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Abstract

We study a broad class of asset pricing models in which the stochas-
tic discount factor (SDF) can be factorized into an observable compo-
nent and a potentially unobservable, model-speci�c, one. Exploiting
this decomposition we derive new entropy bounds that restrict the ad-
missible regions for the SDF and its components. Without using this
decomposition, to a second order approximation, entropy bounds are
equivalent to the canonical Hansen-Jagannathan bounds. However,
bounds based on our decomposition have higher information content,
are tighter, and exploit the restriction that the SDF is a positive ran-
dom variable. Our information-theoretic framework also enables us to
extract a non-parametric estimate of the unobservable component of
the SDF. Empirically, we �nd it to have a business cycle pattern, and
signi�cant correlations with both �nancial market crashes unrelated to
economy-wide contractions, and the Fama-French factors. We apply
our methodology to some leading consumption-based models, gaining
new insights about their empirical performance.
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I Introduction

The absence of arbitrage opportunities implies the existence of a pricing

kernel, also known as the stochastic discount factor (SDF), such that the

equilibrium price of a traded security can be represented as the conditional

expectation of the future payo¤ discounted by the pricing kernel. The stan-

dard consumption-based asset pricing model, within the representative agent

and time-separable power utility framework, identi�es the pricing kernel as a

simple parametric function of consumption growth. However, pricing kernels

based on consumption risk alone cannot explain (i) the historically observed

levels of returns, giving rise to the Equity Premium and Risk Free Rate

Puzzles (e.g. Mehra and Prescott (1985) and Weil (1989)), and (ii) the

cross-sectional dispersion of returns between di¤erent classes of �nancial as-

sets (e.g. Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger

(1989), Campbell (1996), Cochrane (1996)).

Nevertheless, there is considerable empirical evidence that consumption

risk does matter for explaining asset returns (e.g. Lettau and Ludvigson

(2001a, 2001b), Parker and Julliard (2005)). Therefore, a burgeoning litera-

ture has developed based on modifying the preferences of investors and/or the

structure of the economy. In such models the resulting pricing kernel can be

factorized into an observable component consisting of a parametric function

of consumption growth, and a potentially unobservable, model-speci�c, com-

ponent. Prominent examples in this class include: the external habit model

where the additional component consists of a function of the habit level

(Campbell and Cochrane (1999); Menzly, Santos, and Veronesi (2004)); the

long run risks model based on recursive preferences where the additional com-

ponent consists of the return on total wealth (Bansal and Yaron (2004)); and

models with housing risk where the additional component consists of growth

in the expenditure share on non-housing consumption (Piazzesi, Schneider,

and Tuzel (2007)). The additional, and potentially unobserved, component

may also capture deviations from rational expectations (e.g. Brunnermeier

and Julliard (2007)), models with robust control (e.g. Hansen and Sargent

(2010)) and ambiguity aversion (e.g. Ulrich (2010)), as well as a liquidity fac-

tor arising from solvency constraints (e.g. Lustig and Nieuwerburgh (2005)).

2



In this paper, we propose a new way to analyze dynamic asset pricing

models for which the SDF can be factorized into an observable component

and a potentially unobservable one. Our analysis utilizes an information-

theoretic entropy approach to assess the empirical plausibility of candidate

SDFs of this form, and provides the most likely estimate of the time series

of the unobserved pricing kernel.

First, we construct entropy bounds that restrict the admissible regions for

the SDF and its unobservable component. Dynamic equilibrium asset pricing

models generally impose strong assumptions on the preferences of consumers

and the dynamics of the state variables driving asset prices in order to iden-

tify the SDF. In contrast, we rely on a model-free no-arbitrage approach to

construct bounds on the SDF and its components. Our results complement

and improve upon the seminal work by Hansen and Jagannathan (1991),

that provide minimum variance bounds for the SDF. The use of an entropy

metric is also closely related to the works of Stutzer (1995, 1996), that �rst

suggested to construct entropy bounds based on asset pricing restrictions,

and Alvarez and Jermann (2005), who derive a lower bound for the volatility

of the permanent component of investors�marginal utility of wealth (see also

Backus, Chernov, and Zin (2011), Bakshi and Chabi-Yo (2011) and Kitamura

and Stutzer (2002)). We show that, in the mean-standard deviation space, a

second order approximation of the risk neutral entropy bounds (Q-bounds)

have the canonical Hansen-Jagannathan bounds as a special case, but are

generally tighter since they naturally impose the non negativity restriction

on the pricing kernel. Using the multiplicative structure of the pricing kernel,

we are able to provide bounds (M -bounds) that have higher information con-

tent, and are tighter, than both the Hansen and Jagannathan (1991) and the

risk neutral entropy bounds. Moreover, our approach improves upon Alvarez

and Jermann (2005) in that a decomposition of the pricing kernel into per-

manent and transitory components is not required (but still possible), and we

can accommodate an asset space of arbitrary dimension. Our methodology

can also be used to construct bounds (	-bounds) for the potentially unob-

served component of the pricing kernel. We show that for models in which

the pricing kernel is a function of observable variables only, the 	-bounds

are the tightest ones, and can be satis�ed if and only if the model is actually
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able to price assets correctly.

Second, we show how the relative entropy minimization approach used for

the construction of the bounds can be used to extract non-parametrically the

time series of both the SDF and its unobservable component. This method-

ology identi�es the most likely, in a information theoretic sense, time series of

the SDF and its unobservable component. Along this dimension our paper

is close in spirit to, and innovates upon, the long tradition of using asset

prices to estimate the risk neutral probability measure (see e.g. Jackwerth

and Rubinstein (1996), and Aït-Sahalia and Lo (1998)) and use this infor-

mation to extract an implied pricing kernel (see e.g. Aït-Sahalia and Lo

(2000), and Rosenberg and Engle (2002)). Compared to this literature, our

nonparametric approach o¤ers two main advantages: i) it can be used to

extract information not only from options, but also from any type of �nan-

cial assets; ii) instead of relying exclusively on the information contained in

�nancial data, it allow us to also exploit the information about the pricing

kernel contained in the time series of aggregate consumption, therefore con-

necting our work to macro-�nance modeling. Empirically, we �nd that the

estimated SDF has a clear business cycle pattern, but also shows signi�cant

and sharp reactions to �nancial market crashes that do not result in economy

wide contractions. Moreover, our estimated time series for the unobservable

pricing kernel is highly correlated with the Fama and French (1993) factors,

independently from the sample frequency and the set of assets used in the

estimation. This suggests that our approach does a good job in identifying

the pricing kernel, and provides a rationalization of the empirical success of

the Fama French factors.

Third, we apply our methodology to some of the leading consumption-

based asset pricing models, gaining new insights about their empirical per-

formance. For the standard time separable power utility model, we show

that the pricing kernel satis�es the Hansen and Jagannathan (1991) bound

for large values of the risk aversion coe¢ cient, and the Q and M bounds

for even higher levels of risk aversion. However, the 	-bound, which is a

bound on the unobservable component of the pricing kernel, is tighter and

is not satis�ed for any level of risk aversion. We show that these �ndings

are robust to the use of the long run consumption risk measure of Parker
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and Julliard (2005), despite the fact that this measure of consumption risk

is able to explain a substantial share of the cross-sectional variation in as-

set returns with a small risk aversion coe¢ cient. Considering more general

models of dynamic economies, such as models with habit formation, long

run risks in consumption growth, and complementarities in consumption, we

�nd empirical support for the long run risks framework of Bansal and Yaron

(2004).

Finally, the methodology developed in this paper has considerable gener-

ality and may be applied to any model that delivers well-de�ned Euler equa-

tions and for which the SDF can be factorized into an observable component

and an unobservable one. These include investment-based asset pricing mod-

els, and models with heterogenous agents, limited stock market participation,

and fragile beliefs.

The remainder of the paper is organized as follows. Section II presents the

information-theoretic methodology and Section II.1 introduces the entropy

bounds developed and their properties. Section III uses the Consumption-

CAPM with power utility as an illustrative example of the application of

our methodology. Section IV applies the methodology developed in this

paper to the analysis of more general models of dynamic economies. The

models considered, and their mapping into our framework, are presented

in Section IV.1 while the empirical results are presented in Section IV.2.

Section V concludes and discusses extensions. The Appendix contains proofs,

additional details on the methodology, and a thorough data description.

II Entropy and the Pricing Kernel

In the absence of arbitrage opportunities, there exists a pricing kernel, Mt+1,

or stochastic discount factor (SDF), such that the equilibrium price, Pit, of

any asset i delivering a future payo¤, Xit+1, is given by

Pit = Et [Mt+1Xit+1] : (1)
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where Et is the rational expectation operator conditional on the information
available at time t. Generally, the SDF can be factorized as follows

Mt = m (�; t)�  t (2)

where m (�; t) is a known non-negative function of data observable at time

t and the parameters vector � 2 Rk, and  t is a potentially unobservable
component. In the most common case m (�; t) is simply a function of con-

sumption growth, i.e. m (�; t) = m (�ct; �) where �ct � log Ct
Ct�1

and Ct

denotes the time t consumption �ow.

Equations (1) and (2) imply that for any set of tradable assets the fol-

lowing vector of Euler equations must hold in equilibrium

0 = E [m (�; t) tRe
t ] �

Z
m (�; t) tR

e
tdP (3)

where E is the unconditional rational expectation operator, Re
t 2 RN is a

vector of excess returns on di¤erent tradable assets, and P is the uncondi-

tional physical probability measure. Under weak regularity conditions the

above pricing restrictions for the SDF can be rewritten as

0 =

Z
m (�; t)

 t
� 
Re
t dP =

Z
m (�; t)Re

t d	 � E	 [m (�; t)Re
t ]

where �x � E [xt], and  t
� 
= d	

dP
is the Radon-Nikodym derivative of 	 with

respect to P . For the above change of measure to be legitimate we need

absolute continuity of the measures 	 and P .

The transformation above implies that, given a set of consumption and

asset returns data, for any � we can estimate the 	 probability measure as

	̂ � argmin
	

D (	jjP ) � argmin
	

Z
d	

dP
ln
d	

dP
dP s.t. 0 =E	 [m (�; t)Re

t ] :

(4)

The above is a relative entropy (or Kullback-Leibler Information Criterion

(KLIC)) minimization under the asset pricing restrictions coming from the

Euler equations. That is, we can estimate the unknown measure 	 as the

one that adds the minimum amount of additional information needed for the
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pricing kernel to price assets. Note also that D (	jjP ) is always non negative
and has a minimum at zero that is reached when 	 is identical to P , that is

when all the information needed to price assets is contained in m (�; t) and

 t is simply a constant term.

The above approach can also be used, as �rst suggested by Stutzer (1995),

to recover the risk neutral probability measure (Q) from the data as

Q̂ � argmin
Q

D (QjjP ) � argmin
	

Z
dQ

dP
ln
dQ

dP
dP s.t. 0 =

Z
Re
tdQ � EQ [Re

t ]

(5)

under the restriction that Q and P are absolutely continuous.

Moreover, since relative entropy is not symmetric, we can also recover 	

and Q as

	̂ � argmin
	

D (P jj	) � argmin
	

Z
ln
dP

d	
dP s.t. 0 =E	 [m (�; t)Re

t ](6)

Q̂ � argmin
Q

D (P jjQ) � argmin
Q

Z
ln
dP

dQ
dP s.t. 0 =EQ [Re

t ] (7)

Note that the approaches in Equations (4) and (6) can identify f tg
T
t=1 only

up to a positive scale constant.

But why should relative entropy minimization be an appropriate criterion

for recovering the unknown measures 	 and Q? There are several reasons

for this choice.

First, as formally shown in Appendix A.1, the approaches in Equations

(4) and (6) deliver the maximum likelihood estimate of the  t component

of the pricing kernel � that is, the most likely estimate given the data at

hand. That is, the above KLIC minimization is equivalent to maximizing

the likelihood in an unbiased procedure for �nding the  t component of the

pricing kernel. Note that this is also the rationale behind the principle of

maximum entropy (see e.g. Jaynes (1957a, 1957b)) in physical sciences and

Bayesian probability that states that, subject to known testable constraints �

the asset pricing Euler restrictions in our case �the probability distribution

that best represent our knowledge is the one with maximum entropy, or

minimum relative entropy in our notation.

Second, the use of relative entropy, due to the presence of the logarithm
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in the objective functions in Equations (4)-(7), naturally imposes the non

negativity of the pricing kernel. This, for example, is not imposed in the

identi�cation of the minimum variance pricing kernel of Hansen and Jagan-

nathan (1991).1

Third, our approach to uncover the  t component of the pricing kernel

satis�es the Occam�s razor, or law of parsimony, since it adds the minimum

amount of information needed for the pricing kernel to price assets. This is

due to the fact that the relative entropy is measured in units of information.

Fourth, it is straightforward to add conditioning information to construct

a conditional version of the entropy bounds presented in the next section:

given a vector of conditioning variables Zt�1, one simply has to multiply

(element by element) the argument of the integral constraints in Equations

(4), (5), (6) and (7) by the conditioning variables in Zt�1.

Fifth, there is no ex-ante restriction on the number of assets that can be

used in constructing  t, and the approach can naturally handle assets with

negative expected rates of return (cf. Alvarez and Jermann (2005)).

Sixth, as implied by the work of Brown and Smith (1990), the use of

entropy is desirable if we think that tail events are an important component

of the risk measure.

Finally, this approach is numerically simple when implemented via duality

(see e.g. Csiszar (1975)). That is, when implementing the entropy minimiza-

tion in Equation (4) each element of the series f tg
T
t=1 can be estimated, up

to a positive constant scale factor, as

 ̂t =
e�(�)

0m(�;t)Re
t

TX
t=1

e�(�)0m(�;t)R
e
t

, 8t (8)

where �(�) 2 RN is the solution to

�(�) � argmin
�

1

T

TX
t=1

e�
0m(�;t)Re

t ; (9)

1Hansen and Jagannathan (1991) o¤er an alternative bound that imposes this restric-
tion, but it is computationally cumbersome (the minimum variance portfolio is basically
an option) and generally not applied.
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and this last expression is the dual formulation of the entropy minimization

problem in Equation (4).

Similarly, the entropy minimization in Equation (6) is solved by setting

each  t, up to a constant positive scale factor, as being equal to

 ̂t =
1

T (1 + �(�)0m (�; t)Re
t)
, 8t (10)

where �(�) 2 RN is the solution to the following unconstrained convex prob-
lem

�(�) � argmin
�
�

TX
t=1

log(1 + �0m (�; t)Re
t); (11)

and this last expression is the dual formulation of the entropy minimization

problem in Equation (6).

Note also that the above duality results imply that the number of free

parameters available in estimating f gTt=1 is equal to the dimension of (the
Lagrange multiplier) � �that is, it is simply equal to the number of assets

considered in the Euler equation.

Moreover, since the � (�)�s in Equations (9) and (11) are akin to Ex-

tremum Estimators (see e.g. Hayashi (2000, Ch. 7)), under standard regular-

ity conditions (see e.g. Amemiya (1985, Theorem 4.1.3)), one can construct

asymptotic con�dence intervals for both f tg
T
t=1 and the entropy bounds

presented in the next Section.

II.1 Entropy Bounds

Based on the relative entropy estimation of the pricing kernel and its com-

ponent  outlined in the previous section, we now turn our attention to the

derivation of a set of entropy bounds for the SDF, M , and its components.

Dynamic equilibrium asset pricing models identify the SDFs as paramet-

ric functions of variables determined by the consumers�preferences and the

dynamics of state variables driving the economy. A substantial research e¤ort

has been devoted to developing diagnostic methods to assess the empirical

plausibility of candidate SDFs in pricing assets as well as provide guidance for

the construction and testing of other �more realistic �asset pricing theories.
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The seminal work by Hansen and Jagannathan (1991) identi�es, in a

model-free no-arbitrage setting, a variance minimizing benchmark stochastic

discount factor, M�
t

�
�M
�
, whose variance places a lower bound on the vari-

ances of other SDFs (see De�nition 3 in Appendix A.2). The HJ-bounds

o¤er a natural benchmark for evaluating the potential of an equilibrium as-

set pricing model since, by construction, any SDF that is consistent with

observed data should have a variance that is not smaller than the one identi-

�ed by the bound. However, the identi�ed minimum variance SDF does not

impose the non negativity constraint on the pricing kernel and, sinceM�
t

�
�M
�

is a linear function of returns, it does not generally satisfy the restriction.2

As noticed in Stutzer (1995), using the Kullback-Leibler Information Cri-

terion minimization in Equation (5) one can construct an entropy bound for

the risk neutral probability measure that naturally imposes the non nega-

tivity constraint on the pricing kernel. In De�nition 4 in Appendix A.2 we

generalize the idea of using an entropy minimization approach to construct

risk neutral bounds �Q-bounds �for the pricing kernel. These bounds, like

the HJ-bound, use only the information contained in asset returns but, dif-

ferently from the latter, they impose the restriction that the pricing kernel

must be positive. Moreover, under mild regularity conditions,3 we show that

(see Remark 1 in Appendix A.2), to a second order approximation, the prob-

lem of constructing canonical HJ-bounds and Q-bounds are equivalent, in

the sense that approximated Q-bounds identify the minimum variance bound

for the SDF. The intuition behind this result is simple: a) a second order ap-

proximation of (the log of) a smooth pdf delivers an approximately Gaussian

distribution (see e.g. Schervish (1995)); b) the relative entropy of Gaussian

distributions is proportional to their variances; c) the di¤usion invariance

principle (see e.g. Du¢ e (2005, Appendix D)) implies that in the continuous

time limit the change of measure does not change the volatility.

Both the HJ and Q bounds described above use only information about

asset returns and neither information about consumption growth, nor the

2We call the bound in De�nition 3 the �canonical�HJ-bound since Hansen and Ja-
gannathan (1991) also provide an alternative bound, that imposes the non-negativity of
the pricing kernel, but that is not generally used due to its computational complexity.

3The (su¢ cient, but not necessary) regularity conditions required for the approximation
result stated above are typically satis�ed in consumption-based asset pricing models.
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structure of the pricing kernel. Below instead we propose a novel approach

that, while also imposing the non negativity of the pricing kernel, a) takes

into account more information about the form of the pricing kernel, therefore

delivering sharper bounds, and b) allows us to construct information bounds

for the individual components of the SDFs.

Consider an SDF that, as in Equation (2), can be factorized into two

components, i.e. Mt = m (�; t) �  t where m (�; t) is a known non negative

function of observable variables (generally consumption growth) and the pa-

rameter vector �, and  t is a potentially unobservable component. A large

class of equilibrium asset pricing models including ones with standard time

separable power utility with a constant coe¢ cient of relative risk aversion,

external habit formation, recursive preferences, durable consumption goods,

housing, and disappointment aversion fall into this framework. Based on the

above factorization of the SDF we can de�ne the following bounds.

De�nition 1 (M-bounds) For any candidate stochastic discount factor of
the form in Equation (2), and given any choice of the parameter vector �, we

de�ne the following bounds:

1. M1-bound:

D

�
P jjMt

�M

�
�
Z
� lnMt

�M
dP > D

 
P jjm (�; t) 

�
t

m (�; t) �t

!

�
Z
� ln m (�; t) 

�
t

m (�; t) �t
dP

where  �t solves Equation (6) and m (�; t) 
�
t � E [m (�; t) �t ] :

2. M2-bound:

D

�
Mt

�M
jjP
�
�
Z
Mt

�M
ln
Mt

�M
dP > D

 
m (�; t) �t

m (�; t) �t
jjP
!

�
Z
m (�; t) �t

m (�; t) �t
ln
m (�; t) �t

m (�; t) �t
dP

where  �t solves Equation (4).
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The above bounds for the SDF are tighter that the Q-bounds since, de-

noting with Q� the minimum entropy risk neutral probability measure, we

have that

D

 
P jjm (�; t) 

�
t

m (�; t) �t

!
� D (P jjQ�) and D

 
m (�; t) �t

m (�; t) �t
jjP
!
� D (Q�jjP )

by construction,4 and are also more informative since not only is the infor-

mation contained in asset returns used in their construction, but also the

structure of the pricing kernel in Equation (2) and the information contained

in m (�; t).

Information about the SDF can also be elicited by constructing bounds

for the  t component itself. Given the m (�; t) component, these bounds

identify the minimum amount of information that  t should add for the

pricing kernel Mt to be able to price asset returns.

De�nition 2 (	-bounds) For any candidate stochastic discount factor of
the form in Equation (2), and given any choice of the parameter vector �,

two lower bounds for the relative entropy of  t are de�ned as:

1. 	1-bound:

D

�
P jj t� 

�
� �

Z
ln
 t
� 
dP > D

�
P jj 

�
t

� 

�
where  �t solves Equation (6);

2. 	2-bound

D

�
 t
� 
jjP
�
�
Z
 t
� 
ln
 t
� 
dP > D

�
 �t
� 
jjP
�

where  �t solves Equation (4).

Besides providing an additional check for any candidate SDF, the 	-

bounds are useful in that a simple comparison of D
�
 �t
� 
jjP
�
, D

�
m(�;t)

m(�;t)
jjP
�

and D (Q�jjP ) can provide a very informative decomposition in terms of
4Cf. De�nition 4 in Appendix A.2.
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the entropy contribution to the pricing kernel, that is logically similar to

the widely used variance decomposition analysis. For example, if D
�
 �t
� 
jjP
�

happens to be close toD (Q�jjP ), whileD
�
m(�;t)

m(�;t)
jjP
�
is substantially smaller,

the decomposition would imply that most of the ability of the candidate SDF

to price assets comes from the  t component.

Moreover, note that if we want to evaluate a model of the form Mt =

m (�; t) � i.e. a model without the unobservable  t component � the 	-

bounds will o¤er a tight selection criterion since, under the null of the model

being true, we should have D
�
 �t
� 
jjP
�
= D

�
P jj 

�
t
� 

�
= 0 and this is a tighter

bound than theHJ , Q andM bounds de�ned above. The intuition for this is

simple: Q-bounds (and HJ-bounds) require the model under test to deliver

at least as much relative entropy (variance) as the minimum relative entropy

(variance) SDF, but they do not require that the m (�; t) under scrutiny

should also be able to price the assets. That is, it might be the case �as

in practice we will show is the case � that for some values of � both the

Q-bounds and the HJ-bounds will be satis�ed, but nevertheless the SDF

grossly violates the pricing restrictions in the Euler Equations (3).

Note that in principle a volatility bound, similar to the Hansen and Ja-

gannathan (1991) bound for the pricing kernel, can be constructed for the  t
component. Such a bound, presented in De�nition 5 of Appendix A.2, iden-

ti�es a minimum variance  �t
�
� 
�
component with standard deviation given

by

� � = � 

q
E [Re

tm (�; t)]
0 V ar (Re

tm (�; t))
�1 E [Re

tm (�; t)]: (12)

This bound, as the entropy based 	-bound in De�nition 2, uses information

about the structure of the SDF but, di¤erently from the latter, does not

constrains  t and Mt to be non-negative as implied by economic theory.

Moreover, using the same approach employed in Remark 1, this last bound

can be obtained as a second order approximation of the entropy based 	-

bound.

Equation (12), viewed as a second order approximation to the entropy

	-bound, makes clear why bounds based on the decomposition of the pricing

kernel as Mt = m (�; t) t o¤er sharper inference than bounds based on only

Mt. Consider for example the case in which the candidate SDF is of the form

13



Mt = m (�; t), that is  t = 1 for any t. In this case, it can easily happen that

there exists a ~� such that

V ar
�
Mt

�
~�
��
� V ar

�
m
�
~�; t
��
� V ar

�
M�

t

�
�M
��

where V ar
�
M�

t

�
�M
��
is the Hansen and Jagannathan (1991) bound in Def-

inition 3 of Appendix A.2, that is there exists a ~� such that the HJ-bound

is satis�ed. Nevertheless, the existence of such a ~� does not imply that the

candidate SDF is able to price asset returns. This would be the case if and

only if the volatility bound for  t in De�nition 5 is also satis�ed since, from

Equation (12), we have that under the assumption of constant  t the bound

can be satis�ed only if E [Re
tm (�0; t)] � E [Re

tMt (�0)] = 0, that is only if the

candidate SDF is able to price asset returns.

III An Illustrative Example: the C-CAPM
with Power Utility

We �rst illustrate our methodology for the Consumption-CAPM (C-CAPM)

of Breeden (1979) and Rubinstein (1976) when the utility function is time

and state separable with a constant coe¢ cient of relative risk aversion. For

this speci�cation of preferences, the SDF takes the form,

Mt+1 = � (Ct+1=Ct)
� , (13)

where � denotes the subjective discount factor,  is the coe¢ cient of relative

risk aversion, and Ct+1=Ct denotes the real per capita aggregate consumption

growth. Empirically, the above pricing kernel fails to explain i) the histori-

cally observed levels of returns, giving rise to the Equity Premium and Risk

Free Rate Puzzles (e.g. Mehra and Prescott (1985) and Weil (1989)), and ii)

the cross-sectional dispersion of returns between di¤erent classes of �nancial

assets (e.g. Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger

(1989), Campbell (1996), Cochrane (1996)).

Parker and Julliard (2005) argue that the covariance between contempo-

raneous consumption growth and asset returns understates the true consump-
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tion risk of the stock market if consumption is slow to respond to returns.

They propose measuring the risk of an asset by its ultimate risk to consump-

tion, de�ned as the covariance of its return and consumption growth over the

period of the return and many following periods. They show that while the

ultimate consumption risk would correctly measure the risk of an asset if the

C-CAPM were true, it may be a better measure of the true risk if consump-

tion responds with a lag to changes in wealth. The ultimate consumption

risk model implies the following SDF:

MS
t+1 = �1+S (Ct+1+S=Ct)

� Rf
t+1;t+1+S, (14)

where S denotes the number of periods over which the consumption risk

is measured and Rf
t+1;t+1+S is the risk free rate between periods t + 1 and

t + 1 + S. Note that the standard C-CAPM obtains when S = 0. Parker

and Julliard (2005) show that the speci�cation of the SDF in Equation (14),

unlike the one in Equation (13), explains a large fraction of the variation in

expected returns across assets for low levels of the risk aversion coe¢ cient.

The functional forms of the above two SDFs �t into our framework in

Equation (2). For the contemporaneous consumption risk model, � = ,

Mt = m (�; t) = (Ct+1=Ct)
�, and  t = �, a constant, for all t. For the

ultimate consumption risk model, � = , m (�; t) = (Ct+1+S=Ct)
�, and  t =

�1+SRf
t+1;t+1+S. Therefore, for each model, we construct entropy bounds for

the SDF and its components using quarterly data5 on per capita real personal

consumption expenditures on nondurable goods and returns on the 25 Fama-

French portfolios over the post war period 1947:1-2009:4 and compare them

with the HJ bound. We also obtain the non-parametrically extracted (called

"�ltered" hereafter) SDF and its components for  = 10. For the ultimate

consumption risk model, we set S = 11 quarters because the �t of the model

is the greatest at this value as shown in Parker and Julliard (2005).

Figure 1, Panel A plots the relative entropy (or KLIC) of the �ltered

and model-implied SDFs and their unobservable components as a function

of the risk aversion coe¢ cient  and the HJ , Q1,M1, and 	1 bounds for the

contemporaneous consumption risk model in Equation (13). The black curve

5See Appendix A.3 for a thorough data description.
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with circles shows the relative entropy of the model-implied SDF as a function

of the risk aversion coe¢ cient. For this model, the missing component of the

SDF,  t, is a constant hence it has zero relative entropy for all values of ,

as shown by the orange straight line with triangles. The blue curve with

"+" signs and the yellow curve with inverted triangles show the relative

entropy as a function of the risk aversion coe¢ cient of the �ltered SDF and

its missing component, respectively. The model satis�es the HJ bound for

very high values of  > 64, as shown by the green dotted-dashed vertical

line. It satis�es the Q1 bound for even higher values of  > 72, as shown

by the red dashed vertical line. The minimum value of  at which the M1

bound is satis�ed is given by the value corresponding to the intersection of

the black and blue curves, i.e. it is the minimum value of  for which the

relative entropy of the model-implied SDF exceeds that of the �ltered SDF.

The �gure shows that this corresponds to  = 107. Finally, the 	1 bound

identi�es the minimum value of  for which the missing component of the

model-implied SDF has a higher relative entropy than the missing component

of the �ltered SDF. Since the former has zero relative entropy while the latter

has a strictly positive value for all values of , the model fails to satisfy the

	1 bound for any value of .

Panel B shows that very similar results are obtained for the Q2, M2,

and 	2 bounds. The Q2 and M2 bounds are satis�ed for values of  at

least as large as 73 and 99, respectively, while the 	2 bound is not satis�ed

for any value of . Overall, as suggested by the theoretical predictions, the

Q-bounds are tighter than the HJ-bound, the M -bounds are tighter than

the Q-bounds, and the 	-bounds are tighter than the M -bounds.

Figure 2 presents analogous results to Figure 1 for the ultimate consump-

tion risk model in Equation (14). Panel A shows that the HJ , Q1, and

M1 bounds are satis�ed for  > 22, 23, and 46, respectively. These are

almost three times, more than three times, and more than two times smaller,

respectively, than the corresponding values in Figure 1, Panel A, for the

contemporaneous consumption risk model. As for the latter model, the 	1

bound is not satis�ed for any value of . Panel B shows that the Q2 and

M2 bounds are satis�ed for  > 24 and 47, respectively, while the 	2 bound
is not satis�ed for any value of .
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Figure 1: The �gure plots the KLIC of the �ltered and model-implied SDFs and their
unobservable components as a function of the risk aversion coe¢ cient and the entropy

bounds for the standard CCAPM.

It is important to notice that, even though the best �tting level for the

RRA coe¢ cient for the ultimate consumption risk model is smaller than 10

(̂ = 1:5), and at this value of the coe¢ cient the model is able to explain

about 60% of the cross-sectional variation across the 25 Fama-French portfo-

lios, all the bounds reject the model for low RRA, and the 	 bounds are not

satis�ed for any level of RRA. This stresses the power of the model evaluation

approach proposed.

Figure 3, Panel A plots the time series of the �ltered SDF and its compo-

nents estimated using Equation (6) for  = 10 for the contemporaneous con-

sumption risk model. The blue dotted line plots the component of the SDF

that is a parametric function of consumption growth, m (�; t) = (Ct=Ct�1)
�.

The red dashed line plots the �ltered unobservable component of the SDF,

 �t , estimated using Equation (6). The black solid line plots the �ltered SDF,

Mt = (Ct=Ct�1)
�  �t . The grey shaded areas represent NBER-dated reces-

sions while the green dashed vertical lines correspond to the major stock
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Figure 2: The �gure plots the KLIC of the �ltered and model-implied SDFs and their
unobservable components as a function of the risk aversion coe¢ cient and the entropy

bounds for the ultimate consumption risk CCAPM.

market crashes identi�ed in Mishkin and White (2002). The �gure reveals

two main points. First, the estimated SDF has a clear business cycle pattern,

but also shows signi�cant and sharp reactions to �nancial market crashes

that do not result in economy wide contractions. Second, the time series

of the SDF almost coincides with that of the unobservable component. In

fact, the correlation between the two time series is 0:996. The observable

consumption growth component of the SDF, on the other hand, has a cor-

relation of only 0:06 with the SDF. Therefore, most of the variation in the

SDF comes from variation in the unobservable component,  , and not from

the consumption growth component. In fact, the volatility of the SDF and

its unobservable component are very similar with the latter explaining about

99% of the volatility of the former, while the volatility of the consumption

growth component accounts for only about 1% of the volatility of the �ltered

SDF. Similar results are obtained in Panel B that plots the time series of the

�ltered SDF and its components estimated using Equation (4) for  = 10.

Finally, Figure 4, Panel A plots the time series of the �ltered SDF and
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Figure 3: The �gure plots the (demeaned) time series of the �ltered SDF and its com-
ponents for the standard CCAPM for =10. Shaded areas are NBER recession periods.
Vertical dashed lines are the stock market crashes identi�ed by Mishkin and White (2002).

its components estimated using Equation (6) for  = 10 for the ultimate

consumption risk model. The �gure shows that, as in the contemporane-

ous consumption risk model, the estimated SDF has a clear business cycle

pattern, but also shows signi�cant and sharp reactions to �nancial market

crashes that do not result in economy wide contractions. However, di¤erently

from the latter model, the time series of the consumption growth component

is much more volatile and more highly correlated with the SDF. The volatility

of the consumption growth component is 21:7%, more than 2:5 times higher

than that for the standard model. The correlation between the �ltered SDF

and its consumption growth component is 0:37, an order of magnitude bigger

than the correlation of 0:06 in the contemporaneous consumption risk model.

This explains the ability of the model to account for a much larger fraction

of the variation in expected returns across the 25 Fama-French portfolios for

low levels of the risk aversion coe¢ cient. In fact, the cross-sectional R2 of the

model is 54:1% (for  = 10), an order of magnitude higher than the value of
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Figure 4: The �gure plots the (demeaned) time series of the �ltered SDF and its com-
ponents for the ultimate consumption risk CCAPM for =10. Shaded areas are NBER
recession periods. Vertical dashed lines are the stock market crashes identi�ed by Mishkin

and White (2002).

5:2% for the standard model. However, the correlation between the ultimate

consumption risk SDF and its unobservable component is still very high at

0:92, showing that the model is missing important elements that would fur-

ther improve its ability to explain the cross-section of returns. Similar results

are obtained in Panel B that plots the time series of the �ltered SDF and its

components estimated using Equation (4) for  = 10.

Overall, the results show that our methodology provides useful diagnostics

for dynamic asset pricing models. Moreover, the very similar results obtained

using the two di¤erent types of relative entropy minimization in Equations

(4) and (6), suggest robustness of our approach.
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IV Application to More General Models of
Dynamic Economies

Our methodology provides useful diagnostics to assess the empirical plausi-

bility of a large class of consumption-based asset pricing models where the

SDF, Mt, can be factorized into an observable component consisting of a

parametric function of consumption, Ct, as in the standard time-separable

power utility model, and a potentially unobservable one,  t, that is model-

speci�c:

Mt = (Ct=Ct�1)
�  t.

In this section, we apply it to a set of "winners" asset pricing models, i.e.

frameworks that can successfully explain the Equity Premium and the Risk

Free Rate Puzzles with "reasonable" calibrations. In particular, we consider

the external habit formation models of Campbell and Cochrane (1999) and

Menzly, Santos, and Veronesi (2004), the long-run risks model of Bansal

and Yaron (2004), and the housing model of Piazzesi, Schneider, and Tuzel

(2007). We apply our methodology to assess the empirical plausibility of

these models in two ways. First, for each model we compute the values of

the power coe¢ cient, , at which the model-implied SDF satis�es the HJ , Q,

M , and 	 bounds. To simplify the exposition, we focus on one-dimensional

bounds as a function of the risk aversion parameter, , while �xing the other

parameters at the authors�preferred values. We show that, as suggested by

the theoretical predictions, the Q-bounds are generally tighter than the HJ-

bound, and the M -bounds are always tighter than both HJ and Q bounds.

Second, since our methodology identi�es the most likely time-series of the

SDF, we compare this time-series with the model-implied time-series of the

SDF for each model.

In the next Sub-Section we present the models considered. The reader

familiar with these models can go directly to Section IV.2, that reports the

empirical results, without loss of continuity. A detailed data description is

presented in Appendix A.3.
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IV.1 The Models Considered

IV.1.1 External Habit FormationModel: Campbell and Cochrane
(1999)

In this model, identical agents maximize power utility de�ned over the dif-

ference between consumption and a slow-moving habit or time-varying sub-

sistence level. The SDF is given by

Mt = � (Ct=Ct�1)
� (St=St�1)

� ,

where � is the subjective time discount factor,  is the curvature parame-

ter, St = Ct�Xt
Ct

denotes the surplus consumption ratio and Xt is the habit

component. Taking logs we have

lnMt = ln � � �ct � �st, (15)

where lower case letters denote the natural logarithms of the upper case

letters. Therefore, in this model, the expression for ln( t) is given by:

ln t = ln � � �st. (16)

Note that the missing component,  , depends on the surplus consumption

ratio, S, that is not observed. To obtain the time series of  , we extract the

surplus consumption ratio from observed consumption data as follows. In

this model, the aggregate consumption growth is assumed to follow an i:i:d:

process:

�ct = g + �t, �t � i:i:d:N
�
0; �2

�
.

The log surplus consumption ratio evolves as a heteroskedasticAR(1) process:

st = (1� �) s+ �st�1 + � (st�1) �t, (17)

where s is the steady state log surplus consumption ratio and

� (st) =

(
1
S

p
1� 2 (st � s), if st � smax

0; if st > smax
,
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smax = s+
1

2

�
1� S

2
�
, S = �

r


1� �
:

For each value of , we use the calibrated values of the model preference

parameters (�, �) in Campbell and Cochrane (1999), the sample mean (g)

and volatility (�) of the consumption growth process, and the innovations

in real consumption growth, b�t = �ct � g, to extract the time series of the

surplus consumption ratio using Equation (17) and obtain the time series of

the model-implied SDF and its missing component from Equations (15) and

(16).

IV.1.2 External Habit Formation Model: Menzly, Santos, and
Veronesi (2004)

In this model, the SDF and its missing component are analogous to those

in the Campbell and Cochrane (1999) model. The aggregate consumption

growth is also assumed to follow an i:i:d: process:

dct = �cdt+ �cdBt,

where �c is the mean consumption growth, �c > 0 is a scalar, and Bt is a

Brownian motion. The point of departure from the Campbell and Cochrane

(1999) framework is that the Menzly, Santos, and Veronesi (2004) model

assumes that the inverse surplus consumption ratio, Yt � 1
St
, follows a mean

reverting process that is perfectly negatively correlated with innovations in

consumption growth:

dYt = k
�
Y � Yt

�
dt� � (Yt � �) [dct � E (dct)] , (18)

where Y is the long run mean of the inverse surplus consumption ratio and

k controls the speed of mean reversion. For each value of , we use the

calibrated values of the model parameters
�
�, k, Y , �, �

�
in Menzly, Santos,

and Veronesi (2004), the sample values of �c and �c, and the innovations in

real consumption growth,ddBt =
[dct�E(dct)]

�c
, to extract the time series of the

surplus consumption ratio, and that allows us to compute the time series

of the model-implied SDF and its missing component from, respectively,

Equations (15) and (16).
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IV.1.3 Long-Run Risks Model: Bansal and Yaron (2004)

The Bansal and Yaron (2004) long-run risks model assumes that the repre-

sentative consumer has the version of Kreps and Porteus (1978) preferences

adopted by Epstein and Zin (1989) and Weil (1989) for which the SDF is

given by

lnMt+1 = � log � � �

�
�ct+1 + (� � 1)rc;t+1, (19)

where rc;t+1 is the unobservable log gross return on an asset that delivers

aggregate consumption as its dividend each period, � is the subjective time

discount factor, � is the elasticity of intertemporal substitution, � = 1�
1�1=� ,

and  is the risk aversion coe¢ cient.

The aggregate consumption and dividend growth rates, �ct+1 and �dt+1
respectively, are modeled as containing a small persistent expected growth

rate component, xt, that follows an AR(1) process with stochastic volatility,

and �uctuating variance, �2t , that evolves according to a homoscedastic linear

mean reverting process.

For the log-linearized version of the model, the log price-consumption

ratio, zt, the log price-dividend ratio, zm;t, and the log risk free rate, rf;t, are

a¢ ne functions of the state variables, xt and �2t . Therefore, Constantinides

and Ghosh (2010) argue that these a¢ ne functions may be inverted to express

the unobservable state variables, xt and �2t , in terms of the observables, zm;t
and rf;t. Following this approach, the pricing kernel in Equation (19) can be

expressed, in log-linearized form, as a function of observable variables

lnMt+1 = c1 � �ct+1 + c3 (rf;t+1 � �1rf;t) + c4 (zm;t+1 � �1zm;t) , (20)

where the parameters c = (c1; c3; c4)
0 are functions of the time-series and

preference parameters.

The model is calibrated at the monthly frequency. Since, due to data

availability, we assess the empirical plausibility of models at the quarterly

and annual frequencies, we obtain the pricing kernels at these frequencies by

aggregating the monthly kernels. For instance, the quarterly pricing kernel,

M q, is obtained as

lnM q
t = ��qct + ln t (21)
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where �qct denotes quarterly log-consumption di¤erence and ln t is given

by

ln t = 3c1 +
2X
i=0

[c3 (rf;t�i � �1rf;t�i�1) + c4 (zm;t�i � �1zm;t�i�1)] : (22)

For each value of , we use the calibrated parameter values from Bansal and

Yaron (2004) and the time series of the price-dividend ratio and risk free rate

to obtain the time series of the SDF and its  component in Equations (21)

and (22).

IV.1.4 Housing: Piazzesi, Schneider, and Tuzel (2007)

In this model, the pricing kernel is given by:

Mt = � (Ct=Ct�1)
� (At=At�1)

��1
��1 ,

where At is the expenditure share on non-housing consumption, �1 is the

intertemporal elasticity of substitution and � is the intratemporal elasticity

of substitution between housing services and non-housing consumption.

Taking logs we have:

lnMt = ln � � �ct +
�� 1
�� 1 �at. (23)

Therefore, in this model, the expression for ln t is given by:

ln t = ln � +
�� 1
�� 1 �at, (24)

For each value of , we use the calibrated values of the model parameters

(�, �) in Piazzesi, Schneider, and Tuzel (2007) to obtain the time series of

the model-implied SDF and its missing component from Equations (23) and

(24), respectively.

IV.2 Empirical Results

For our empirical analysis, we focus on two data samples: an annual data

sample starting at the onset of the Great Depression (1929-2009), and a
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quarterly data sample starting in the post World War II period (1947:Q1-

2009:Q4). A detailed data description is presented in Appendix A.3. Note

that the information bounds on the SDF and its unobservable component and

the extracted time series of the SDF depend on the set of test assets used in

their construction. Since the Euler equation holds for any traded asset as well

as any adapted portfolio of the assets, this gives an in�nitely large number

of moment restrictions. Nevertheless, econometric considerations necessitate

the choice of only a subset of assets to be used. As a consequence, in our

empirical analysis, we compute bounds, and extract the time series of the

SDF and its components, using a large variety of cross-sections of test assets,

and we show that the empirical �ndings are quite robust to the set of test

assets used.

To assess the empirical plausibility of the asset pricing models described

in the previous section using our methodology, we proceed in two ways.

First, for each model we compute the minimum values of the power coe¢ -

cient, , at which the model-implied SDF satis�es the HJ , Q, M , and 	

bounds. Table I reports the results at the quarterly frequency. Panels A, B,

C, D, E, and F report results when the set of assets used in the construc-

tion of the bounds include the market, 25 Fama-French, 10 size-sorted, 10

book-to-market-equity-sorted, 10 momentum-sorted, and 10 industry-sorted

portfolios, respectively. Consider �rst the results for the HJ , Q1, M1, and

	1 bounds. The �rst row in each panel presents the bounds for the Campbell

and Cochrane (1999) external habit model (henceforth referred to as CC).

Panel A shows that when the excess return on the market portfolio is used

in the construction of the bounds, the minimum value of  at which the

pricing kernel satis�es the HJ , Q1, M1, and 	1 bounds is 1:4 in all four

cases. However, when the set of test assets consists of the excess returns on

the 25 Fama-French portfolios, Panel B shows that the HJ , Q1, M1, and

	1 bounds are satis�ed for a minimum value of  = 7:3, 9:8, 9:9, and 13:9,

respectively. Therefore, as suggested by the theoretical predictions, the Q-

bound is tighter than the HJ-bound, and the M -bound is tighter than the

Q-bound. Note that in this model, the coe¢ cient of risk aversion is 
St
, where

St is the surplus consumption ratio. For  = 2, the calibrated value in CC,

the risk aversion varies over [20;1). Panel B reveals that the Q-bound is
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satis�ed for  > 9:8, implying that the risk aversion varies over [43:9;1), the
M -bound is satis�ed for  > 9:9, implying that the risk aversion varies over
[44:2;1), and the 	-bound is satis�ed for  > 13:9, implying that the risk
aversion varies over [52:5;1). A similar ordering of the bounds is obtained
when the set of assets consist of the 10 size-sorted, 10 book-to-market-equity-

sorted, 10 momentum-sorted, and 10 industry-sorted portfolios in Panels C,

D, E, and F , respectively. Also, very similar results are obtained for the Q2,

M2, and 	2 bounds pointing to the robustness of our methodology.

The second row in each panel presents the bounds for the Menzly, Santos,

and Veronesi (2004) external habit model (henceforth referred to as MSV ).

When the set of test assets consists of the excess return on the market port-

folio, the HJ , Q1, M1, and 	1 bounds are satis�ed for a minimum value of

 = 11:4, 11:2, 12:4, and 15:7, respectively. For the 25 Fama-French portfo-

lios, the bounds are much higher at 27:8, 31:7, 33:9, and 53:3, respectively.

Therefore, this model requires very high values of the local curvature of the

utility function to explain the equity premium and the cross-section of as-

set returns. In fact, this model requires much higher levels of risk aversion

compared to the CC model for each of the set of test assets. As in the case

of the CC model, very similar results are obtained for the Q2, M2, and 	2

bounds.

The third row in each panel presents the bounds for the Bansal and Yaron

(2004) long run risks model (henceforth referred to as BY ). Panel A shows

that when the excess return on the market portfolio is used in the construc-

tion of the bounds, the minimum value of  at which the pricing kernel

satis�es the HJ , Q1, M1, and 	1 bounds is 3:0 in all four cases. When the

set of test assets consists of the excess returns on the 25 Fama-French port-

folios, Panel B shows that the HJ bound is satis�ed for a minimum value of

 = 4:0 while the Q1, M1, and 	1 bounds are satis�ed for a minimum value

of  = 5:0. Similar results are obtained for the other sets of portfolios and

for the Q2, M2, and 	2 bounds. In this model,  represents the coe¢ cient

of relative risk aversion. Therefore, the results in Panels A � F reveal that

the model-implied pricing kernel satis�es the HJ , Q, M , and 	 bounds for

reasonable values of the risk aversion coe¢ cient for all sets of test assets.

Finally, the fourth row in each panel presents the bounds for the Pi-
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Table I: Bounds for RRA, Quarterly Data 1947:Q2-2009:Q4
HJ-Bound Q1=Q2-Bounds M1=M2-Bounds 	1=	2-Bounds

Panel A: Market Portfolio
CC 1:4 1:4=1:4 1:4=1:4 1:4=1:4
MSV 11:4 11:2=11:5 12:4=12:6 15:7=16:2
BY 3:0 3:0=3:0 3:0=3:0 3:0=3:0
PST 19:2 19:2=19:4 24:4=24:3 16:2=16:5

Panel B: FF 25 Portfolios
CC 7:3 9:8=9:8 9:9=9:9 13:9=13:9
MSV 27:8 31:7=32:1 33:9=33:9 53:3=53:9
BY 4:0 5:0=5:0 5:0=5:0 5:0=5:0
PST 64:3 75:0=74:5 87:2=83:8 70:9=72:5

Panel C: 10 Size Portfolios
CC 1:8 1:8=1:9 1:8=1:9 2:0=2:1
MSV 13:6 13:3=13:7 14:6=15:1 18:5=19:2
BY 3:0 4:0=4:0 4:0=4:0 4:0=4:0
PST 27:8 28:0=28:4 34:7=34:7 23:9=24:5

Panel D: 10 BM Portfolios
CC 2:8 3:3=3:2 3:4=3:2 3:8=3:7
MSV 17:0 18:2=18:1 19:9=19:7 26:1=26:5
BY 4:0 4:0=4:0 4:0=4:0 4:0=4:0
PST 33:3 36:0=35:4 43:5=41:5 31:2=31:3

Panel E: 10 Momentum Portfolios
CC 5:4 6:8=6:8 6:9=6:9 8:6=8:7
MSV 24:0 26:1=26:7 29:1=29:1 39:1=40:9
BY 4:0 5:0=4:0 5:0=4:0 5:0=4:0
PST 51:7 57:3=57:2 71:7=72:0 48:1=50:3

Panel F: 10 Industry Portfolios
CC 3:0 3:0=3:3 3:1=3:3 3:5=3:8
MSV 17:6 17:3=18:2 19:1=20:0 26:4=27:6
BY 4:0 4:0=4:0 4:0=4:0 4:0=4:0
PST 36:2 37:0=37:9 46:7=47:1 35:5=36:6

The table reports the values of the utility curvature parameter at which the model-implied

SDF satis�es the HJ, Q, M, and 	 bounds using quarterly data over 1947:2-2009:4 and a

di¤erent set of portfolios in each Panel. The acronyms CC, MSV , BY and PST , denote

respectively the models of Campbell and Cochrane (1999), Menzly, Santos, and Veronesi

(2004), Bansal and Yaron (2004) and Piazzesi, Schneider, and Tuzel (2007)
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azzesi, Schneider, and Tuzel (2007) housing model (henceforth referred to as

PST ). When the set of test assets consists of the excess return on the mar-

ket portfolio, the HJ , Q1 (Q2), M1 (M2), and 	1 (	2) bounds are satis�ed

for a minimum value of  = 19:2, 19:2 (19:4), 24:4 (24:3), and 16:2 (16:5),

respectively. For the 25 Fama-French portfolios, the bounds are much higher

at 64:3, 75:0 (74:5), 87:2 (83:8), and 70:9 (72:5), respectively. Therefore, this

model requires very high levels of risk aversion to explain the equity premium

and the cross-section of asset returns.

Overall, Table I demonstrates that, in line with the theoretical under-

pinnings of the various bounds, the Q-bound is generally tighter than the

HJ-bound because it naturally exploits the restriction that the SDF is a

strictly positive random variable. TheM -bound is tighter than the Q-bound

because it formally takes into account the ability of the SDF to price assets.

This relative ordering holds for a variety of di¤erent dynamic asset pricing

models. Furthermore, the results suggest that while the external habit mod-

els of CC and MSV, as well as the housing model of PST require high levels

of risk aversion to satisfy the bounds, the long run risks model of BY satis�es

the bounds for reasonable levels of risk aversion for all the sets of test assets.

Table II reports analogous bounds as in Table I at the annual frequency.

The table shows that, at the annual frequency, the HJ , Q,M , and 	 bounds

are satis�ed for much smaller values of the utility curvature parameter, ,

for each of the models considered and for each set of test assets. There is

also less dispersion between the bounds compared to the quarterly data in

Table I. However, in line with the theoretical predictions, the Q-bound is

generally tighter than the HJ-bound, and the M -bound is tighter than the

Q-bound.

Our second approach to assessing the empirical plausibility of these mod-

els is based on the observation that our methodology identi�es the most

likely time-series of the SDF, which we call the �ltered SDF. We compare

the �ltered SDF with the model-implied SDF for each model. Note that the

�ltered SDF and its missing component depend on the local curvature of the

utility function, . Therefore, for each model, we �x  at its calibrated value

and extract the time series of the SDF and its components.

Table III reports the results at the quarterly frequency. In order to ex-
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Table II: Bounds for RRA, Annual Data 1930-2009
HJ-Bound Q1=Q2-Bounds M1=M2-Bounds 	1=	2-Bounds

Panel A: Market Portfolio
CC 0:1 0:1=0:1 0:1=0:1 0:1=0:1
MSV 0:1 0:1=0:1 0:1=0:1 0:1=0:1
BY 4:0 4:0=4:0 4:0=4:0 4:0=4:0
PST 8:6 9:9=9:5 14:9=15:0 6:8=6:8

Panel B: FF 6 Portfolios
CC 0:3 1:0=0:6 1:0=0:6 1:2=0:7
MSV 0:2 0:2=0:2 0:2=0:2 0:2=0:2
BY 5:0 5:0=5:0 5:0=5:0 5:0=5:0
PST 12:4 16:8=15:2 20:5=17:7 13:2=12:0

Panel C: 10 Size Portfolios
CC 0:1 0:5=0:3 0:5=0:3 0:5=0:3
MSV 0:2 0:2=0:2 0:2=0:2 0:2=0:2
BY 4:0 4:0=4:0 4:0=4:0 4:0=4:0
PST 10:4 13:6=12:2 15:7=13:7 11:5=10:3

Panel D: 10 BM Portfolios
CC 0:2 0:8=0:5 0:8=0:5 0:9=0:5
MSV 0:2 0:2=0:2 0:2=0:2 0:2=0:2
BY 4:0 5:0=5:0 5:0=5:0 5:0=5:0
PST 11:2 15:8=13:8 17:7=15:8 12:7=11:2

Panel E: 10 Momentum Portfolios
CC 0:4 1:4=0:9 1:4=0:9 1:5=1:0
MSV 0:2 0:2=0:2 0:2=0:2 0:2=0:2
BY 5:0 5:0=5:0 5:0=5:0 5:0=5:0
PST 14:3 18:3=16:9 21:1=18:5 13:9=12:9

Panel F: 10 Industry Portfolios
CC 0:4 1:7=1:0 1:7=1:0 2:2=1:2
MSV 0:2 0:2=0:2 0:2=0:2 0:2=0:2
BY 5:0 5:0=5:0 5:0=5:0 5:0=5:0
PST 14:1 19:7=17:4 22:0=18:9 16:3=14:2

The table reports the values of the utility curvature parameter at which the model-implied

SDF satis�es the HJ, Q, M, and 	 bounds using annual data over 1930-2009 and a dif-

ferent set of portfolios in each Panel. The acronyms CC, MSV , BY and PST , denote

respectively the models of Campbell and Cochrane (1999), Menzly, Santos, and Veronesi

(2004), Bansal and Yaron (2004) and Piazzesi, Schneider, and Tuzel (2007)
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amine the models�ability to explain the cross-section of asset returns, we do

not consider the market return on its own but focus instead on multiple test

assets. Panels A, B, C, D, and E report results for the following sets of test

assets: 25 Fama-French, 10 size-sorted, 10 book-to-market-equity-sorted, 10

momentum-sorted, and 10 industry-sorted portfolios, respectively. The �rst

column reports the correlation between the �ltered time series of the miss-

ing component, f �tg
T
t=1, of the SDF and the corresponding model-implied

time series, f mt g
T
t=1. The second column shows the correlation between the

�ltered SDF, fM�
t = mt 

�
tg
T
t=1, where mt = (Ct=Ct�1)

�, and the model-

implied SDF, fMm
t = mt 

m
t g

T
t=1.

Consider �rst the results for the CC external habit model that are pre-

sented in the �rst row of each panel. For this model, the utility curvature

parameter is set to the calibrated value of  = 2. Panel A, Column 1 shows

that when the 25 FF portfolios are used in the extraction of  �, the cor-

relation between the �ltered and model-implied  is only 0:02 when  � is

estimated using Equation (6). Column 2 shows that the correlation between

the �ltered and model-implied SDFs is marginally higher at 0:05. When  �

is estimated using Equation (4), the correlations are very similar at 0:06 and

0:08, respectively. Panels B � E show that the correlations between the �l-

tered and model-implied SDFs and their missing components remain small

for all the other sets of portfolios.

The second row in each panel presents the results for the MSV external

habit model. In this case,  is set equal to 1 which is the calibrated value

in the model. Row 2 in each panel shows that the results for the MSV

model are very similar to those for the CC model. When  � is estimated

using Equation (6), the correlations between the �ltered and model-implied

missing components of the SDFs are small varying from 0:00 for the 25 FF

portfolios to 0:20 for the size-sorted portfolios. The correlations between the

�ltered and model-implied SDFs are marginally higher varying from 0:02 for

the 25 FF portfolios to 0:24 for the size-sorted portfolios. Similar results are

obtained when  � is estimated using Equation (4).

The third row in each panel presents the results for the BY long run risks

model. As shown in Equation (22), in the long run risks model the  com-

ponent of the SDF is an exponentially a¢ ne function of the market-wide log
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Table III: Correlation of Filtered and Model SDFs, 1947:Q2-2009:Q4
Correlation of �ltered
and model SDF

Cross-sectional R2

� (ln �t ; ln 
m
t ) � (lnM�

t ; lnM
m
t )

no
intercept

free
intercept

Panel A: Fama-French 25 Portfolios
CC 0:02=0:06 0:05=0:08 �0:17 0:17
MSV 0:00=0:04 0:02=0:06 �0:64 0:0003
BY rest:

(unrest:)
0:10
(0:27)

/0:11
(0:29)

0:11
(0:30)

/0:12
(0:31)

�1:01
(�0:48)

0:03
(0:02)

PST �0:04=� 0:07 0:06=0:01 �1:79 0:05

Panel B: 10 Size-Sorted Portfolios
CC 0:19=0:17 0:25=0:23 �0:13 0:83
MSV 0:20=0:22 0:24=0:25 0:73 0:88
BY rest:

(unrest:)
0:38
(0:80)

/0:38
(0:82)

0:37
(0:85)

/0:38
(0:86)

0:71
(0:89)

0:84
(0:94)

PST �0:22=� 0:20 �0:01=� 0:02 �0:56 0:53

Panel C: 10 BM-Sorted Portfolios
CC 0:16=0:15 0:20=0:20 0:27 0:60
MSV 0:14=0:16 0:18=0:19 0:06 0:24
BY rest:

(unrest:)
0:34
(0:58)

/0:33
(0:65)

0:34
(0:65)

/0:34
(0:60)

�0:50
(�0:03)

0:07
(0:02)

PST �0:08=� 0:09 0:09=0:07 �2:31 0:27

Panel D: 10 Momentum-Sorted Portfolios
CC 0:08=0:06 0:12=0:10 �0:64 0:07
MSV 0:06=0:08 0:10=0:12 �0:56 0:15
BY rest:

(unrest:)
0:12
(0:44)

/0:11
(0:44)

0:13
(0:50)

/0:12
(0:48)

�1:06
(�0:40)

0:60
(0:29)

PST �0:12=� 0:14 0:07=0:02 �0:75 0:36

Panel E: 10 Industry-Sorted Portfolios
CC 0:05=0:04 0:11=0:09 �11:1 0:003
MSV 0:06=0:11 0:10=0:12 �5:39 0:08
BY rest:

(unrest:)
0:23
(0:55)

/0:27
(0:58)

0:25
(0:61)

/0:28
(0:62)

�1:58
(�1:17)

0:01
(0:11)

PST 0:13=0:12 0:19=0:17 �0:69 0:01

The table reports the correlation between the extracted and the model-implied stochastic

discount factors and their missing components using quarterly data over 1947:2-2009:4

and a di¤erent set of portfolios in each Panel. The acronyms CC, MSV , BY and PST ,

denote respectively the models of Campbell and Cochrane (1999), Menzly, Santos, and

Veronesi (2004), Bansal and Yaron (2004) and Piazzesi, Schneider, and Tuzel (2007)
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price-dividend ratio and its lag, and the log risk free rate and its lag. But

the parameters of the a¢ ne relation are functions of the underlying model

parameters, some of which are not �deep�preference parameters but instead

characterizations of the data generating processes. Since the parameters of

the data generating processes could be in principle di¤erent in di¤erent sam-

ples, we present two types of results for the SDF of the BY model. First,

we present results where the restrictions on the vector of parameters of the

a¢ ne relation implied by the BY calibration are imposed (Row 3). Second,

we provide results where the parameter vector is treated as free (in parenthe-

ses in Row 3). The parameter  is set equal to the BY calibrated value of 10.

Row 3, Panel A, Column 1 shows that when the 25 FF portfolios are used

in �ltering the SDF, the correlation between the �ltered and model-implied

missing components of the SDFs is 0:10 (0:11) when the restrictions are im-

posed on the coe¢ cients vector c and  � is estimated using Equation (6)

(Equation (4)). This is an order of magnitude higher than the values ob-

tained for the CC and MSV models in Rows 1 and 2, respectively. When

the coe¢ cients c are treated as free parameters, the correlation more than

doubles from 0:10 (0:11) to 0:27 (0:29). Column 2 shows that the correlation

between the �ltered and model-implied SDFs is 0:11 (0:12) in the presence

of the restrictions and is more than two times higher at 0:30 (0:31) when the

restrictions are not imposed.

Similar results are obtained in Panels B-E for the other sets of test assets.

The correlation between the �ltered and model-implied missing components

of the SDF varies from 0:12 (0:11) for the 10 momentum-sorted portfolios to

0:38 (0:38) for the size-sorted portfolios for the restricted speci�cation. These

are often an order of magnitude higher than the correlations obtained for the

CC and MSV models. For the unrestricted speci�cation, the correlations

more than double, varying from 0:44 (0:44) for the 10 momentum-sorted

portfolios to 0:80 (0:82) for the size-sorted portfolios. These results show

that the SDF implied by the long run risks model correlates much more

strongly with the non-parametrically extracted most likely time series of the

SDF than the external habit models of CC and MSV.

The fourth row in each panel presents the results for the PST housing

model. In this case,  is set equal to 16 which is the calibrated value in the
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original paper. Column 1 shows that the correlations between the �ltered

and model-implied missing components of the SDFs are very small and often

have the wrong sign, varying from �0:22 (�0:20) for the size-sorted port-
folios to 0:13 (0:12) for the industry-sorted portfolios when  � is estimated

using Equation (6) (Equation (4)). The correlations between the �ltered and

model-implied SDFs are marginally higher varying from �0:01 (�0:02) for
the size-sorted portfolios to 0:19 (0:17) for the industry-sorted portfolios.

Table IV reports results analogous to those in Table III at the annual

frequency. The results are largely similar to those in Table III. The table

shows that, at the annual frequency, the SDF implied by the long run risks

model correlates even more strongly with the �ltered SDF relative to the

external habit and housing models.

The last two columns of Tables III and IV report the cross-sectional R2�s

implied by the model-speci�c SDFs for the di¤erent sets of test assets. The

cross-sectional R2 are obtained by performing a cross-sectional regression of

the historical average returns on the model-implied expected returns. Col-

umn 3 reports the cross-sectional R2 when there is no intercept in the re-

gression while Column 4 presents results when an intercept is included. The

results reveal that the cross-sectional R2 often varies wildly for the same

model, and often take on large negative values when an intercept is not al-

lowed in the cross-sectional regression, when evaluated using di¤erent sets of

assets. This is in stark contrast with the results based on entropy bounds in

Tables I and II, that tend instead to give consistent results for each model

across di¤erent sets of assets (even though all models seem to perform better,

along this dimension, at the annual frequency).

A notable exception to the poor cross-sectional performance of the models

considered is that, at the annual frequency, the BY model, unlike the CC,

MSV, and PST models, has stable cross-sectional R2 for the size and BM-

sorted portfolios both in the presence and absence of an intercept.

Overall, Tables III and IV make two main points. First, they demon-

strate the robustness of our estimation methodology �very similar results

are obtained using Equations (6) and (4). Second, they show that the long

run risks model implies an SDF that is the most highly correlated with the

�ltered SDF �the most likely SDF given the data.
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Table IV: Correlations of Filtered and Model SDFs, 1930-2009
Correlation of �ltered
and model SDF

Cross-sectional R2

� (ln �t ; ln 
m
t ) � (lnM�

t ; lnM
m
t )

no
intercept

free
intercept

Panel A: Fama-French 6 Portfolios
CC 0:15=0:16 0:23=0:22 �0:75 0:03
MSV �0:04=� 0:07 -0:04=-0:07 �0:98 0:21
BY rest:

(unrest:)
0:33
(0:37)

/0:36
(0:42)

0:24
(0:62)

/0:29
(0:56)

0:35
(0:50)

0:35
(0:66)

PST �0:04=� 0:01 -0:01=-0:05 �0:79 0:21

Panel B: 10 Size-Sorted Portfolios
CC �0:03=� 0:03 0:07=0:06 �3:88 0:17
MSV 0:06=� 0:01 0:06=� 0:01 0:08 0:85
BY rest:

(unrest:)
0:47
(0:59)

/0:50
(0:61)

0:36
(0:68)

/0:40
(0:68)

0:86
(0:80)

0:96
(0:95)

PST 0:17=0:13 -0:01=-0:08 0:11 0:91

Panel C: 10 BM-Sorted Portfolios
CC 0:07=0:03 0:16=0:10 �3:12 0:01
MSV �0:08=� 0:06 -0:07=-0:06 �2:44 0:05
BY rest:

(unrest:)
0:52
(0:52)

/0:53
(0:54)

0:41
(0:61)

/0:47
(0:53)

0:40
(0:73)

0:47
(0:82)

PST 0:22=0:34 0:08=0:08 0:18 0:57

Panel D: 10 Momentum-Sorted Portfolios
CC 0:26=0:27 0:34=0:33 0:50 0:78
MSV 0:09=0:07 0:09=0:08 �1:51 0:40
BY rest:

(unrest:)
0:41
(0:48)

/0:50
(0:53)

0:31
(0:68)

/0:41
(0:66)

�0:33
(�0:14)

0:31
(0:08)

PST �0:07=� 0:06 -0:03=-0:06 �0:45 0:01

Panel E: 10 Industry-Sorted Portfolios
CC �0:04=� 0:04 0:03=0:003 �4:61 0:22
MSV �0:04=� 0:10 -0:04=-0:10 �4:72 0:24
BY rest:

(unrest:)
0:26
(0:31)

/0:39
(0:41)

0:20
(0:37)

/0:34
(0:37)

�1:24
(�0:30)

0:17
(0:25)

PST 0:12=0:12 -0:07=-0:20 �7:15 0:56

The table reports the correlation between the extracted and the model-implied stochastic

discount factors and their missing components using annual data over 1930-2009 and a

di¤erent set of portfolios in each Panel.The acronyms CC, MSV , BY and PST , denote

respectively the models of Campbell and Cochrane (1999), Menzly, Santos, and Veronesi

(2004), Bansal and Yaron (2004) and Piazzesi, Schneider, and Tuzel (2007)

35



Tables V and VI report the correlations between the �ltered and model-

implied SDFs and the three Fama-French (FF) factors at the quarterly and

annual frequencies, respectively. Column 1 presents the correlation between

the model-implied SDF and the three FF factors. This is computed by per-

forming a linear regression of the model-implied time series of the SDF,

fMm
t g

T
t=1, on the three FF factors and computing the correlation between

Mm and the �tted value from the regression. Similarly, Columns 2 and 3

present the correlation of the �ltered SDF and its missing component with

the three FF factors, respectively. These columns provide interesting results

because the FF factors have been very successful at explaining the cross-

sectional variation in returns between di¤erent classes of �nancial assets.

Consider �rst Table V. Row 1 of each panel shows that for the CC model,

the correlation between the model-implied SDF and the three FF factors is

small at 0:18. Panel A, Row 1, Column 2 shows that, while the model-implied

SDF correlates poorly with the FF factors, the �ltered SDF correlates very

highly with the factors having a correlation coe¢ cient of 0:54 and 0:59 when

 � is estimated using Equations (6) and (4), respectively. This is reassuring

for our methodology because, as is well known, the FF factors are successful

in explaining a large fraction of the cross-sectional dispersion is asset returns.

Moreover, Column 3 reveals that this high correlation is due almost entirely

to the missing component,  �, and not m � the correlation between the

�ltered SDF and the FF factors is the same as that between the �ltered

missing component of the SDF and the FF factors. The results in Panels

B�E are largely similar �the �ltered SDF and its missing component have
high correlation with the FF factors for all the di¤erent sets of test assets,

varying from 0:52 (0:52) for the momentum-sorted portfolios to 0:87 (0:89)

for the size-sorted portfolios, and the high correlation is almost entirely due

to the missing component  �.

Row 2 in each panel shows that for the MSV model, the correlation

between the model-implied SDF and the FF factors is small at 0:21. Also, the

�ltered SDF correlates strongly with the FF factors and this is almost entirely

driven by the missing component of the SDF and not the consumption growth

component.

Row 3 in each panel shows that for the BY model, the correlation be-
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Table V: Correlations with FF3, 1947:Q2-2009:Q4
Correlation With FF3

lnMm
t lnM�

t ln �t
Panel A: Fama-French 25 Portfolios

CC 0:18 0:54=0:59 0:54=0:59
MSV 0:21 0:54=0:59 0:54=0:59
BY rest:

(unrest:)
0:45
(0:87)

0:54
(0:54)

/0:58
(0:58)

0:52
(0:53)

/0:57
(0:57)

PST 0:07 0:49=0:52 0:45=0:50

Panel B: 10 Size-Sorted Portfolios
CC 0:18 0:88=0:89 0:87=0:89
MSV 0:21 0:87=0:89 0:87=0:89
BY rest:

(unrest:)
0:45
(0:90)

0:89
(0:89)

/0:90
(0:90)

0:86
(0:86)

/0:88
(0:88)

PST 0:07 0:81=0:82 0:75=0:76

Panel C: 10 BM-Sorted Portfolios
CC 0:18 0:83=0:86 0:83=0:86
MSV 0:21 0:83=0:86 0:83=0:86
BY rest:

(unrest:)
0:45
(0:91)

0:84
(0:84)

/0:86
(0:86)

0:81
(0:81)

/0:85
(0:85)

PST 0:07 0:87=0:89 0:84=0:87

Panel D: 10 Momentum-Sorted Portfolios
CC 0:18 0:52=0:52 0:51=0:51
MSV 0:21 0:52=0:52 0:51=0:51
BY rest:

(unrest:)
0:45
(0:92)

0:55
(0:55)

/0:53
(0:53)

0:50
(0:50)

/0:50
(0:50)

PST 0:07 0:53=0:51 0:43=0:43

Panel E: 10 Industry-Sorted Portfolios
CC 0:18 0:65=0:69 0:64=0:68
MSV 0:21 0:65=0:69 0:65=0:68
BY rest:

(unrest:)
0:45
(0:88)

0:66
(0:66)

/0:69
(0:68)

0:62
(0:62)

/0:65
(0:65)

PST 0:07 0:53=0:55 0:47=0:51

The table reports the correlations between the 3 Fama-French factors and the model-

implied SDF, the �ltered SDF, and the missing component of the �ltered SDF using

quarterly data over 1947:2-2009:4 and a di¤erent set of portfolios in each Panel. The

acronyms CC, MSV , BY and PST , denote respectively the models of Campbell and

Cochrane (1999), Menzly, Santos, and Veronesi (2004), Bansal and Yaron (2004) and

Piazzesi, Schneider, and Tuzel (2007)
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Table VI: Correlations with FF3, 1930-2009
Correlation With FF3

lnMm
t lnM�

t ln �t
Panel A: Fama-French 6 Portfolios

CC 0:19 0:73=0:78 0:72=0:77
MSV 0:12 0:73=0:78 0:72=0:77
BY rest:

(unrest:)
0:73
(0:81)

0:77
(0:78)

/0:77
(0:78)

0:68
(0:68)

/0:72
(0:72)

PST 0:35 0:81=0:76 0:65=0:67

Panel B: 10 Size-Sorted Portfolios
CC 0:19 0:82=0:85 0:82=0:85
MSV 0:12 0:83=0:86 0:83=0:86
BY rest:

(unrest:)
0:73
(0:84)

0:77
(0:78)

/0:77
(0:79)

0:71
(0:71)

/0:73
(0:74)

PST 0:35 0:75=0:72 0:64=0:66

Panel C: 10 BM-Sorted Portfolios
CC 0:19 0:71=0:75 0:72=0:74
MSV 0:12 0:72=0:76 0:72=0:75
BY rest:

(unrest:)
0:73
(0:83)

0:67
(0:67)

/0:60
(0:60)

0:59
(0:59)

/0:58
(0:58)

PST 0:35 0:64=0:23 0:50=0:33

Panel D: 10 Momentum-Sorted Portfolios
CC 0:19 0:55=0:63 0:58=0:61
MSV 0:12 0:55=0:62 0:57=0:61
BY rest:

(unrest:)
0:73
(0:85)

0:69
(0:73)

/0:69
(0:73)

0:51
(0:60)

/0:57
(0:64)

PST 0:35 0:73=0:70 0:50=0:55

Panel E: 10 Industry-Sorted Portfolios
CC 0:19 0:49=0:53 0:49=0:53
MSV 0:12 0:50=0:54 0:50=0:55
BY rest:

(unrest:)
0:73
(0:86)

0:42
(0:42)

/0:39
(0:38)

0:38
(0:36)

/0:42
(0:40)

PST 0:35 0:41=0:27 0:34=0:37

The table reports the correlations between the 3 Fama-French factors and the model-

implied SDF, the �ltered SDF, and the missing component of the �ltered SDF using annual

data over 1930-2009 and a di¤erent set of portfolios in each Panel.The acronyms CC,

MSV , BY and PST , denote respectively the models of Campbell and Cochrane (1999),

Menzly, Santos, and Veronesi (2004), Bansal and Yaron (2004) and Piazzesi, Schneider,

and Tuzel (2007)
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tween the model-implied SDF and the FF factors is 0:45 in the presence of

the restrictions. This is more than double the correlations obtained for the

CC and MSV models. Moreover, the correlation further doubles when the

restrictions are not imposed varying from 0:87� 0:92.
Finally, row 4 in each panel shows that for the PST model, the correlation

between the model-implied SDF and the FF factors is very small at 0:07. The

�ltered SDF, on the other hand, correlates strongly with the FF factors which

is almost entirely driven by the missing component of the SDF and not the

consumption growth component.

Table VI reveals that very similar results are obtained at the annual

frequency. Tables V and VI demonstrate the robustness of our estimation

methodology �the �ltered time series of the SDF and its missing component

is quite robust to the choice of the utility curvature parameter  and the

choice of the set of assets.

One thing to notice in Tables V and VI is that our �ltered SDF and  �

are consistently highly correlated with the FF factors independently from

the sample frequency and the cross-section of assets used for the estimation.

This �nding has two important implications. First, it suggests that our esti-

mation approach successfully identi�es the unobserved pricing kernel, since

there is substantial empirical evidence that the FF factors do proxy for asset

risk sources. Second, our �nding provides a rationalization of the empirical

success of the FF factors in pricing asset returns.

V Conclusion

In this paper, we propose an information-theoretic approach to assess the

empirical plausibility of candidate SDFs for a large class of dynamic asset

pricing models. The models we consider are characterized by having a pricing

kernel that can be factorized into an observable component, consisting in

general of a parametric function of consumption growth, and a potentially

unobservable one that is model-speci�c.

Based on this decomposition of the pricing kernel, we provide three major

contributions. First, we construct a new set of entropy bounds that build

upon and improve the ones suggested in the previous literature in that a)
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they naturally impose the non negativity of the pricing kernel, b) they are

generally tighter and have higher information content, and c) allow to utilize

the information contained in a large cross-section of asset returns.

Second, using a relative entropy minimization approach, we also show

how to extract non-parametrically the time series of both the SDF and its

unobservable component. Given the data, this methodology identi�es the

most likely �in the information theoretic sense �time series of the SDF and

its unobservable component. Applying this methodology to the data we �nd

that the estimated SDF has a clear business cycle pattern, but also shows

signi�cant and sharp reactions to �nancial market crashes that do not result

in economy wide contractions. Moreover, we �nd that the non-parametrically

extracted SDF, independently from the set of assets used for its construction,

is highly correlated with the risk factors proposed in Fama and French (1993).

This provides a rationalization of the empirical success of the Fama French

factors in pricing asset returns, and suggests that our �ltering procedure does

successfully identify the unobserved component of the SDF.

Third, applying the methodology developed in this paper to a large class

of dynamic asset pricing models, we �nd that the external habit models of

Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004) and

the housing model of Piazzesi, Schneider, and Tuzel (2007) require very high

levels of risk aversion to satisfy the bounds while the long run risks model

of Bansal and Yaron (2004) satis�es the bounds for reasonable levels of risk

aversion. These results are robust to the choice of test assets used in the

construction of the bounds as well as the frequency of the data. Moreover,

comparing the non-parametrically extracted SDF with those implied by the

above asset pricing models, we again �nd substantial empirical support for

the long run risks framework.

The methodology developed in this paper is considerably general and may

be applied to any model that delivers well-de�ned Euler equations like models

with heterogenous agents, limited stock market participation, and fragile

beliefs, as long as the SDF can be factorized into an observable component

and a potentially unobservable one.
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A Appendix

A.1 Maximum Likelihood Analogy

The approaches in Equations (4) and (6) deliver maximum likelihood esti-
mates of the  t component of the pricing kernel. To formally see the analogy
between our approach and an MLE procedure, let�s consider the two entropy
minimization problems separately.
First, note that normalizing f tg

T
t=1 to lie in the unit simplex �

T�1

�T�1 �
(
( 1,  2,...,  T ) :  t > 0,

TX
t=1

 t = 1

)
,

the solution of the estimation problem in Equation (6) also solves the follow-
ing optimization

n
 ̂t

oT
t=1
� argmax 1

T

TX
t=1

ln t, s.t. f tg
T
t=1 2 �T�1;

TX
t=1

m (�; t)Re
t t = 0.

But the objective function above is simply the non parametric log likelihood
(aka empirical likelihood) of Owen (1988, 1991, 2001) maximized under the
asset pricing restrictions for a vector of asset returns.
Second, to see why the estimation problem in Equation (4) also delivers

a maximum likelihood estimate of the  t component, consider the following
procedure for constructing (up to a scale) the series f tg

T
t=1. First, given

an integer N >> 0, distribute to the various points in time t = 1; :::; T , at
random and with equal probabilities, the value 1=N in N independent draws.

That is, draw a series of values (probability weights)
n
~ 
oT
t=1

given by

~ t �
nt
N

where nt measures the number of times that the value 1=N has been assigned

to time t: Second, check whether the drawn series
n
~ 
oT
t=1
satis�es the pricing

restriction
PT

t=1m (�; t)R
e
t
~ t = 0. If it does, use this series as the estimator

of f tg
T
t=1 ;and if it doesn�t draw another series. Obviously, a more e¢ cient

way of �nding an estimate for  t would be to choose the most likely outcome
of the above procedure. Noticing that the distribution of the ~ t is, by con-
struction, a multinomial distribution with support given by the data sample,
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we have that the likelihood of any particular sequence
n
~ t

oT
t=1
is

L

�n
~ t

oT
t=1

�
=

N !

n1!n2!:::nT !
� T�N =

N !

N ~ 1!N ~ 2!:::N ~ T !
� T�N .

Therefore, the most likely value of
n
~ t

oT
t=1

maximizes the log likelihood

lnL

�n
~ t

oT
t=1

�
_ 1

N

 
lnN !�

TX
t=1

ln
�
N ~ t!

�!
:

Since the above procedure of assigning probability weights will become more
and more accurate as N grows bigger, we would ideally like to have N !1.
But in this case one can show6 that

lim
N!1

lnL

�n
~ t

oT
t=1

�
= �

TX
t=1

~ t ln
~ t.

Therefore, taking into account the constraint for the pricing kernel, the max-
imum likelihood estimate (MLE) of the time series of  t would solven
 ̂t

oT
t=1
� argmax�

TX
t=1

~ t ln ~ t; s.t.
ne toT

t=1
2 �T ;

TX
t=1

m (�; t)Re
t
e t = 0:

But the solution of the above MLE problem is also the solution of the relative
entropy minimization problem in Equation (4) (see e.g. Csiszar (1975)). That
is, the KLIC minimization is equivalent to maximizing the likelihood in an
unbiased procedure for �nding the  t component of the pricing kernel.

A.2 Additional Bounds and Derivations

De�nition 3 (Canonical HJ-bound) for each E [Mt] = �M , the Hansen
and Jagannathan (1991) minimum variance SDF is

M�
t

�
�M
�
� argmin
fMt( �M)gT

t=1

q
V ar

�
Mt

�
�M
��
s.t. 0 =E

�
Re
tMt

�
�M
��

(25)

6Recall that from Stirling�s formula we have:

lim
N ~ t!1

N ~ t!q
2�N ~ t

�
N ~ t
e

�N ~ t = 1.
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and any candidate stochastic discount factor Mt must satisfy V ar (Mt) �
V ar

�
M�

t

�
�M
��
:

The solution of the problem in Equation (25) is

M�
t

�
�M
�
= �M + (Re

t � E [Re
t ])

0 � �M ,

where � �M = Cov (Re
t )
�1 �� �ME [Re

t ]
�
.

De�nition 4 (Q-bounds) We de�ne the following risk neutral probability
bounds for any candidate stochastic discount factor Mt.

1. Q1-bound:

D

�
P jjMt

�M

�
�
Z
� lnMt

�M
dP > D (P jjQ�)

where Q� solves Equation (7).

2. Q2-bound (Stutzer (1995)):

D

�
Mt

�M
jjP
�
�
Z
Mt

�M
ln
Mt

�M
dP > D (Q�jjP )

where Q� solves Equation (5).

Remark 1 (HJ-bounds as approximated Q-bounds). Let p and q denote the
densities of the state x associated, respectively, with the physical, P , and the
risk neutral, Q, probability measures.7 Assuming that there exists a �p <1
and a �q <1 such that:

1. (Existence of maxima)

@ ln p

@x

����
x=�p

= 0,
@ ln q

@x

����
x=�q

= 0;

2. (Finite second moments)

�
"
@2 ln p

@x2

����
x=�p

#�1
� �2p <1, �

"
@2 ln q

@x2

����
x=�q

#�1
� �2q <1:

7For expositional simplicity, we focus on a scalar state variable, but the result is
straightforward to extend to a vector state.
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We have that, in the limit of the small time interval, a second order approx-
imation of the Q-bounds yields8

D

�
P jjMt

�M

�
_ V ar (Mt) ; (26)

D

�
Mt

�M
jjP
�

_ V ar (Mt) : (27)

Proof of Remark 1. Denote by p and q the densities associated,
respectively, with the physical probability measure P and the risk neutral
measure Q. We can then rewrite the Q1 and Q2 bounds, respectively, as

D

�
P jjMt

�M

�
�
Z
ln
dP

dQ
dP =

Z
p ln

p

q
dx (28)

and

D

�
Mt

�M
jjP
�
�
Z
dQ

dP
ln
dQ

dP
dP =

Z
ln
dQ

dP
dQ =

Z
q ln

q

p
dx: (29)

If q and p are twice continuously di¤erentiable and there exists a �p and a
�q such that

@ ln p

@x

����
x=�p

= 0,
@ ln q

@x

����
x=�q

= 0,

and

�
"
@2 ln p

@x2

����
x=�p

#�1
� �2p <1, �

"
@2 ln q

@x2

����
x=�q

#�1
� �2q <1

we have from a second order Taylor approximation that

ln q / 1

2

@2 ln q

@x2

����
x=�q

�
x� �q

�2 � �1
2

�
x� �q

�2
�2q

ln p / 1

2

@2 ln p

@x2

����
x=�p

�
x� �p

�2 � �1
2

�
x� �p

�2
�2p

8For the Q2 bound only, using the dual objective function of the entropy minimization
problem, Stutzer (1995) provides a similar approximation result to the one in Equation (27)
that is valid when the variance bound is su¢ ciently small. Moreover, for the case of
Gaussian iid returns, Kitamura and Stutzer (2002) show that the approximation of the
Q2 bound in Equation (27) is exact.
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That is, q and p are approximately (to a second order) Gaussian

q � N
�
�q;�

2
q

�
; p � N

�
�p;�

2
p

�
:

Note also that in the limit of the small time interval, by the di¤usion in-
variance principle, we have �2q = �2p = �2: Therefore, plugging the above
approximation into Equation (28) we have that in the limit of the small time
interval Z

p ln
p

q
dx �

Z "
�1
2

�
x� �p

�2
�2

+
1

2

�
x� �q

�2
�2

#
pdx

=
1

2�2

�
��2 +

Z �
x� �q

�2
pdx

�
=

1

2�2
f��2 +

Z h�
x� �p

�2
+
�
�p � �q

�2
+2
�
�p � �q

� �
x� �p

��
pdx
	

=
1

2�2
�
�p � �q

�2
=

1

2�2
�2�2� =

1

2
�2�

where the density � is a (strictly positive) martingale de�ned by � � dQ
dP
; and

the one to the last equality comes from the change of drift implied by the
Girsanov�s Theorem (see e.g. Du¢ e (2005, Appendix D)).
Similarly, from Equation (29) we haveZ

q ln
q

p
dx =

1

2
�2� :

Since Q and P are equivalent measures, Mt / �t. Therefore, in the limit of
the small time interval V ar (Mt) / �2� , implying

D

�
P jjMt

�M

�
/ V ar (Mt) ; D

�
Mt

�M
jjP
�
/ V ar (Mt) :

De�nition 5 ( Volatility bound for  t) For each E [ t] = � , the mini-
mum variance  t is

 �t
�
� 
�
� argmin
f t(� )gTt=1

q
V ar

�
 t
�
� 
��
s.t. 0 =E

�
Re
tm (�; t) t

�
� 
��

and any candidate SDF must satisfy the condition V ar ( t) � V ar
�
 �t
�
� 
��
:
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The solution of the above minimization for a given � is

 �t
�
� 
�
= � + (Re

tm (�; t)� E [Re
tm (�; t)])

0 � � 

where � � = V ar (Re
tm (�; t))

�1 ��� E [Re
tm (�; t)]

�
and the lower volatility

bound is given by

� � �
q
V ar

�
 �t
�
� 
��
= � 

q
E [Re

tm (�; t)]
0 V ar (Re

tm (�; t))
�1 E [Re

tm (�; t)]:

A.3 Data Description

At the quarterly frequency, we use 6 di¤erent sets of assets: i) the market
portfolio, ii) the 25 Fama-French portfolios, iii) the 10 size-sorted portfolios,
iv) the 10 book-to-market-equity-sorted portfolios, v) the 10 momentum-
sorted portfolios, and vi) the 10 industry-sorted portfolios. At the annual
frequency, we use the same sets of assets except the 25 Fama-French portfolios
that are replaced by the 6 portfolios formed by sorting stocks on the basis
of size and book-to-market-equity because of the small time series dimension
available at the annual frequency.
Our proxy for the market return is the Center for Research in Security

Prices (CRSP) value-weighted index of all stocks on the NYSE, AMEX, and
NASDAQ. The proxy for the risk-free rate is the one-month Treasury Bill
rate obtained from the CRSP �les. The returns on all the portfolios are
obtained from Kenneth French�s data library. Quarterly (annual) returns
for the above assets are computed by compounding monthly returns within
each quarter (year), and converted to real using the personal consumption
de�ator. Excess returns on the assets are then computed by subtracting the
risk free rate.
Finally, for each dynamic asset pricing model, the information bounds

and the non-parametrically extracted and model-implied time series of the
SDF depend on consumption data. For the standard Consumption-CAPM of
Breeden (1979) and Rubinstein (1976), the external habit models of Camp-
bell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004)), and the
long-run risks model of Bansal and Yaron (2004), we use per capita real per-
sonal consumption expenditures on nondurable goods from the National In-
come and Product Accounts (NIPA). We make the standard �end-of-period�
timing assumption that consumption during quarter t takes place at the end
of the quarter. For the housing model of Piazzesi, Schneider, and Tuzel
(2007) aggregate consumption is measured as expenditures on nondurables
and services excluding housing services.
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