amounts to showing that λt remains between 0 (one cannot hire a negative number of new workers),

and 1/2 (the total population of young workers).
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workers who fail to get employment in task H will not get employed in task H later in their career

even if the economy recovers. At the same time, average productivity in task H actually increases.

The proof is almost immediate from (3), and we give it here. In the first period that the

economy is in the bad state, the number of young workers hired into task H is

λt =
yBH
p1

− λGp2 <
yBH
p1

− λBp2 = λB < λG.

The age-profile in task H is now skewed towards old workers. Since old workers work harder than

young workers, i.e., p2 > p1 (see Proposition 1) the average productivity in task H increases when

the bad shock hits, implying countercyclical productivity.

The reason task H hiring falls below even λB is that in the good state, firms hired many workers

into task H, and the optimal contract prescribes that these workers are retained when old even in

a downturn, which is at the expense of hiring new young workers. The shortfall in date t hiring

translates into an increase in date t+1 hiring of the next generation of young workers into task H,

λt+1 =
y
ωt+1

H

p1
− λtp2 > λω > λt.

In the case that the economy recovers so that the date t+1 state is again G, the hiring burst is

particularly dramatic, since λt+1 > λG. This hiring burst only benefits the date t + 1 generation

of young workers, however; workers who were young in date t and missed out on an overpaid job

because of the bad shock are not now hired. Moreover, task H productivity is depressed at date

t+1, as firms suffer from the lack of a “missing generation” that was not previously hired: the age

profile is now unduly tilted towards young workers.

Although we focus primarily on the implications of our model for career dynamics, it is in-

teresting to note that Proposition 4 can also be interpreted in terms of unemployment. To do

so, think of task L as corresponding to unemployment, with vFBL the level of utility obtained

by unemployed workers. Then Proposition 4 says that if the economy shifts from an extended

time in the good state to an extended time in the bad state, unemployment first spikes up even as

productivity increases. Subsequently, unemployment partially recovers, while productivity drops

back to its prior level. Moreover, and consistent with the descriptive evidence of Bewley (1999),

wages do not fall when the economy enters bad times.
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IVB Time series implications: Procyclical moral hazard

Next, we expand our analysis to the case in which aggregate shocks affect the demand for output

from both tasks, i.e., gGL > gBL and ζGH (·) > ζBH (·). The significance of demand shocks for task L

output is that they affect vFBL, the minimum continuation level that a worker can be given. This

in turn affects the incentives that workers can be given, which has the following two implications,

analyzed below. First, contracts are now state contingent, generating time series implications for

contract characteristics. Second, the state-contingency of contracts generates further implications

for firm productivity and moral hazard over the business cycle.

We make the standard assumption that the state follows a Markov process, with the transition

probability of moving from state ω ∈ {G,B} at date t to state ψ at date t + 1 denoted by µωψ.

We assume that the state is at least somewhat persistent, in the sense that the state is more likely

to be good (respectively bad) tomorrow if it is good (respectively, bad) today, µGG > µBG.

Write gω = (gωH , g
ω
L) for the state ω output prices. Write vωFBL for vFBL evaluated at output

prices gω; note that vGFBL > vBFBL since gGL > gBL . So when a young worker enters the labor force

at date t, the minimum expected continuation utility he can be given is

v̄ωFBL ≡
∑

ψ=G,B

µωψvψFBL.

The state-persistence assumption µGG > µBG implies v̄GFBL > v̄BFBL, and so workers entering

the labor force in good times are harder to incentivize, because the minimum utility they can be

threatened with in the case of failure is higher. This is the key economic force driving our results

below.

In contracts for young workers starting in task H, firms commit to make success payments of

wωψ. (Given our focus on the case in which kH is high and overpaid task H jobs exist, and since

there is no failure payment, we omit the subscript S.) It is convenient to keep track of the expected

success payment, w̄ω ≡
∑

ψ=G,B µ
ωψwωψ. The utility an old worker obtains with wωψ depends on

tomorrow’s state, and we capture this dependence by writing vψ for the previously-defined function

v evaluated using tomorrow’s output prices gψ. Firms want to maximize a worker’s expected utility

after success, which means that this utility can be written as a function of w̄ω only, i.e.,

v̄ω (w̄ω) ≡ max
wωψ

∑
ψ=G,B

µωψvψ
(
wωψ

)
s.t.

∑
ψ=G,B

µωψwωψ = w̄ω. (4)
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Hence a contract for a young worker is summarized by w̄G and w̄B, which are the expected payments

a firm promises him after success given that today’s state is G and B respectively.

To determine the equilibrium, we must find the contract terms w̄G and w̄B and prices gGH , gBH .

For the case with overpaid workers, this involves solving for the price at which the firm breaks even

with the profit maximizing contract:

max
pω , w̄ω

pω (gωH − w̄ω)− kH = 0 subject to v̄ω (w̄ω)− v̄ωFBL = γ′ (pω) . (5)

Our main result, stated formally below, is that moral hazard problems in task H endogenously

worsen in good times, i.e., are procyclical. The driving force is the incentive compatibility condi-

tion of (5), which captures the fact that the higher outside option v̄ωFBL in the good state makes

it more costly to incentivize workers. To establish procyclical moral hazard, we must show this

incentive effect dominates the direct effect that higher demand in good times increases the equi-

librium price and hence the available total surplus, which tends to ameliorate the moral hazard

problem. However, precisely because workers are overpaid in equilibrium, supply of task H is

locally completely elastic, and so the increase in demand has no direct impact on prices (exactly

as in the previous subsection).27

Firms understand that workers are harder to motivate in good times, and adjust contracts to

partially offset this effect. However, doing so is expensive, and the equilibrium effect is that even

though firms pay more to workers starting in good times, these workers exert less effort.

Proposition 5 (A) Overpaid young workers work less hard in good times, pG ≤ pB, where the

inequality is strict unless all old workers work the socially efficient amount.

(B) Old workers assigned to task H earn more if they started their careers in a good aggregate

state.

Proposition 4 above established one type of cohort effect, namely that entering the labor force

in a good aggregate state increases a worker’s lifetime utility because it increases his chances of

entering an overpaid job. Part (B) of Proposition 5 establishes a second type of cohort effect: even

conditioning on a worker entering an overpaid job, the worker earns more (and has higher lifetime

utility) if he enters the labor force in a good aggregate state. Baker, Gibbs, and Holmström (1994)
27However, the increase in demand has an indirect effect on equilibrium prices: because workers are more difficult

to incentivize, the equilibrium price must rise, as can be seen from the equilibrium profit condition (5). Details are
in the proof of Proposition 5.
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and Beaudry and DiNardo (1991) provide empirical evidence for these type of within-firm cohort

effects in wages.

Proposition 4 showed that changes in the composition of the workforce makes task H productiv-

ity countercyclical. Proposition 5 establishes a second force in the same direction. Not only is the

workforce in a boom tilted towards the less productive young workers, but these workers are even

more unproductive because moral hazard is procyclical. In the particular case of the financial sec-

tor, this prediction fits well with perceptions that traders and bankers are more careless in financial

booms. More generally, there is evidence that aggregate US productivity has been countercyclical

since the mid-1980s (see Gali and van Rens (2010)). Indeed, and more speculatively, if one thinks

that high-moral hazard tasks account for a larger share of the economy than previously, our model

provides an explanation for why aggregate US productivity has shifted from being procyclical prior

to the mid-1980s to being countercyclical since.

Finally, we note the following “pay for luck” characteristic of contracts: The worker is strictly

better off if the state turns out to be good when he is old (vG
(
wωG

)
> vB

(
wωB

)
), even though

he has no control over the state.28 This follows simply from the fact that the worker’s marginal

productivity is higher in the good state since the price is higher in the good state; hence, it is

cheaper to deliver utility to workers in the good state. The standard argument in the incentive

literature is that optimal contracts should insure risk averse agents against risks that they have no

control over. Although our setting has risk neutral agents, so that there is no direct benefit from

insurance, our result points to a cost of insurance that is often ignored in the incentive literature:

If marginal product is higher in some states than in others, insuring the agent against risk makes

him provide too little effort in high productivity states and too much effort in low productivity

states. The same economic force towards pay for luck operates in, for example, DeMarzo et al

(forthcoming).

V Distortions in the allocation of talent

We argued in the introduction that the available evidence suggests that the high compensation of

financial sector workers is not a skill premium. Accordingly, in our basic model we have abstracted

from skill differences by assuming that workers are ex ante identical. However, our model can be

extended to produce interesting implications for the matching of heterogeneously-skilled workers to
28The formal proof is in the appendix.
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different jobs. In particular, our model makes precise two forces that affect how talent is matched

to jobs. First, talent may be “lured,” in the sense that, for example, people who “should” (for

maximization of total output) be doctors or scientists become investment bankers instead. Second,

talent may be “scorned,” in the sense that the most able people do not necessarily get the best

jobs.

We introduce differences in talent by assuming that only a null set of workers have higher skills,

while the remaining “ordinary” workers are homogenous as before. This assumption ensures that

the basic structure of the equilibrium remains unchanged. Specifically, suppose that a null set of

workers have a cost ciγ (p) of achieving success p in task i, where ci < 1 for both task i = L,H.

One would expect these talented workers to be more generously rewarded than other workers; and

maximization of total output would dictate that they be given more responsibility (in the sense of

working harder) at all stages of their careers. As we show below, however, this does not necessarily

happen.

As in much of the preceding analysis, we focus here on the case in which kH is sufficiently high

that overpaid task H jobs emerge in equilibrium.

To understand how talent is lured in our model, consider a worker who is more skilled at both

tasks, but is especially skilled at task L, i.e., cL < cH < 1. Provided cL is sufficiently below cH ,

such a worker would be best allocated to task L (for maximization of total output). However, any

firm employing young workers at overpaid terms in task H can profitably “lure” this worker. For

example, the worker may increase task L output by $100,000 but task H output by just $10,000.

But if the utility premium offered by the overpaid task H jobs is $200,000, firms can lure him

to take such a job, and task L firms cannot compete. The key driving force for this effect is

that the moral hazard problem stops utilities from being equated across jobs in equilibrium. This

talent-lured force in our model is very much in line with popular impressions of investment banks

hiring away talented scientists from research careers.

Note, however, that a distinct “talent scorned” force operates in the opposite direction: at the

same time as the talented worker is more valuable, he is also harder to motivate on tasks where up-

or-out incentives are used, in the following sense. If the more talented worker fails, his continuation

utility is higher than an ordinary worker’s, because one-sided commitment leads firms to compete

for his talents. This better outside option after failure makes the more talented worker harder

to incentivize when young. (Note that this is the same force as operates in the aggregate shocks

analysis of Section IV above.) Colloquially, he is “difficult,” or “hard-to-manage.” Holding task
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L talent fixed, the talent scorned force dominates whenever the worker’s talent advantage in task

H is sufficiently small, i.e., cH close enough to 1. In this case, and perhaps surprisingly, the most

talented worker in the economy does not get the best job, even though he would prefer to.29

As the worker’s task H talent advantage grows, however, the talent lured force becomes the

dominant one. Of course, if the task H advantage is very large, social efficiency would dictate that

the worker should be assigned to task H, and there is no longer a sense in which talent is lured

away from its most productive use. But numerical simulations (available upon request) show that,

given task L talent cL, there is an interval of task H talents cH such that workers are employed in

task H even though they would increase output more if employed in task L. In this case, talent is

truly lured.

VI Equilibrium existence and secondary labor markets

At the heart of our analysis is the result that, in equilibrium, old workers need wealth above some

(endogenous) critical value, w, in order to be assigned to task H. As we have discussed, this is the

driving force behind both dynamic segregation and the emergence of overpaid workers. However,

the critical wealth level w also gives rise to a fundamental difficulty in establishing equilibrium

existence, as we next explain. It is worth noting that this issue did not arise in the older efficiency

wage literature precisely because it did not analyze dynamic contracts with deferred pay.

The difficulty that arises from the critical wealth level w is that the minimum continuation utility

that a worker can be threatened with after failure, namely min v (0), is not continuous as a function

of the output price gH—see next paragraph. Because min v (0) directly affects the incentives that a

young worker can be given, and thus how hard he works, this means that the correspondence from

prices to possible equilibrium production levels may fail to be upper hemi-continuous (UHC). This

greatly complicates showing that the excess demand correspondence is UHC, which is the key step

in most proofs of equilibrium existence. Other papers have confronted broadly related problems in

establishing existence in economies with agency problems; see, for example, Acemoglu and Simsek

(2010), and the papers cited therein.

In more detail, the continuation utility min v (0) is discontinuous precisely in the neighborhood

of the price gH such that the minimum wealth w needed for an old worker to be assigned to task
29Ohlendorf and Schmitz (2011) study a similar repeated moral hazard problem in which they also show that more

talented workers may sometimes be avoided by employers. In their model, the firm avoids more talented workers as
a commitment device to avoid renegotiation after failure; in contrast, our result stems from competition from other
firms.
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H is zero. On the one hand, if gH is very slightly lower, then w > 0 and so penniless old workers

are always assigned to task L; hence v (0) = vL (0). On the other hand, if gH is very slightly

higher, then w < 0, meaning even penniless old workers can be assigned to task H. In this

case, v (0) = max {vH (0) , vL (0)}. If—as is quite possible—task H pays workers more utility, i.e.,

vH (0) > vL (0), it follows that v (0) is discontinuous in the price gH .

To resolve this problem, note that the equilibrium conditions stated in Section II are more

stringent than necessary when w = 0 and vL (0) < vH (0). The reason is that the no-poaching

condition assumes that a poaching firm can offer a contract that incentivizes a worker by assigning

him to task L with certainty after failure. However, if a secondary labor market exists, such a

threat may be impossible: since w = 0, firms are happy to assign a penniless old worker to either

task L or task H, and provided both types of jobs are offered in the secondary labor market, a

worker’s minimum utility strictly exceeds vL (0).

Accordingly, when w = 0 we augment our definition of an equilibrium with a pair of parameters

µ1, µ2 ∈ [0, 1] (one for each contract) which determine the conditions of the secondary labor

market. A contract j ∈ {1, 2} is feasible only if the utility vx offered after outcome x exceeds(
1− µj

)
vL (0) + µjvH (0). The parameter µj is the probability that a penniless old worker who

originally received contract j is assigned to task H in the secondary labor market.

Note that when µ1 = µ2 = 0, the equilibrium conditions coincide with those in Section II.

Consequently, contracts satisfying the conditions stated in Section II do indeed constitute an equi-

librium. Moreover, when w 6= 0 the conditions above coincide completely with those in Section II.

Note that all results in the paper relate to the case w 6= 0.

By entertaining all possible secondary labor market conditions µ1, µ2 ∈ [0, 1], we ensure that

the excess demand correspondence is UHC, and hence has a fixed point. The fixed point pins

down the equilibrium secondary labor market conditions.

Proposition 6 An equilibrium exists.

VII Conclusion

In this paper we develop a parsimonious dynamic equilibrium model in which some workers are

overpaid relative to other workers, even when firms employ fully optimal dynamic contracts. We

further show how this same model matches a variety of empirical observations about both cross-

sectional variation of job characteristics, and time-series variation of labor force conditions. All of
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these predictions hinge crucially on solving for the optimal dynamic contract. For example, our

model predicts that overpaid jobs rely heavily on up-or-out promotion, and demand long hours for

entry-level workers, often on surprisingly mundane tasks. They are most commonly entered when

young, implying that cross-sectional variation in workers’ initial employment conditions have long

lasting effects. In the time-series, our model predicts that workers who enter the labor force in bad

economic times are less likely to get an overpaid job; that even if they do, the overpaid job is worse;

and that they work harder, implying countercyclical productivity. We have reviewed the empirical

support for these results in the text above.

For tractability, we analyzed the simplest possible model with both multiple tasks and long-

lived workers, both of which are essential for the subject of the paper. However, we believe the

main insights of our analysis would remain in settings with more than two tasks and/or workers

who live more than two periods.

Throughout, we have conducted our analysis under the realistic assumption that indentured

labor is impossible, and a worker can quit an employment contract whenever he wants (one-sided

commitment). As we observed, this assumption also implies that all equilibrium contracts are

renegotiation proof. Nonetheless, it is worth noting that most of our analysis would be qualitively

unaffected if instead workers could not quit an employment contract. The main exceptions are

Proposition 5, on procyclical moral hazard, and our discussion of “talent scorned.”

One obviously counterfactual prediction of our analysis is that young workers who are overpaid

and fail receive literally nothing after failure. This is a direct consequence of our assumption

of risk-neutrality. If instead workers are risk-averse, firms would generally pay strictly positive

payments after failure. Establishing overpay in a model with risk-averse agents could potentially be

difficult, however: One might conjecture that firms could punish risk-averse workers very heavily for

failure, by making consumption after failure very low (but still strictly positive), thereby eliminating

equilibrium overpay since all workers’ utilities would be equalized.30 However, this conjecture is

not correct in our model. One-sided commitment prevents a worker’s continuation utility from

ever falling very low, since otherwise competing firms would poach him away using a new contract.

Hence we conjecture that generalizing our model to a wider class of preferences would lead to strictly

positive pay after failure, even for overpaid workers, while still preserving the central prediction of

equilibrium overpay. We plan to explore this avenue in future research.

We have completely abstracted from unobservable skill differences in our model. Clearly, if
30This is related to a point made in Carmichael (1985).
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perceptions of an individual’s skill increase by enough mid-career, then this individual may be

promoted and escape dynamic segregation. We do not mean to suggest that unobservable skill

differences are unimportant; our focus on the single friction of moral hazard is meant to isolate an

economic force leading to dynamic segregation among sufficiently identical individuals.

We conclude with a brief discussion of economic efficiency. As we noted in the introduction, we

use “overpaid” to refer to a situation in which high pay is neither a return to skill nor a compensating

differential. In our model, shareholders willingly consent to overpay workers in this sense. A natural

question to ask is then whether the decentralized equilibrium of our model satisfies standard notions

of economic efficiency. Unfortunately, the one-sided commitment assumption makes this hard

to answer in a satisfactory way. A social planner could trivially improve incentives, and hence

potentially improve overall welfare also, if he is allowed to deliver lower continuation utilities than

allowed by one-sided commitment. However, arguably a more appropriate social planning problem

to examine is one in which the social planner is constrained by competition from firms for old

workers. But once this constraint is introduced, it seems natural to consider competition for

young workers also—but this is simply the decentralized equilibrium we have analyzed.
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Appendix

A Analysis of the contracting problem for young workers

In full generality, a dynamic contract constitutes an assignment to a task in each period, where

the second-period task assignment is contingent on whether the first task succeeded or not, and

an end-of-life set of state-contingent non-negative payments.31 Formally, a contract is a septuple

(i, iS , iF , wSS , wSF , wFS , wFF ), where i ∈ {L,H} is the initial task assignment, iS and iF are the

second-period task assignments after first-period success and failure, and wSS etc. are the payments

contingent on success/failure in the two periods. As discussed in the main text, conditional on

an outcome x ∈ {S, F} , the contract may specify a lottery over a set of “continuation contracts”

of the type (ix, wxS , wxF ), subject to the no-manipulability restriction that the firm is indifferent

between all lottery outcomes.

It is a standard result that a dynamic contracting problem can be written recursively in terms

of the firm committing to deliver outcome-contingent promised utilities to the worker, where the

firm’s continuation payoff is then determined by the cost-minimizing way of delivering this promised

utility. Write W (z) for a firm’s minimum cost of providing a continuation utility of z to the worker.
31Given commitment by firms and equal discount rates, there is no loss to postponing all payments until the end.
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In these terms, a contract for young workers specifies a first-period task assignment i and

continuation utilities vS and vF after first-period success and failure respectively. The one-sided

commitment restriction is that a contract can specify a continuation utility vx after first period

outcome x ∈ {S, F} only if W (z) ≥ 0 for all z > vx: otherwise, another firm could poach a worker

in the second period by offering z, and make strictly positive profits (since W (z) < 0). The

equilibrium no-poaching condition is that there exists no alternative ı̃, ṽS , ṽF such that the worker

exerts first-period effort p and p̃ under the two contracts, the alternative contract strictly raises

his utility, p̃ṽs + (1− p̃) ṽF − γ (p̃) > pvs + (1− p) vF − γ (p), and produces strictly positive profits,

p̃ (gı̃ −W (ṽS))− (1− p̃)W (ṽF )− kı̃.

Write v̂ for the inverse of the cost function W . It is convenient to define v̂ so that it contains

the one-sided commitment constraint:

v̂ (w) ≡ {z : W (z) = w and W (ṽ) ≥ 0 for all ṽ > z} . (A-1)

The inverse v̂ is potentially a non-degenerate correspondence. So under this formulation, a contract

specifies both firm costs wS and wF and continuation utilities vS ∈ v̂ (wS), vF ∈ v̂ (wF ), as well

as the first-period task assignment i. The equilibrium no-poaching condition is that there is

no alternative ı̃, w̃S , w̃F , ṽS ∈ v̂ (w̃S), ṽF ∈ v̂ (w̃F ) such that p̃ṽs + (1− p̃) ṽF − γ (p̃) > pvs +

(1− p) vF − γ (p) and p̃ (gı̃ − w̃S) − (1− p̃) w̃F − kı̃. Given the definition of v̂, the one-sided

commitment restriction is simply that wS , wF ≥ 0. Economically, v̂ (w) is the (set of) utility that

an old worker can “buy” with wealth w.

This is exactly the problem stated in the main text, except that it involves v̂ rather than v

defined by (2). So to complete the derivation of the contracting problem stated in the main text,

we establish:

Lemma A-1 The correspondence v̂ equals the correspondence v defined by (2).

Proof of Lemma A-1: Certainly v (w) ⊂ v̂ (w), since if a firm can deliver utility ṽ ∈ v (w) at

a cost strictly below w, it can provide utility strictly in excess of ṽ at a cost w, contradicting the

definition of v.

The remainder of the proof establishes v̂ (w) ⊂ v (w). Suppose to the contrary that there exists

ṽ ∈ v̂ (w) such that ṽ /∈ v (w). So ṽ < min v (w),32 since by the definition of vH and vL, a firm

cannot deliver utility ṽ > max {vH (w) , vL (w)} at a cost w.
32Recall v (w) is potentially a non-degenerate set, since v is a correspondence.
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Observe that W (vFBL − ε) < 0 for ε > 0 small enough, since a firm can make strictly positive

profits by assigning an old worker to task L and paying 0 after failure and just less than gL after

success. Since ṽ ∈ v̂ (w), this implies ṽ ≥ vFBL. So v−1
L (ṽ) is well-defined and single-valued, and

W (ṽ) ≤ v−1
L (ṽ), since continuation utility ṽ can certainly be provided at cost v−1

L (ṽ).

Since ṽ ∈ v̂ (w), it follows that w = W (ṽ) ≤ v−1
L (ṽ). Since vL is strictly increasing, we obtain

vL (0) ≤ vL (w) ≤ ṽ. Combined with the earlier observation that ṽ < min v (w), together with the

shape of v, it follows that there exists w̃ < w such that ṽ ∈ v (w̃). But then W (ṽ) ≤ w̃ < w,

giving a contradiction. End Proof.

B Proofs of results stated in main text

Proof of Lemma 1

Differentiation implies that, for w ∈ (w, kH), v′H (w) = p′ (w) p (w) γ′′ (p (w)), where from (1),

p′ (w) [gH − γ′ (p (w))− p (w) γ′′ (p (w))] = −1. Hence

v′H (w) =
(

1− gH − γ′ (p (w))
p (w) γ′′ (p (w))

)−1

=
(

1− kH − w

p (w)2 γ′′ (p (w))

)−1

, (B-1)

where the second equality follows from (1). As either w or gH increases, p (w) increases, and

hence v′H (w) decreases, establishing concavity and that v′H (w) is decreasing in gH . As w → kH ,

γ′ (p (w)) → gH , establishing v′H (w) > 1 for w ∈ (w, kH).

Note that p (w) must maximize firm profits, and so is given implicitly by the first order con-

dition (gH − γ′ (p (w))) − p (w) γ′′ (p (w)) = 0. As w → w, p (w) → p (w) and so gH − γ′ (p (w)) −

p (w) γ′′ (p (w)) → 0, establishing v′H (w) →∞ as w → w. End Proof.

Proof of Proposition 1

We prove the result via a series of Lemmas. The key results for dynamic segregation are Lemma

B-2, which says that if a worker is initially assigned to task H he remains there after success,

and Lemma B-7, which says that the minimum wealth needed for assignment to task H when old

eventually exceeds the maximum wealth a worker can accumulate in task L.

Lemma B-1 If vH (w) ≥ vL (w), the only case in which wS = w is if the young worker is initially

assigned to task L and wS = w = gL.
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Proof of Lemma B-1: Write i for the young worker’s task assignment. From Lemma 1, v′H (w) →

∞ as w → w. Hence if wS = w, and p (gi − wS) > 0 (which, from the zero-profit condition, is the

case for all feasible contracts except when i = L and wS = gL), there exists an alternative contract

in which wS is slightly increased, and both worker utility and firm profits are strictly increased,

violating the no-poaching condition. End Proof.

Lemma B-2 If an old worker is sometimes assigned to task L after success, he must have been

assigned to task L when young. Equivalently, if a young worker is initially assigned to task H, he

remains there with probability 1 if he succeeds.

Proof of Lemma B-2: Suppose contrary to the claimed result that a worker who is sometimes

assigned to task L after success is initially assigned to task H. For the worker in question, let wS

and wF be first-period success and failure payments. Let p be the worker’s effort when young. By

the hypothesis that the old worker is sometimes assigned to task L after success, vH (wS) ≤ vL (wS)

if wS > w. From Lemma B-1 it follows that vH (wS) ≤ vL (wS) if wS ≥ w.

We first show that wF = 0. Suppose to the contrary that this is not the case, and wF > 0.

We must have wF < wS for the firm to break even. Since vH (wS) ≤ vL (wS) if wS ≥ w, and

since v′H (w) ≥ 1 = v′L (w) we must have v (w) = vL (w) for all w ≤ wS . From the firm’s break-

even condition, gH − wS > 0. Consider a perturbation in which wS is slightly raised by dwS

while wF is changed by dwF = − p
1−pdwS . This perturbation leads the worker’s first-period

effort to strictly increase by dp > 0. Consequently, the firm’s profits are strictly increased by

dp (gH − wS + wF ) − pdwS − (1− p) dwF > 0. The worker’s utility is at least weakly increased.

So there exists a further perturbation that strictly increases both worker utility and firm profits,

implying the original contract is Pareto dominated, contradicting the equilibrium condition. Hence,

we must have wF = 0.

The above arguments imply that either w > 0 or vH (0) < vL (0); if instead w ≤ 0 and

vH (0) ≥ vL (0), Lemma 1 implies vH (wS) > vL (wS), a contradiction to the above.

The above arguments also imply that the young worker’s expected utility is vL (0)+p (vL (wS)− vL (0))−

γ (p), which equals vL (0) + maxp̃ p̃wS − γ (p̃). The cost to the firm of providing incentives to the

young worker is hence exactly the same as providing incentives to an old worker. Since the firm

makes zero profits, it follows that w ≤ 0 and maxp̃ p̃wS−γ (p̃) = vH (0). Hence the young worker’s

utility is strictly smaller than 2vL (0). But this violates the no-poaching condition, since it is

possible to produce strictly positive profits while delivering utility arbitrarily close to 2vL (0) to a
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young worker by assigned him in both periods to task L. The contradiction completes the proof.

End Proof.

Lemma B-3 As kH → ∞, the price gH → ∞; the payment given after success to an old worker

assigned to task H grows without bound; the effort p exerted by the worker approaches p (1); and

the continuation utility of the old worker grows without bound.

Proof of Lemma B-3: The fact that gH →∞ as kH →∞ is implied by the zero-profit condition

for firms: if any young worker is assigned to task H, then the result is immediate; if instead only

old workers are assigned to task H, then the maximum wealth of any such worker is gL, and the

result is again immediate.

An old worker assigned to task H exerts effort at least p (w) and has continuation utility at

least v (w) (see main text). The effort level p (w) solves gH = γ′ (p) + pγ′′ (p). By (i) and (ii)

of Assumption 1, γ′ (p) + pγ′′ (p) increases from 0 to ∞ as p increases from 0 to p (1). Hence

p (w) → p (1) as gH → ∞. The bonus required to induce this effort is at least γ′ (p (w)), and so

grows without bound. Finally, the utility v (w) grows without bound, since for any p0 utility v (w)

is bounded below by p0γ
′ (p (w))− γ (p0), which grows without bound. End Proof.

Lemma B-4 Suppose that w remains both strictly positive and bounded above as kH →∞. Then

there exists a young worker contract that delivers strictly positive profits and worker utility strictly

in excess of vH (w).

Proof of Lemma B-4: By definition, p (w) (gH − γ′ (p (w)))− kH + w = 0. Consider assigning

a young worker to task H with wF = 0, and wS defined by γ′ (p (w)) = vH (wS)− vL (0). Observe

that wS > w since vH (w) < γ′ (p (w)). This contract induces effort of at least p (w), since

v (wS) ≥ vH (wS), and, since w > 0, v (0) = vL (0). Hence the contract gives firm profits of at least

p (w) (gH − wS) − kH , which by the definition of p (w) equals p (w) (γ′ (p (w))− wS) − w, which

in turn equals p (w) (vH (wS)− vL (0)− wS) − w. From Lemma 1, vH (wS) − wS ≥ vH (w) − w.

From Lemma B-3, vH (w) → ∞ as kH → ∞. Since w is bounded above, it follows that profits

from the contract described grow arbitrarily large, and in particular, are strictly positive for all

kH large enough. Finally, worker utility is at least vL (0) + maxp̃ p̃γ′ (p (w))− γ (p̃), which equals

vL (0) + vH (w). End Proof.

Lemma B-5 For kH sufficiently large, a successful old worker is assigned to task H with probability

0 or 1.
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Proof of Lemma B-5: Suppose to the contrary that a successful old worker is assigned to task

H with probability strictly between 0 and 1. This is possible only if wS = w and vH (w) ≥ vL (w),

and so by Lemma B-1, only if he is assigned to task L when young, and w = gL. Hence, when kH

is large, such a contract can only arise if w remains bounded as kH → ∞. But then Lemma B-4

implies that the contract violates the no poaching condition, completing the proof. End Proof.

Lemma B-6 If a young worker’s expected lifetime utility grows without bound as kH → ∞, the

young worker’s expected lifetime output in task H must be bounded away from 0.

Proof of Lemma B-6: If a worker is always assigned to task L when old, by Lemma B-2 he must

also be assigned to task L when young. In this case, the worker’s utility is bounded above. So the

only way for a young worker’s utility to grow without bound is for him to be assigned to task H

when old, at least after he succeeds when young. From Lemma B-3, the only way for such a young

worker’s expected lifetime output in task H to approach 0 is for his probability of being assigned

to task H when old to approach 0, while still being strictly positive. Also from Lemma B-3, this

means that the only way for the worker’s utility to grow without bound while still having lifetime

output in task H approach zero is for the success payment when young to be exactly w, and for

the successful worker to be assigned to task H with a probability approaching 0, while remaining

strictly positive. By Lemma B-5, this is impossible. End Proof.

Lemma B-7 As kH →∞, the minimum wealth w needed for an old worker to be assigned to task

H grows without bound.

Proof of Lemma B-7: Suppose to the contrary that w is bounded above as kH → ∞. On

the one hand, if w remains strictly positive then Lemmas B-3 and B-4 imply that the utility of

all young workers must grow without bound (or else the no-poaching condition is violated). But

from Lemma B-6, this means that total output in task H is bounded away from 0, which since (by

Lemma B-3) gH → ∞ violates the equilibrium condition that supply equals demand, completing

the proof. On the other hand, if w = 0 when kH is large, then all workers who succeed when

young are assigned to task H, and hence (by B-3) the utility of all workers grows without bound

as kH →∞. The proof is then completed in the same way as in the first case. End Proof.

Completing the proof:

From Lemma B-2, at least some old workers must be assigned to task H, for otherwise there is no

task H output in the economy, and supply cannot equal demand. From Lemmas B-3 and B-5, the
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expected lifetime utility of these workers grows without bound as kH → ∞. From Lemma B-6,

it follows that for all kH sufficiently large, at least some young workers are initially assigned to

task L, since otherwise there is too much task H output for demand to equal supply. By the firm’s

break-even condition, a worker starting in task L has wealth of at most gL entering the second

period. So from Lemma B-7, for kH sufficiently large any young worker initially assigned to task L

is assigned there when old also, i.e., dynamic segregation. The utility of such a worker is bounded

above by 2vFBL, and so the young workers who start in task H receive strictly more utility, i.e.,

are overpaid. Since workers who start in task H are overpaid, they must have zero wealth after

they fail, since otherwise a firm could perturb the contract by reducing wealth after failure, thereby

increasing effort; this perturbed contract could then be used to strictly increase firm profits by

poaching a young worker who starts in task L. Zero wealth is associated with assignment to task

L, from Lemma B-7. So workers who start in task H move to task L after failure, but (by Lemma

B-2) remain in task H after success. Finally, the effort and pay implications follow from Lemma

B-8 below. End Proof.

Lemma B-8 Suppose a young worker starts on task H; remains on task H after success; receives

a continuation utility vFBL after failure; and receives strictly more expected utility than some other

young workers (i.e., is overpaid). Then the worker exerts strictly more effort when old after he

succeeds than when young, and moreover, receives more pay.

Proof of Lemma B-8: There are two cases to consider. The first case, in which wS ≤ kH , is

handled in the main text. Here, we deal with the second case in which wS > kH , and so the worker’s

effort after success is pFBH . Let p denote the worker’s effort when young. For any effort level p̃,

let S (p̃) = p̃gH − γ (p̃) − kH be total one-period surplus (i.e., the sum of firm profits and worker

utility) associated with effort p̃. Because wS ≥ kH , vH (wS)−wS = S (pFBH) . Hence firm profits

from employing the young worker can be written as S (p)+γ (p)+p (S (pFBH)− vH (wS)). Denote

by U (p) the one-period utility for a worker from being induced to work p by receiving a bonus

γ′ (p) after success, U (p) ≡ pγ′ (p) − γ (p). Substituting in for U (·) and γ′ (p) = vH (wS) − vFBL,

firm profits equal S (p)−U (p) + p (S (pFBH)− vFBL). Since the worker is overpaid, the derivative

of profits with respect to p, namely S′ (p)−U ′ (p)+S (pFBH)−vFBL, must be weakly positive. To

complete the proof, suppose that, contrary to the claimed result, p ≥ pFBH . By (i) of Assumption
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1, U is convex in p. So U ′ (p) ≥ U ′ (pFBH). Combined with S′ (p) ≤ 0, this implies

0 ≤ −U ′ (pFBH) + S (pFBH)− vFBL. (B-2)

Finally, note that S (pFBH) = pFBHgH − γ (pFBH)− kH ≤ U (pFBH); and U (0) = 0 together with

the convexity of U in p implies U (pFBH) ≤ pFBHU
′ (pFBH) < U ′ (pFBH). Hence the righthand

side of (B-2) is strictly negative, giving a contradiction and completing the proof that the worker

exerts more effort.

Finally, the pay implication is obtained as follows. Since the worker exerts first-best effort

pFBH when old after first-period success, he must receive a bonus of at least gH after second-

period success. Since the worker’s first period effort is strictly below pFBH , and his payment after

first-period failure is 0, his first-period payment must be strictly less than gH . End Proof.

Proof of Proposition 2

The proof is constructive. Define the candidate equilibrium price g∗H of task H output by

vFBH (g∗H) = vFBL, where recall that vFBH (gH) = maxp pgH − γ (p) − kH . Write p∗FBH for

the maximizing value of p, i.e., pFBH , evaluated at g∗H . We show that when demand is low enough

such that ζH
(

1
2pFBLp

∗
FBH

)
≤ g∗H , there is an equilibrium with price g∗H , in which all workers start

in task L, are paid wF = 0 and wS = gL, and a fraction µ ∈ [0, 1] of successful workers are assigned

to task H when old (where µ is defined by ζH
(

1
2µpFBLp

∗
FBH

)
= g∗H .

This is an equilibrium as follows. By the definition of g∗H , vH (w) = vL (w) for all w ≥ kH , and

so the stated assignments of old workers are optimal. Moreover, note that v (w) = vFBL + w.

Since gL > kH , any successful old worker can be assigned to task H while exerting first-best

effort p∗FBH . So the goods market clears. Firms make zero profits from young workers. There is

no alternate contract that would produce higher profits from assigning a young worker to task L.

Finally, because v (w) = vFBL + w, a firm would lose money by assigning a young worker to task

H: dynamic incentives are nonexistent here (i.e., v′ (w) ≡ 1), and young workers have no wealth.

This completes the proof.

Proof of Proposition 3

Fix kH sufficiently large that the equilibrium of the benchmark economy is of the type described

in Proposition 1, and such that w > 0 (see Lemma B-7). In particular, young workers are either
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initially assigned to task L and remain there with probability 1, or else are initially assigned to task

H using a contract that pays wF = 0 after failure (in which case they move to task L) or wS after

success. Firms make zero profits from this contract. For use below, we establish the following

interim lemma, which implies that any other contract for a young worker starting in task H would

generate strictly negative profits:

Lemma B-9 Let (wS , wF ) be a contract given to a young worker who is assigned to task H such

that firm profits are weakly positive; and the derivative of firm profits with respect to wS is weakly

negative. Then profits are strictly decreasing in wS for all higher values of wS.

Proof of Lemma B-9: Firm profits are p (gH − wS) − (1− p)wF − kH . Since wF ≥ 0 and

profits are weakly positive, gH − wS + wF > 0. By Lemma B-2 , the worker is assigned to task

H after success, and so his continuation utility after success is vH (wS). So a small increase

dwS in wS affects effort p according to dpγ′′ (p) = dwSv
′
H (wS) (from differentiation of (IC-Y)).

Consequently, the increase dwS affects profits by 1
γ′′(p) (v′H (wS) (gH − wS + wF )− γ′′ (p) p) dwS .

We know p strictly increases in wS , vH is concave (by Lemma 1), and γ′′ (p) p increases in p by (i)

of Assumption 1. Hence the expression v′H (wS) (gH − wS + wF )− γ′′ (p) p is strictly decreasing in

wS , establishing the result. End Proof.

We now consider the contract a firm would give to a worker when the menial task is a possibility.

We study the relaxed problem in which the old worker’s time constraint is disregarded. We show the

menial task is never assigned to old workers in the solution to the relaxed problem. Consequently,

the solution to the relaxed problem coincides with the solution to the full problem.

We assume for now that vH (w) ≥ vL (w). As we explain below, the opposite case vH (w) <

vL (w) is considerably easier. Given this assumption, in the equilibrium under consideration,

v (w) = vFBL + w for w ∈ [0, w), v (w) = vH (w) for w > w, and v (w) = [vFBL + w, vH (w)].

Consider an old worker entering with wealth w. When the menial task is introduced, the new

vi (·) mappings (for i = L,H) are given by

v∗i (w) ≡ max
m≥0

vi(w +mε)−m.

This follows since a firm can just break even on an old worker that puts up wealth w, and spends

time m on the menial task when old, by giving him a contract that delivers utility vi(w +mε) by

employment on task i, whilst keeping the profits mε produced on the menial task. This results in
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net utility vi(w + mε) −m to the agent, and the no poaching condition for old workers requires

this utility to be maximized.

Analogous to the mapping v, define v∗ (w) as the maximum promised utility a firm can deliver to

a worker entering with wealth w, i.e., v∗ (w) ≡ maxi∈L,H v∗i (w). From this maximization problem,

it is straightforward to show that the menial task is used in the second period only if w is both

below ŵ defined by v′H (ŵ) = 1
ε and above w̌ defined by vH(ŵ)−(vFBL+w̌)

ŵ−w̌ = 1
ε . Consequently, for

w /∈ [w̌, ŵ], the possibility of the menial task makes no difference to continuation utilities, i.e.,

v∗ (w) = v (w). For use below, note that both w̌ and ŵ approach w as ε→ 0.

Case: Young workers assigned to task H

As noted, for the non-menial task case there is a unique contract that gives non-negative profits.

Write wS for this contract (recall wF = 0). Consequently, for all α > 0 sufficiently small, there

exists some δ (α) > 0 such that losses of at least α are produced by any contract (w̃S , w̃F ) with

w̃S /∈ (wS − δ (α) , wS + δ (α)) and/or w̃F /∈ [0, δ (α)). Moreover, δ (α) → 0 as α → 0. From

Lemma B-1, wS > w. Fix α sufficiently small such that wS > w + 2δ (α) and w > 2δ (α).

Next, consider how the contract changes when menial tasks are possible. Given α, choose

ε ∈ (0, α) small enough such that w̌ > δ (α) and ŵ < w + δ (α).

Since the direct profits from a young worker performing the menial task are bounded above

by ε, and ε < α, it follows that any equilibrium contract (w∗S , w
∗
F ) with menial tasks must have

w∗S ∈ (wS − δ (α) , wS + δ (α)) and w∗F ∈ [0, δ (α)). Hence w∗S > ŵ and w∗F < w̌, implying that the

menial task is never assigned to old workers.

Finally, it is optimal to have the young worker do the menial task until either his time constraint

binds, or his utility is reduced to the utility of workers assigned to task L.

Case: Workers starting in sector L

For the non-menial task case, the equilibrium contract for workers starting on task L is simply

wS = gL and wF = 0, and the worker’s utility is 2vFBL. When menial tasks are possible, the

contract must still deliver utility of at least 2vFBL to the worker. By an exactly parallel argument

to the task H case, it follows that for all ε > 0 sufficiently small, an equilibrium menial task contract

is close to the equilibrium contract without menial tasks, and that no menial task is assigned to

old workers. In particular, an equilibrium menial task contract has wS , wF < w̌, and the worker

remains in task L when old.

Finally, since an equilibrium menial task contract must deliver utility at least 2vFBL, and the

worker remains in task L, and the menial task is socially inefficient, it follows that the equilibrium
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menial task contract must remain wS = gL and wF = 0, and no menial task is assigned to the

young worker.

Finally, consider the case in which vH (w) < vL (w). In this case, v (w) is a monotonically

increasing function. For ε sufficiently small, the menial task is never used. The result is then

very straightforward. End Proof.

Analysis for subsection IVA

To verify the conjecture that prices and hence contracts are state-independent, we need to show that

it is possible to vary the number of workers hired by a sufficient amount to fully absorb the demand

shock. Formally, this amounts to showing that λt remains between 0 (one cannot hire a negative

number of new workers), and 1/2 (the total population of young workers). Define λ ≡ yBH−p2y
G
H

p1(1−p22)
and

λ̄ ≡ yGH−p2y
B
H

p1(1−p22)
. It is straightforward to establish that λt remains in the interval

[
λ, λ̄

]
.33 Consider

what happens as the shock size shrinks, i.e., ζGH and ζBH approach some common value ζ̄H . Let

ȳH be the output level associated with demand ζ̄H and the price gH , i.e., ζ̄H (ȳH) = gH . Then

yBH and yGH both approach ȳH and λ and λ̄ both approach ȳH
p1(1+p2) . Hence provided the shocks

are sufficiently small, there is indeed enough flexibility to absorb the shocks via hiring decisions,

verifying the conjecture that prices are independent of the state.

To confirm that λt converges, simply note that iteration of the hiring equation (3) gives

λt = (−p2)
t λ0 +

1
p1

t−1∑
s=0

(−p2)
s y

ωt−s
H , (B-3)

which determines date t hiring as a function of the history of shock realizations. Hence if the

economy remains in state ω ∈ {G,B} for a long time, the number of young workers assigned to

task H converges to λω.
33If λt−1 ∈

ˆ
λ, λ̄

˜
, then

λt ≥
yBH
p1

− λ̄p2 =
yBH

`
1− p2

2

´
−

`
yGH − p2y

B
H

´
p2

p1 (1− p2
2)

=
yBH − p2y

G
H

p1 (1− p2
2)

= λ

and

λt ≤
yGH
p1

− λp2 =
yGH

`
1− p2

2

´
−

`
yBH − p2y

G
H

´
p2

p1 (1− p2
2)

=
yGH − p2y

B
H

p1 (1− p2
2)

= λ̄.
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Proof of Proposition 5

Proof of Part (A): We first show that v̄GFBL > v̄BFBL implies that the equilibrium price of task H

output must be higher in good times, gGH > gBH , as follows. Suppose to the contrary that gGH ≤ gBH .

Note that because vψ
(
wωψ

)
is increasing in gψH (from Lemma 1), state persistence implies that

v̄G (·) ≤ v̄B (·) if gGH ≤ gBH . From the incentive compatibility condition, it is then more expensive

to induce a level of effort pG in the good state, and hence impossible to satisfy (5) in both states

unless gGH > gBH .

Next, suppose that, contrary to the claimed result in the proposition, there is an equilibrium

in which either pG ≥ pB and old workers sometimes depart from the socially efficient effort level;

or in which pG > pB.

The supposition pG ≥ pB and the zero-profit conditions for the two states imply gGH − w̄G ≤

gBH − w̄B, and hence 0 < gGH − gBH ≤ w̄G − w̄B. Similarly, the supposition pG ≥ pB and the profit-

maximization conditions for the two states imply (given Assumption 1) v̄G′
(
w̄G

) (
gGH − w̄G

)
≥

v̄B′
(
w̄B

) (
gBH − w̄B

)
and hence v̄G′

(
w̄G

)
≥ v̄B′

(
w̄B

)
. Note that this inequality is strict if pG > pB.

To obtain a contradiction, we show that w̄G > w̄B implies v̄G′
(
w̄G

)
≤ v̄B′

(
w̄B

)
, with strict

inequality if old workers sometimes depart from the socially efficient effort level. Maximization

of worker utility implies that the expected payment w̄ω is distributed across the two states so

that v̄ω′ (w̄ω) = vG′
(
wωG

)
= vB′

(
wωB

)
. Lemma 1 and gGH > gBH imply that wωB ≥ wωG, i.e.,

the worker receives some insurance against the realization of tomorrow’s state. Observe that

w̄G = µGGwGG + µGBwGB can be rewritten as

w̄G = µBGwGG + µBBwGB +
(
µGG − µBG

)
wGG −

(
µBB − µGB

)
wGB

= µBGwGG + µBBwGB +
(
µGG − µBG

) (
wGG − wGB

)
.

Since µGG > µBG and wGB ≥ wGG, the final term is weakly negative. Hence w̄G > w̄B implies

that at least one of wGG > wBG and wGB > wBB must hold. By concavity of v (see Lemma 1),

either of these inequalities implies

v̄G′
(
w̄G

)
= vG′

(
wGG

)
= vB′

(
wGB

)
≤ vG′

(
wBG

)
= vB′

(
wBB

)
= v̄B′

(
w̄B

)
,

where the inequality is strict unless wωψ ≥ kH for all ω, ψ. If old workers sometimes depart

from the socially efficient effort level, we know that wωψ < kH for at least some ω, ψ, and so

44



v̄G′
(
w̄G

)
< v̄B′

(
w̄B

)
. This establishes the required contradiction and completes the proof of part

(A).

Proof of Part (B): From Part (A), pG ≤ pB. We first deal with the case of pG < pB. The

zero-profit conditions for the two states imply gGH − w̄G > gBH − w̄B. The profit-maximization con-

ditions for the two states imply (given Assumption 1) v̄G′
(
w̄G

) (
gGH − w̄G

)
< v̄B′

(
w̄B

) (
gBH − w̄B

)
and hence v̄G′

(
w̄G

)
< v̄B′

(
w̄B

)
. Since firms pay workers in the most efficient way, v̄ω′ (w̄ω) =

vG′
(
wωG

)
= vB′

(
wωB

)
, and so vG′

(
wGG

)
< vG′

(
wBG

)
and vB′

(
wGB

)
< vB′

(
wBB

)
. By concavity

of v (see Lemma 1), wGG > wBG and wGB > wBB.

Finally, consider the case pG = pB. The zero-profit conditions for the two states imply gGH −

w̄G = gBH − w̄B, and so, since gGH > gBH , w̄G > w̄B. From Part (A), old workers always work

the socially efficient amount. Consequently, there is indeterminacy in exactly how the expected

payments w̄ω are delivered across tomorrow’s future states. However, a natural way to deliver

these payments is to pay the same amount in both tomorrow’s states, which gives the result, and

completes the proof of part (B).

Proof of “pay for luck,” subsection IVB

We need to show that vG
(
wωG

)
> vB

(
wωB

)
. Denote by pωψ2 the effort on task H in the second

period for ψ ∈ {G,B} . As in the proof of Proposition 5, we know vG′
(
wωG

)
= vB′

(
wωB

)
. There

are two cases. First, it can be the case that pωψ2 is at the first best level pωψFBH for both states,

so that vψ
(
wωψ

)
= vψFBH + wωψ. Since gGH > gBH , we have vGFBH > vBFBH . If wωG = wωB = 0

the result follows. If wωψ > 0 for some state, any contract in which the resource constraint∑
ψ=G,B µ

ωψwωψ = w̄ω is satisfied is equivalent, so without loss of generality we can set wωG = wωB

and the result follows.

The other case is when pωψ2 is below the first best level for both states. From (B-1) in the proof

of Lemma 1 and (i) of Assumption 1, the conditions vG′
(
wωG

)
= vB′

(
wωB

)
and gGH > gBH imply

pωG2 > pωB2 . Since vψ
(
wωψ

)
= pωψ2 γ′

(
pωψ2

)
− γ

(
pωψ2

)
when pωψ2 < pωψFBH , the result follows (again

using (i) of Assumption 1).

C Proof of Proposition 6 (equilibrium existence)

Throughout, we routinely write w (g), vL (w; g), vH (w; g), v (w; g) to emphasize the dependence

of the previously defined quantities w etc on prices g = (gL, gH). Define v (g) = min v (0; g) and

v̄ (g) = max v (0; g).
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As discussed in the main text, a contract for young workers is a quintuple (i, wS , wF , vS , vF ).

We write C for a representative contract. Write π (C; g) for the firm’s profits from contract C

given prices g, and u (C) for a young worker’s expected utility from contract C.

Given secondary labor market conditions µ ∈ [0, 1], we add the constraint

vS , vF ≥ (1− µ) v (g) + µv̄ (g) . (C-1)

(Note that whenever w 6= 0 this constraint is already implied by vx ∈ v (wx) for x ∈ {S, F}.) We

also relax the no-poaching condition so that it applies to contracts satisfying this extra constraint.

Formally, for given secondary labor market conditions µ, write C (g;µ) for the set of feasible

contracts, i.e., (i, wS , wF , vS , vF ) satisfying wx ≥ 0 and vx ∈ v (wx) for x ∈ {S, F}, along with the

secondary labor market constraint (C-1). Write E (g;µ) for the subset of feasible contracts that

satisfy the no-poaching condition,

E (g;µ) ≡
{
C ∈ C (g;µ) : π (C; g) ≥ 0, and @C̃ ∈ C (g;µ) with π

(
C̃; g

)
> 0, u

(
C̃

)
> u (C)

}
.

Then define

E (g) ≡
⋃

µ∈[0,1]

E (g;µ) .

The set E (g) is the set of possible equilibrium contracts. The basic outline of the proof of

equilibrium existence is then as follows. First, we conjecture a level of task H output yH . For

the goods market to clear, the price must be ζH (gH). (Recall we assume gL is fixed, i.e., demand

for task L output is perfectly elastic.)34 The price in turn implies a set of possible equilibrium

contracts, E (g). The equilibrium contracts determine task H output. If output coincides with our

initial conjecture, we have found an equilibrium. Formally, we define a correspondence mapping

task H output to task H output, and use Kakutani’s fixed point theorem to prove a fixed-point

exists. The key step is Lemma C-3, which establishes upper hemi-continuity.

We give the details of this argument below. First, however, we expand on the main text’s

description of the form the equilibrium takes.

The equilibrium potentially entails randomization of several different initial contracts. That

is, when young workers initially enter the labor force, they are randomly assigned to one of several

different contracts. For concreteness, note that since the correspondence we construct maps to
34The proof of existence easily extends to the case in which demand for task L output is less than perfectly elastic.
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one-dimensional output sets, we know that there exists an equilibrium with just two contracts

(formally, this is Carathéodory’s theorem). Let q and 1− q be the probabilities of being assigned

to contracts 1 and 2. For each contract m = 1, 2, there exists µm such that Cm ∈ E (g;µm).

Fix m ∈ {1, 2}, and consider the workers given contract Cm. If vmF , v
m
S ≥ v̄ (g) then these

continuation utilities are delivered by retention within the firm: by construction, it is impossible

for a firm to make strictly positive profits while delivering utility strictly above v̄ (g) to an old

worker. Next, consider the case of vmx ∈ [v (g) , v̄ (g)) for at least one of x ∈ {S, F}. These

continuation utilities are delivered via a lottery over assignment to task L with continuation utility

v (g), and assignment to task H with continuation utility v̄ (g). Because the cost of delivering

continuation levels below v̄ (g) is zero, we assume these continuation levels are delivered outside

the original firm; in other words, there is a secondary labor market for old workers who started

under contract Cm, and are owed a continuation utility that has no cost to deliver it. Any worker

initially assigned contract Cm is free to enter this secondary labor market; hence by construction,

there is no contract C̃ that can simultaneously deliver strictly positive profits and strictly improve

a worker’s utility over Cm. Finally, note that the secondary labor markets for workers starting on

the two contracts are separate.

The proof of the existence of a fixed point follows:

Lemma C-1 Let {gn} be a sequence of prices such that gn → g and v (gn) converges. Then

lim v (gn) ∈ [v (g) , v̄ (g)].

Proof of Lemma C-1: First, we show lim v (gn) ≥ v (g). If w (g) 6= 0, then v (0; g̃) is a

continuous function of prices g̃ in the neighborhood of g, and the result is immediate. Consider

instead the case w (g) = 0, in which case v (g) = vL (0; g), and suppose to the contrary that

lim v (gn) < v (g) = vL (0; g). By the continuity of vL (·; g̃) in g̃, for all n sufficiently large,

v (gn) < vL (0; gn). But this contradicts the definition of v (gn).

Second, we show lim v (gn) ≤ v̄ (g). Suppose to the contrary that lim v (gn) > v̄ (g) =

max {vL (0, g) , vH (0, g)}. By the continuity of vL (·; g̃) in g̃, for all n sufficiently large, v (gn) >

vL (0; gn). Hence for all n sufficiently large, w (gn) ≤ 0 and v (gn) = vH (0; gn). Hence w (g) = 0

and vH (0; g) = lim v (gn), which contradicts lim v (gn) > vH (0, g) and completes the proof. End

Proof.

Lemma C-2 Let {gn} be a sequence of prices such that gn → g, v (gn) and v̄ (gn) converge, and

v (gn) < v̄ (gn). Then lim v (gn) = v (g) and lim v̄ (gn) = v̄ (g).
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Proof of Lemma C-2: Since v (gn) < v̄ (gn), we know w (gn) = 0, v (gn) = vL (0; gn) and

v̄ (gn) = vH (0; gn). Then w (g) = 0, vL (0; g) = lim vL (0; gn) and vH (0; g) = lim vH (0; gn).

Also, since vL (0; gn) < vH (0; gn), we know vL (0; g) ≤ vH (0; g). Hence v (g) = vL (0; g) and

v̄ (g) = vH (0; g), implying the result. End Proof.

Lemma C-3 The correspondence E is non-empty, compact valued, and upper hemi-continuous.

Proof of Lemma C-3:

For any g, the set E (g) is non-empty since there always exists a contract that delivers non-

negative profits by assigning the worker to task L, and because E (g) certainly contains the contract

that maximizes worker utility subject to non-negative firm profits. Moreover, for any given g, the

set E (g) is bounded.

Consider a sequence gn → g with Cn ∈ E (gn) such that {Cn}, {v (gn)} and {v̄ (gn)} are all

convergent. Let C be the limit of {Cn}. Below, we establish C ∈ E (g). This has two implications:

First, applied to the special case in which gn is simply constant at g, this establishes that E (g)

is closed-valued, and hence compact-valued.

Second, by Proposition 11.11 in Border (1989), and given the Bolzano-Weierstrass theorem, it

implies that E (·) is an upper hemi-continuous correspondence.

We now show C ∈ E (g). Note that π (C; g) ≥ 0. The proof is by contradiction: Suppose that

C /∈ E (g).

First, we consider the case in which for all n large enough, v (gn) = v̄ (gn). From Lemma C-1, let

µ ∈ [0, 1] be such that lim v (gn) = (1− µ) v (g)+µv̄ (g). In particular, we know C /∈ E (g;µ). Also,

we know C specifies continuation utilities vS , vF ≥ lim v (gn), and so belongs to C (g;µ). So there

exists C̃ ∈ C (g;µ) such that u
(
C̃

)
> u (C), π

(
C̃; g

)
> 0 and has vF , vS > (1− µ) v (g)+µv̄ (g) =

lim v (gn). So for n sufficiently large, C̃ ∈ C (gn; 0), u
(
C̃

)
> u (C) and π

(
C̃; gn

)
> 0. But

since v (gn) = v̄ (gn) for all n large enough, the set C (gn; µ̃) is independent of µ̃, and hence for all

µ̃ ∈ [0, 1], Cn /∈ E (gn; µ̃), implying Cn /∈ E (gn), a contradiction.

Second, we consider the alternate case in which there is no subsequence such that for all n large

enough, v (gn) = v̄ (gn). This implies that there is a subsequence such that v (gn) < v̄ (gn). From

Lemma C-2, lim v (gn) = v (g) and lim v̄ (gn) = v̄ (g).

There are two subcases.

In the first and easier subcase, the limit contract C has vF , vS ≥ v̄ (g), and so C ∈ C (g;µ = 1).

Since C /∈ E (g;µ = 1), there exists a contract C̃ with ṽF , ṽS > v̄ (g) such that u
(
C̃

)
> u (C) and
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π
(
C̃; g

)
> 0. So for all n large enough, ṽS , ṽF > v̄ (gn), u

(
C̃

)
> u (Cn) and π

(
C̃; gn

)
> 0. But

then for all n large enough, for all µ̃ ∈ [0, 1], Cn /∈ E (gn; µ̃), and hence Cn /∈ E (gn), a contradiction.

In the second subcase, the limit contract C has min {vF , vS} ∈ [v (g) , v̄ (g)). Let µ be such

that min {vF , vS} = (1− µ) v (g) + µv̄ (g). So C ∈ C (g;µ). Since C /∈ E (g;µ), there exists C̃

such with ṽF , ṽS > (1− µ) v (g) + µv̄ (g), u
(
C̃

)
> u (C) and π

(
C̃; g

)
> 0. So there exists ε > 0

such that ṽS , ṽF > (1− µ− ε) v (g) + (µ+ ε) v̄ (g). For all n large enough, for all µ̃ ∈ [0, µ+ ε],

ṽS , ṽF > (1− µ̃) v (gn) + µ̃v̄ (gn). So for all n large enough, for all µ̃ ∈ [0, µ+ ε], Cn /∈ E (gn; µ̃).

Moreover, for all n large enough, Cn has min {vnF , vnS} < (1− µ̃) v (gn)+µ̃v̄ (gn) for all µ̃ ∈ [µ+ ε, 1],

and so for all µ̃ ∈ [µ+ ε, 1], Cn /∈ C (gn; µ̃) and hence Cn /∈ E (gn; µ̃). But then for all n large

enough, for all µ̃ ∈ [0, 1], Cn /∈ E (gn; µ̃), and hence Cn /∈ E (gn), a contradiction. End Proof.

Lemma C-4 Let α : E →→ F, β : F →→ G be upper hemi-continuous, α closed-valued, and β (y)

bounded for all y ∈ F . Then β ◦ α : E →→ G is upper hemi-continuous and compact-valued.

Proof of Lemma C-4: Upper hemi-continuity is standard (see Proposition 11.23 of Border).

We show that β ◦α is compact-valued. Given that β (y) is bounded for all y ∈ F , it suffices to show

that β ◦α is closed-valued. Fix x ∈ E, and consider any convergent sequence {zn} ⊂ β ◦α (x), with

limit z. For each n, there exists yn ∈ α (x) such that zn ∈ β (yn). By Bolzano-Weierstrass, yn has

a convergent subsequence. By upper hemi-continuity of β, z ∈ β (lim yn). By closed-valuedness

of α (x), lim yn ∈ α (x). Hence z ∈ β ◦ α (x), completing the proof. End Proof.

Lemma C-5 For any continuation utility v, let Yc (v) be the set of expected task H outputs that

are associated with the cost-minimizing way of delivering v. Then Yc is compact-valued and upper

hemi-continuous.

Proof of Lemma C-5: The proof is standard, and omitted.

Proof of Proposition 6:

We write yH for total output of task H. Even if all workers work in task H, and always

succeed, total output is still just 1, and so we know yH ∈ [0, 1]. To establish existence, we

construct a correspondence that maps the set of possible task H output levels, [0, 1], into itself,

and then apply Kakutani’s fixed point theorem. We first define a correspondence on (0, 1], and

then extend it to cover [0, 1].
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For any yH ∈ (0, 1], the associated output price is gH = ζH (yH). (Recall we assume gL is

fixed.) Given gH , define Y (gH) as the set of per-period expected task H outputs associated with

giving young workers contracts C ∈ E (g), i.e.,

Y (gH) =
⋃

C=(i,wS ,wF ,vS ,vF )∈E(g)

 1
2

(
p1(i=H) + pyS + (1− p) yF

)
such that

γ′ (p) = vS − vF , yS ∈ Yc (vS) and yF ∈ Yc (vF )

 .

It follows straightforwardly from Lemma C-4 that Y is upper hemi-continuous and compact-valued.

It is also non-empty because E is. Define Ȳ (gH) as the convex hull of Y (gH). The correspondence

Ȳ is compact and convex valued, and by Proposition 11.29 of Border, it is upper hemi-continuous.

Consequently, Ȳ (ζH (yH)) defines a correspondence from (0, 1] into [0, 1]. Note that as yH → 0

the price gH (yH) → ∞, so the set Y (g) converges to {(0, p (1))}, where recall that p (1) is the

maximal attainable success probability. So defining Ȳ (ζH (0)) as {(0, p (1))} ensures upper hemi-

continuity of the correspondence Ȳ.

By Kakutani’s fixed point theorem, Ȳ has a fixed point, y∗H say. Let the associated price be

gH (y∗H). End Proof.
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