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Abstract 
 
We consider a noisy rational expectations equilibrium in a multi-asset economy populated 
by informed and uninformed investors, and noise traders. We relax the usual assumption 
of normally distributed asset payoffs and allow for assets with very general payoff distribu- 
tions, including non-redundant contingent claims, such as options and other derivatives. 
We provide necessary and sufficient conditions under which contingent claims provide 
information about the source of uncertainty in the economy and, hence, reduce the asym- 
metry of information. We also apply our results to pricing risky debt and equity and 
demonstrate that firms cannot manipulate the information contained in debt and equity 
prices by changing the face value of debt. Our paper provides a new tractable framework 
for studying asset prices under asymmetric information. When the market is complete, 
we derive the equilibrium in closed form. When the market is incomplete, we derive it in 
terms of easily computable inverse functions. 
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1. Introduction 
 
The informational role of prices has been in the forefront of the economic literature since 
the seminal work of Hayek (1945). Investors in financial markets use their private informa- 
tion to extract gains from trading financial securities. Their trades impound information 
into the prices of assets, from which the information can be partially recovered by other 
investors. Moreover, informed investors often trade in a multitude of correlated securities, 
which creates a diffusion of information across securities and makes their prices interde- 
pendent because the price of each security can assist in inferring the payoff distribution 
of any other. The economic literature typically studies the informational role of prices in 
restrictive settings with normally distributed asset payoffs, which do not allow studying 
markets for assets with positive and state-contingent payoffs, such as stock options. In 
this paper, we propose a multi-asset noisy rational expectations equilibrium (REE) model 
where private information can be contained in the prices of all securities and where payoffs 
of securities can be positive and contingent on the payoffs of other securities. 

We consider a multi-asset economy with two dates and a finite but arbitrary number 
of discrete states. The probabilities of states are functions of an aggregate shock with 
a certain prior distribution. The asset payoffs can have strictly positive payoffs and can 
be derivative securities, such as options. The economy is populated by three groups of 
investors, informed and uninformed investors with constant relative risk aversion (CARA) 
preferences over terminal wealth, and noise traders with random exogenous asset demands. 
The informed investors observe the realization of the aggregate shock whereas the unin- 
formed investors use asset prices to extract the information about the shock, which is 
obfuscated by the noise traders. 

We solve for equilibrium asset prices and investor’s portfolios in closed form when the 
number of assets equals the number of states of the economy, and in terms of easily com- 
putable inverse functions when there are fewer assets than states and certain additional 
conditions are satisfied, as elaborated below. We show that prices are non-linear functions 
of the shock and the noise trader demands, derive new conditions for the existence of ratio- 
nal expectations equilibrium (REE), and provide economic applications of our theory. The 
tractability of our analysis is facilitated by the structure of the probabilities of states, in- 
spired by logit models in econometrics. This structure is such that the log-likelihood ratios 
are linear functions of the aggregate shock with coefficients interpreted as shock sensitivi- 
ties. When the number of states equals the number of assets, we relax the distributional 
assumptions and solve the model in closed form for general probabilities and distributions 
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of shock and noise trader demands satisfying only mild conditions. Distributions of such 
generality have never been studied in the related literature. 

Below, we discuss the main results. We start with identifying the economic channels 
through which the information is incorporated into prices and then derive a set of condi- 
tions under which asset prices reveal information about the aggregate shock. The analysis 
is aided by a tractable expression for the informed investor’s portfolio of assets which we 
decompose into information-sensitive and information-insensitive components. This de- 
composition yields hitherto unexplored economic insight on how the informed investors 
extract gains from their superior information. In particular, our analysis reveals that the 
information-sensitive component of the portfolio can be regarded as a portfolio that repli- 
cates the sensitivities of probabilities of states to the aggregate shock. The intuition is 
that holding such a replicating portfolio allows the informed investor to have more wealth 
in more likely states. 

The portfolio decomposition in our economy is achieved by introducing new informa- 
tional spanning condition under which the probability sensitivities to the aggregate shock 
are spanned by the tradable assets. This condition is always satisfied in economies where 
the number of assets equals the number of states, which we label as complete-market 
economies, and also in many plausible incomplete-market economies with a single risky 
asset [e.g., economies in Grossman and Stiglitz (1980) and Breon-Drish (2014)], economies 
with firms that issue risky debt and equity, and various other economies with derivative 
securities. Therefore, all these economies are included as special cases of our model.1 The 
informational spanning condition underscores the importance of the motive to replicate 
the probability sensitivities to shocks, discussed above. 

Guided by our portfolio decomposition, we identify and disentangle two channels 
through which the information is impounded into asset prices: the information-sensitive 
demand of the informed investor and potential correlation of noise trader demands across 
different markets. The first channel directly incorporates the information about the shock 
into prices via the market clearing conditions. The second channel allows the uninformed 
investor to infer the structure of noise correlations from prices and use it for more efficient 
extraction of the aggregate shock from noisy prices.2 

 
 

1Although some of these economies have continuous state-space whereas we use discrete state-space 
in our baseline analysis, we show that these economies can be obtained as special cases of ours when the 
number of states of the economy increases to infinity. 

2The informational effects of the correlation of noises can be easily illustrated in an extreme case with 
identical noises across all assets. In such an economy, the market clearing conditions for securities can be 
interpreted as a system of multiple equations with only two unknowns: the shock and the noise. Therefore, 
under certain conditions, there is enough information to recover the shock and the noise from prices. 
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Our intuition on holding a portfolio that replicates shock sensitivities, elaborated above, 
yields a surprising result: only those assets that help span the probability sensitivities to 
the aggregate shock have trading volumes that depend on the realization of the shock. 
If noise trader demands are uncorrelated across different markets, then all other assets 
are informationally redundant in the sense that their trading volumes and prices do not 
reveal new information despite the fact that they are non-redundant from the perspective 
of completing the market. We identify precise conditions under which asset prices reveal 
information about the shock. We also show that informational redundancy is a generic 
property of certain economies with one risky asset [e.g., the economies in Grossman and 
Stiglitz (1980) and Breon-Drish (2014)] in the sense that adding any derivatives to these 
economies does not reveal more information about the economic states. 

Our second set of results is on the interaction between the asymmetry of information 
and market incompleteness. We show that when the informational spanning condition 
is satisfied, the information-sensitive component of the informed investor’s portfolio in 
incomplete-market economies looks similar to its complete-market counterpart. This is 
because the informational spanning condition alleviates the effects of market incomplete- 
ness on risk sharing by increasing the efficiency with which the informed investor can 
allocate more wealth to more likely states. As a result, the asset prices in incomplete and 
complete markets have similar properties. Therefore, our closed-form prices in the latter 
economy emerge as tractable alternatives to prices in the former. 

Finally, we apply our theory to study the prices of risky debt and equity of a firm with 
an exogenous cash flow at the terminal date in the presence of asymmetric information. We 
provide closed-form expressions for the asset prices and explore the violation of the capital 
structure irrelevance result of Modigliani and Miller (1958) in our economy. We show that 
the violation is mainly due to the price pressure effect of noise traders which makes debt and 
equity prices nonlinear functions of the face value of debt. The asymmetry of information 
significantly affects the level of asset prices and amplifies the nonlinear dependence of 
prices on the face value of debt. However, we establish an informational analogue of the 
irrelevance result according to which firms cannot manipulate the amount of information 
about cash flows inferred from their debt and equity prices by manipulating the face value 
of debt. The intuition is that debt and equity replicate firm cash flows with equal portfolio 
weights that do not depend on the face value of debt, and hence the information-sensitive 
demand for these assets remains unchanged. 

The paper makes several methodological contributions. First, we provide a unifying 
framework that includes as special cases some of the previous models with one or multiple 
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risky asset. Second, we obtain new closed-form prices and portfolios in a multi-asset 
economy with asymmetric information. When the market is complete, we derive these 
expressions for very general probability density functions of shocks, noise trader demands 
and asset cash flows that have never been studied in the related literature on asymmetric 
information. Third, when the market is complete, we extend the no-arbitrage valuation to 
economies with asymmetric information. As a result, the asset prices are given by expected 
discounted cash flows under the risk-neutral measure. Finally, we prove the existence of 
REE in an incomplete-market economy. The proof is significantly complicated by the 
presence of multiple assets which makes it impossible to employ the intermediate value 
theorem as in economies with one risky asset. Therefore, we devise a new method based 
on a global implicit function theorem. Overall, due to its tractability, our model emerges 
as a convenient building block for economic research on asymmetric information. 

Our paper is related to large literature on noisy REE models, which were pioneered by 
Grossman (1976), Grossman and Stiglitz (1980) and Hellwig (1980). These early works 
typically consider so called CARA-normal economies with CARA investors and one risky 
asset with normally distributed payoffs. Admati (1985) extends these models to the case 
of multiple securities and shows that many of their insights cannot be extrapolated to the 
multi-asset case. Wang (1993) develops a dynamic REE model and shows that uniformed 
investors increase the risk premium. Both Admati (1985) and Wang (1993) demonstrate 
that asset demands can be upward sloping due to asymmetric information, which also hap- 
pens in our model. Diamond and Verrecchia (1981), Maŕın and Rahi (2000), Vives (2008), 
Garćıa and Urošević (2013) and Kurlat and Veldkamp (2013) discuss further extensions of 
CARA-normal models. Banerjee and Green (2014) extend the analysis to economies with 
mean-variance preferences and an uncertain number of informed investors. In contrast to 
this literature, we allow for more general payoff distributions and derivative securities. 

There is a growing literature that departs from CARA-normal frameworks. Yuan 
(2005) studies a two-state non-linear REE where cash flows are normally distributed but 
the states are endogenously determined by prices, leading to truncated normal payoffs. 
Breon-Drish (2010) and Breon-Drish (2014) study economies with CARA investors but 
without normality. The latter work derives prices in terms of tractable inverse functions 
and proves the existence and uniqueness of equilibrium, and the former demonstrates the 
violation of weak-form efficiency in certain markets without normality. Bernardo and Judd 
(2000) solve models numerically and demonstrate that the REE in Grossman and Stiglitz 
(1980) is not robust to parametric assumptions. Our work differs from this literature by 
allowing for more general distributions and derivative securities. 
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Barlevy and Veronesi (2000) study a model with risk-neutral investors facing position 
limits and non-normal payoffs, and demonstrate that learning is a strategic complement 
allowing for multiplicity of equilibria. Albagli, Hellwig, and Tsyvinski (2013) consider a 
noisy REE model under general distributions for the fundamentals and preferences for the 
traders but impose position limits. Position limits lead to an equilibrium which can be 
characterized by the behavior of one marginal investor but also enforce limits to arbitrage, 
and hence, their model leads to different predictions from our no-arbitrage setup. Hassan 
and Mertens (2014) introduce a standard Hellwig (1980) REE model into a real business 
cycle model. The interaction leads to non-linearity in prices, which the authors tackle by 
using market completeness and an asymptotically valid higher-order expansion in state 
variables. Peress (2004) solves a Grossman and Stiglitz (1980) model under general pref- 
erences using a “small risk” log-linear approximation. Our paper differs from the latter 
two papers in that all solutions are exact for both complete and incomplete markets. 

Our paper is also related to the literature that studies the informational role of deriva- 
tives. Brennan and Cao (1996) consider a CARA-normal model with one risky underlying 
asset and a derivative asset with a quadratic payoff.  Vanden (2008) extends the latter 
model to the case of gamma distributions and a derivative with logarithmic payoffs but 
uses non-standard distributions of noise trader demands. In the latter two works deriva- 
tives do not reveal information about the underlying, although the papers do not explore 
whether this result is specific to the restrictive assumptions on asset and derivative payoffs. 
In contrast to these papers, we allow for general derivative payoffs, more general distribu- 
tions, and show that derivatives do reveal valuable information under certain conditions. 

Back (1993) provides a micro-foundation on stochastic volatility in a dynamic Kyle 
(1985) model where a single informed investor trades in the stock and a single call option. 
Biais and Hillion (1994) have a static model with a stock and show that the introduction of 
a single option can have ambiguous effects on the dissemination of information. Malamud 
(2014) studies an REE with options in a continuous-space complete-market economy in a 
paper concurrent with ours. He characterizes REE in terms of fixed points of operators 
and finds conditions for price discovery under general preferences. 

Our paper differs from the above literature in that we consider multi-asset economies 
both with complete and incomplete markets, provide closed-form solutions not only for 
options but also for general contingent claims, and our framework is easily extendable 
to economies with multiple shocks. We also provide new conditions for informational 
redundancy of assets in terms of shock sensitivities of the probabilities of states. 

The structure of the paper is as follows.  Section 2 describes the model, investors’ 
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optimizations, and distributional assumptions. Section 3 solves for equilibria both in 
economies with complete and incomplete financial markets. Section 4 provides several 
economic applications of our model. Section 5 extends the model to the case of general 
distributions and probabilities. Section 6 concludes. The Appendix provides the proofs. 

 
2. Model 

 
2.1. Securities Markets and Information Structure 

 
We consider a single-period exchange economy with two dates t = 0 and t = T , and N 

states ω1,. . . , ωN  at the terminal date, where N ≥ 2. The economy is populated by three 
representative investors, informed and uninformed investors, labeled I and U , and noise 
traders. Investors I and U have CARA preferences over terminal wealth and risk aversions 

3 
γI  and γU . The investors can trade one riskless bond in perfectly elastic supply paying 
$1 at T and M − 1 ≥ 1 zero net supply risky assets with state-contingent terminal payoff 
Cm(ωn) in state ωn, where m = 1, . . . , M − 1 and n = 1, . . . , N .  These assets can be 
Arrow-Debreu securities, options, or other derivative securities, and are assumed to be 
non-redundant in the sense that no asset has payoffs that can be replicated by trading 
other assets. The investors are competitive and do not have impact on prices. 

We work with a discrete state-space because it yields the equilibrium in terms of eas- 
ily solvable systems of equations instead of less tractable operator equations when the 
state-space is continuous. Using several examples, we later show that economies with a 
continuous state-space can be obtained in the limit of our economy when N goes to infinity. 

The probabilities of states ωn are functions of a shock ε ∈ R, and are denoted by πn(ε). 

Shock ε has a prior probability density function (PDF) ϕε(x). We think of ε as an aggregate 
shock that affects the probabilities of states ω and, hence, the payoff distributions of all 
assets in the economy. Before the markets open (i.e., at time t = −1), the informed investor 
observes ε. The uninformed investor observes only the asset prices at time t = 0. Noise 
traders have exogenous random demands ν = (ν1, . . . , νM−1)T with multivariate normal 
distribution N (0, Σν ), where Σν is a (M − 1) × (M − 1) symmetric positive-definite matrix. 
Random demands ν prevent asset prices from being fully revealing. 

We denote the vector of observed prices of the risky assets at time t = 0 by p = 
 

 

3CARA preferences allow us to consider each class of investors with the same information as represen- 
tative of many CARA investors with different wealths and risk aversions [see the aggregation theorem in 
Rubinstein (1974, p. 232)]. 
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n 

  

  

(p1, . . . , pM−1)T, the vector of risky asset payoffs in state ωn by Πn = (C1(ωn), . . . , CM−1(ωn))T, 
and the vector of asset m’s payoffs in different states by Cm  = (Cm(ω1), . . ., Cm(ωN ))T. 
The price of the riskless asset is set to p0 = e−rT , where r is an exogenous risk-free rate of re- 
turn.4 The prices of risky assets are determined in equilibrium. Finally, by P (ε, ν) ∈ RM−1 

we denote the vector of equilibrium prices as functions of shock ε and noise ν. 

 
2.2. Investors’ Optimization and Definition of Equilibrium 

Each investor i = I, U is endowed with initial wealth Wi,0, and allocates it to buy αi 

units of the riskless asset and θi,m units of risky asset m. By θi = (θi,1, . . . , θi,M−1)T we 
denote the vector of units of risky assets purchased by investor i. The budget constraints 
of investors I and U at time t = 0 are given by Wi,0 = αip0 + pTθi. Investor i’s wealth at 
time t = T and state n is then given by Wi,T ,n = αi + ΠTθi. In what follows, the subscript 
n will be dropped to denote a random variable in an uncertain state. Substituting out αi 

we obtain the budget constraint in the following form: Wi,T = Wi,0er +(Π −erT
 p)T θi. The 

informed and the uninformed investors solve the following utility maximization problems 

max E −e−γI WI,T   ε, p , (1) 
θI 

max E −e−γU WU,T  P (ε, ν) = p, p , (2) 
θU 

 

respectively, subject to each investors’ self-financing budget constraint 
 

Wi,T  = Wi,0e + (Π − erT
 p)T θi, i = I, U. (3) 

 

The solutions to the above optimization problems give investors’ optimal portfolios of risky 
assets θ∗(p; ε) and θ∗ (p). The prices p should be such that all the markets for the risky I U 

securities clear. More formally, the definition of equilibrium is as follows. 

Definition 1. A competitive noisy rational expectations equilibrium is a set of asset prices 
P (ε; ν) and investor asset holdings θ∗(p; ε) and θ∗ (p) such that θ∗ and θ∗ solve optimization 

I U I U 

problems (1) and (2) subject to self-financing budget constraints (3), taking asset prices as 
given, and the market clearing conditions are satisfied: 

θ∗(P (ε, ν); ε) + θ∗ (P (ε, ν)) + ν = 0. (4) 
I U 

 
 
 

 

4In models with utility over terminal wealth risk-free rate r is indeterminate and is set exogenously. 

T 

rT 
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n N 

ε 

ε 

0 dx 

0 

0 

0 

2.3. Probability  Distributions 
 
To solve the model in closed form, we consider probabilities of states πn(ε) given by: 

ean+bnε 
π (ε) = 

j=1 eaj +bjε 
, n = 1, . . . , N. (5) 

 

The structure of probabilities is similar to that of probabilities in multinomial logit models, 
widely used in econometrics. When ε = 0, by properly choosing parameters an, states ωn 

can have a multinomial distribution that approximates a particular desired continuous 
distribution in the limit as N → ∞. We label vector b = (b1, . . . , bN )T as the probability 
sensitivities to the aggregate shock ε, because it determines the deviations of probabilities 
πn(ε) from benchmark probabilities πn(0) in response to shock ε. 

Shock ε is a scalar random variable with generalized normal distribution N(µε, σ2), 

mean E[ε] = µε and variance var[ε] = σ2, which has PDF ϕε(x) given by: 
(  

N
  

e 2      2 

ϕε(x) = j=1 eaj +bjx 
( 

−0.5(x−µ0) /σ0 
. (6) 

 ∞ N 

−∞ j=1 
aj +bjx e−0.5(x−µ0)2/σ2 

 

Distribution (6) allows us to obtain the equilibrium in terms of elementary functions. This 
distribution is given in terms of vectors a = (a1, . . . , aN )T and b = (b1, . . . , bN )T, and 
scalars µ0 and σ2. PDF (6) can also be equivalently rewritten as a weighted average of 
PDFs of normal distributions. For fixed parameters a and b, we choose µ0 and σ2 so that ε 
has any desired mean µε and variance σ2. The relationship between (µ0, σ2) and (µε, σ2) is o 0 ε 
given by Equations (A.1) and (A.2) in the Appendix. In Section 5, we extend the analysis 
to general probabilities πn(ε) and PDFs ϕε(x) and ϕν (x) for shock ε and noisy demands 
ν when the number of states equals the number of securities, that is, N = M . 

Our economy includes as a special case a one-asset economy in Breon-Drish (2014) in 
which the informed investor receives signal ε about asset payoff C at the terminal date, 
payoff C has general unconditional PDF ϕC (x) and the signal is given by ε = C + δ, 
where δ ∼ N (µ0, σ2). The latter economy is a limiting case (i.e., when N → ∞) of 
ours. Consider a discretization in which the risky asset pays Cn = CN + h(n − 1) in 
states n = 1, 2, . . . , N , where h = (CN  − CN )/(N − 1), CN   and CN   are the minimum 
and the maximum payoffs that can be bounded or unbounded in the limit, and payoff 
Cn has unconditional probability ϕC (Cn)/(ϕC (C1) + . . . + ϕC (CN )). Then, using standard 
expressions for conditional distributions, it can be shown that conditional probabilities 
Prob(Cn|ε) correspond to probabilities πn(ε) given by Equation (5) and the PDF of signal 
o is given by (6), where an = −0.5C2/σ2 − Cnµ0/σ2 + ln

(
ϕ (C )  and b = C /σ2. 

n 0 0 C n n n 0 

e 
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0 

ε 

C 

ε 

C C 

j=1 

C ε 

The structures of probabilities (5) and PDF (6) are reasonable for two reasons. First, as 
demonstrated above, these structures endogenously emerge in plausible economic settings 
in which payoff C has general PDF ϕC (x) and the informed investor receives signal ε = 
C + δ, where δ ∼ N (µ0, σ2). Second, by varying vectors a and b, the distribution of cash 
flows conditional on observing ε has flexible shapes, and PDF ϕε(x) is sufficiently close 
to a normal distribution in our calibrations, as elaborated below. Therefore, the fact that 
distribution ϕε(x) depends on vectors a and b has only minor effect on our results. 

Figure 1 shows the distribution of cash flows Cn conditional on knowing shock ε (i.e., 
probabilities πn(ε) plotted against payoffs Cn), and PDF ϕε(x) for an example with N = 
100 states.  The asset payoffs are given by Cn  = 300(n − 1)/(N − 1).  Vectors a and 
b are calibrated in such a way that πn(1) and πn(−1) are discrete approximations of 
gamma distributions with shape and scale parameter pairs (1,2) and (5,1), respectively, 
and parameters µ0 and σ0 are chosen in such a way that µε = 0, σε = 1. Panel (b) shows 
function ϕε(x) along with the PDF of a normal distribution N (µε, σ2) for µε = 0, σε = 1. 
From Panel (b) we observe that the two distributions are very close to each other. 

One of the disadvantages of standard CARA-normal models in the literature is that 
asset payoffs can be negative. Moreover, it is very difficult to include assets with nonlinear 
payoffs, such as put and call options. Our model is free from these disadvantages, and 
allows extra flexibility in modeling probability distributions and asset payoffs. To the best 
of our knowledge ours is the first noisy REE model that admits closed form solutions in 
the multi-asset case and where joint normality of asset payoffs is not required. 

 
Remark 1 (Grossman-Stiglitz economy as a special case). An important special 
limiting case (when N → ∞) of our economy is the standard CARA-normal Grossman 
and Stiglitz (1980) economy with one risky asset with payoff C(ω) ∼ N (ε, σ2 ), an informed 
investor who observes mean E[C(ω)] = ε, an uninformed investor with prior distribution 
o ∼ N (µε, σ2), noise traders, and no costs of information acquisition. Such an economy 
can be approximated in our framework as follows. Let M = 2 and consider an asset with 
payoffs C(ωn) = −A + nh, where h = 2A/N , an = −0.5C(ωn)2/σ2 and bn = C(ωn)/σ2 , 

2     2 

for all n = 1, . . . , N . For large A and N we observe that (   N
 eaj +bjεh)e−0.5ε /σC   ≈  ∞ e−0.5(C−ε) /σC dC = 

I
2πσ2 . Consequently, as A, N , using Equations (5) and (6) 

2     2 

−∞ C → ∞ 
and some algebra, we obtain point-wise convergences 

e−0.5(C(ωn)−ε)2/σ2 2    2 ε ε 

πn(ε) =   N 
C h 
2     2 −→ e−0.5(C−ε) /σC dC 

I  , ϕε(x) −→ e−0.5(x−µ )2/σ2 
I . 

j=1 e−0.5(C(ωj )−ε) /σC h 2πσ2 2πσ2 
 

Therefore, our economy is CARA-normal in the limit for a particular choice of parameters. 
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Figure 1: Distribution of cash flows and shock ε 
Panel (a) shows probabilities πn(ε) for different ε for asset payoffs C(ωn).  Panel (b) shows 
the PDFs of N(µε, σ2) and N (µε, σ2) with µε = 0 and σε = 1.  We set N = 100, C(ωn) = 

o ε 1) and πn(1) are discrete approximations 
1) and vectors a and b are such that πn(− 

of gamma distributions with shape and scale parameter pairs (1,2) and (5,1), respectively. 
 
Remark 2 (Multi-dimensional shock ε). Our model can be generalized to the case 
of multi-dimensional shock ε.  In this case, the probabilities of states ωn are given by 
πn(ε) = exp(an + bTε)/  N

 exp(aj + bTε), where bn are now vectors. This model includes 
n j=1 j 

a CARA-normal model with multiple correlated assets as a special case, which can be 
shown similarly to the case of a scalar shock ε. The model with multi-dimensional shock 
ε generalizes the multi-asset CARA-normal model with asset payoffs as in Admati (1985). 

 
3. Characterization of Equilibrium 

 
In this section, we first consider an economy with M = N assets and find the equilibrium 
in closed form. Then, we consider a general economy with M ≤ N securities and, under 
an additional assumption, find asset prices in terms of easily computable inverse functions. 

 
3.1. Economy with M = N Securities 

We start with an economy in which the number of assets equals the number of states, i.e., 
M = N , which we label as a complete-market economy. As demonstrated in Ross (1976), 

   ε = −3 

   ε = −1 

ε = 0  

   ε = +1 

   ε = +3 
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markets can be completed by issuing a sufficient number of derivative securities.5 In our 
model, derivative securities can reveal additional information about the underlying asset, 
which in turn can be used for more accurate pricing of derivatives. Therefore, the prices 
of all risky assets have to be found simultaneously. 

Due to market completeness, we look for equilibrium prices p in the following form: 
 

pm = πRNCm(ω1) + πRNCm(ω2) + . . . + πRNCm(ω ) e−rT , (7) 
1 2 N N 

 

where m = 1, . . . , N − 1, and πRN
 is the risk-neutral probability of state ωn.  The risk- 

neutral probabilities exist in equilibrium because the investors are unconstrained and can 
eliminate any arising arbitrage opportunities [e.g., Duffie (2001)]. Moreover, all investors 
agree on risk-neutral probabilities because these probabilities are uniquely determined from 
Equations (7) as functions of prices p. 

Due to asymmetric information, investors I and U have different real probabilities of 
states ωn. In particular, because investor U filters out shock ε from the market clearing 
condition (4), her real probabilities of states ωn are given by conditional expectations of 
πn(ε). To demonstrate this, we rewrite the expected utility of investor U as follows: 

( 
E −e−γU WU,T |P (ε, ν) = p, p 

 N 
n=1 

= −  N
 

E πn(ε)|P (ε, ν) = p, p e−γU WU,T ,n 

πU (p; θ∗ (p))e−γU WU,T ,n , (8) 
n=1    n U 

 

where πU (p; θ∗ (p)) = E πn(ε)|P (ε, ν) = p, p is investor U ’s posterior probability of state 
n U 

ωn. The latter probabilities, in general, depend on equilibrium portfolios θ∗ (p) through 
the market clearing conditions, as shown below. Objective function (8) confirms that 
investor U ’s optimization can be solved as a complete-market problem with N states and 
N securities in which real probabilities πU (p; θ∗ (p)) are taken as given. 

n U 

The investors have different state price densities (SPDs) because they have different 
real probabilities, similar to models with heterogeneous beliefs [e.g., Basak (2005)]. The 
SPDs are given by the following equations [e.g., Duffie (2001)]: 

 

πRN −rT πRNe −rT 
ξI (ωn) = π (ε)  , ξU (ωn) = πU . (9) ∗ 

n n (p; θU (p)) 
 

The first order conditions (FOCs) of investors equate their marginal utilities and SPDs 
 

 

5We note that the realizations of shock ε can be interpreted as a continuum of states of the economy in 
addition to states ωn. However, N tradable non-redundant assets still suffice to replicate any contingent 
claim in our economy because the payoffs of such claims do not vary across ε for a fixed state ωn. In other 
words, ε-states can be clumped together in such a way that only ωn states matter for replication. 

= − 
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I 

I 

and are given by the following equations: 

γI e− 
 
γI WI,T ,n 

 
= f,I 

πRNe −rT 
, γU e− 

 
γU WU,T ,n 

 
= f,U 

πRNe −rT  
, (10) πn(ε) πU (p; θ∗ (p)) 

n U 

where f,i denote Lagrange multipliers for investors’ budget constraints. First order con- 
ditions (10) give us optimal wealths Wi,T , from which we can recover optimal trading 
strategies using investors’ budget constraints (3). Lemma 1 below reports the results. 

Lemma 1 (Investors’ optimal portfolios). 

1) Suppose, probabilities πn(ε) and PDF ϕε(x) are general functions (not necessarily as 
in Section 2.3) such that the equilibrium exists. Then, optimal portfolios of informed and 
uninformed investors, θ∗(p; ε) and θ∗ (p), are given by: 

 
θ∗(p; ε) = 

I 
 

1 Ω−1 
  

ln 

U 
   

π1(ε) 
 

 
 
, . . . , ln 

  
N−1 (ε)    T

 
 

− v(p)
 

, (11) 
γI  

 
πN (ε)  (

p; θ 
 
(p)  


 

πN (ε) 
 

π
 
 (

p; θ 
 

(p)  
T 

 
1  πU ∗      U  ∗    

θ∗ (p) = Ω−1 1 ln   , . . . , ln  N−1 U   − v(p) ,  (12) γ  πU 
(
p; θ∗ (p)

 
 πU 

(
p; θ∗ (p)

 
 

U  
N U N U 

 
 
where probabilities πU (p; θ∗ (p)) and function v(p) are given by the following equations 

N U 

πU 
(
p; θ∗ (p) = E[πn(ε)|P (ε, ν) = p, p], (13) 

n U 
 
 

v(p) = 

 
    

RN 
  

ln 1 
RN 
N 

 
 
, . . . , ln 

     
RN 
N−1 
RN 
N 

 
  T  

, (14) 
 

probabilities πRN  are functions of p that solve Equations (7), Ω ∈ R(N−1)×(N−1)  is a matrix 
with rows (Πn − ΠN )T and elements Ωn,k = Ck (ωn) − Ck (ωN ), where k, n = 1, . . . , N − 1. 

2) If probabilities πn(ε) are given by Equation (5) and ϕε(x) is an arbitrary PDF, then 
investor I’s optimal portfolio is a linear function of shock ε, given by: 

1 
θ∗(p; ε) = λε − Ω−1

(
v(p) − ã , (15) 

γI γI 

where ã = (a1 −aN , . . . , aN−1 −aN )T ∈ R N−1 and λ = Ω−1 (b1 −bN , . . . , bN−1 −bN )T ∈ RN−1. 

Lemma 1 determines optimal portfolios of investors in terms of real and risk-neutral prob- 
abilities for the case of complete markets. Its most important implication is that due to 
CARA preferences informed investor’s portfolio θ∗(p; ε) is separable in shock ε and price 
p. Moreover, the latter portfolio is linear in shock ε in economies where probabilities 
πn(ε) are given by Equation (5), which can be easily demonstrated by substituting prob- 
abilities (5) into portfolio (11).  We label the first terms of portfolios (11) and (15) as 

π 

π 

U 

U 
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U 

ε 

information-sensitive demands because they depend on shock ε and the second terms as 
information-insensitive   demands. 

The intuition for the linear information-sensitive demand in Equation (15) is as fol- 
lows. FOC of investor I in (10) demonstrates that, holding risk-neutral probabilities fixed, 
investor I has an incentive to allocate more wealth to states with higher real probabilities 
πn(ε), that is, to states with higher an + bnε. The definition of λ in Lemma 1 implies that 
λ solves a system of equations bn = λ0 + ΠTλ, where Πn is the vector of risky asset payoffs 
in state ωn, and λ0 is a constant. Consequently, λ can be interpreted as a portfolio that 
replicates the vector of shock sensitivities b up to a constant λ0, and hence λε replicates 
bε. Similarly, portfolio Ω−1ã replicates sensitivities an. Therefore, investing in the latter 
two portfolios gives investor I more wealth in states with high probabilities πn(ε). Fur- 
thermore, FOCs (10) reveal that investors have incentive to allocate less wealth to states 
with high risk-neutral probabilities πRN

 because πRNe−rT  is the value of $1 in state ωn. 
The price effect gives rise to the information-insensitive term Ω−1v(p)/γ . Portfolio (15) 
then reflects the relative strength of the effects of probabilities πn(ε) and πRN. 

The linearity of portfolio (15) simplifies the filtering problem of investor U . In partic- 
ular, substituting θ∗(p; ε) and θ∗ (p) into the market clearing condition (4), we find that I U 

 
λε + ν + H(p) = 0, (16) 
γI 

 

where H(p) is a function of prices p, given by the following equation: 
 

1 
H(p) = θ∗ (p) − γ Ω−1

( v(p) − ã , (17) 
 
where ã 

I 
 

and v(p) are defined in Lemma 1. Equation (16) demonstrates that observing 
prices p allows investor U to infer a linear combination of shocks λε/γI + ν. In this paper, 
we focus on equilibria in which asset prices are continuous functions of shock ε and noisy 

6 
demand ν, and λε/γI + ν is the only information revealed by asset prices. 

The posterior distribution of ε after observing λε/γI + ν is available in closed form 
when the shock has distribution ε ∼ N(µε, σ2), which allows us to compute investor U ’s 
posterior probabilities πU (p; θ∗ (p)) also in closed form. Lemma 2 reports the results. 

n U 

Lemma 2 (Conditional distributions). Let probabilities πn(ε) be given by Equation 
(5), and shock ε has PDF given by (6). Let ε̃ = λε/γI + ν + H(p), i.e. the left-hand side 

 
 

6Pálvölgyi and Venter (2014) demonstrate that there exist multiple discontinuous equilibria in Gross- 
man and Stiglitz (1980) economy. Such equilibria may also exist in our model. The exact characterization 
of all equilibria is a challenging task in the case of multiple assets and is beyond the scope of our work. 
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of (16). Then, the posterior PDF ϕε|ε̃(x|y) of shock ε, conditional on observing vector ε̃, 
and posterior probabilities πU (p; θ∗ (p)) of investor U are given by: 

n U 
 

exp
f
−0.5

(
y − λx/γ — H(p)  

T
Σ−1

(
y − λx/γ — H(p) 

l
ϕε(x) 

ϕε|ε̃(x|y) = G (y; p) , (18) 
1 

 
1 b2 

n
(
 1 

2   
 

πU ∗   


 n − 2b λ  Σν   H(p)/γI  − µ0/σ0     
n (p; θU (p)) = G (p) exp an + 2 λTΣ−1 2 2 , (19) 

2  ν  λ/γI  + 1/σ0  

where function H(p) is given by Equation (17), and G1(y; p) and G2(p) are certain functions 
that do not depend on state ωn. 

Lemma 2 provides closed-form expressions for the posterior distribution of shock ε and 
posterior probabilities πU (p; θ∗ (p)). We observe that when the prior precision of shock n U 

o increases, that is, volatility parameter σ0  of PDF ϕε(x) in (6) converges to zero, then 
PDF (6) converges to a delta-function, mean parameter µ0 converges to ε and probability 

n (p; θU (p)) in (19) converges to conditional probability πn(ε). Therefore, the informed 
πU ∗ 

and uninformed investors have the same probabilities in the limit, and hence, the economy 
converges to the economy with full symmetric information. 

From Lemma 2 we also observe that the log-likelihood ratio ln
(
πU (p; θ∗ (p))/πU (p; θ∗ (p))

 
 

n U N U 

is a linear function of θ∗ (p), which allows us to solve the fixed point problem in Equation 
(12) in closed form and to obtain θ∗ (p) as a function of vector v(p). Then, vector v(p) can 
be found from the market clearing condition (16), and the risk-neutral probabilities πRN 

can be recovered from Equation (14) that expresses v(p) in terms of log-likelihood ratios 
of probabilities πRN. Proposition 1 reports the equilibrium in closed form. 

 
Proposition 1 (Equilibrium with M = N assets). Suppose, probabilities πn(ε) are 
given by Equation (5) and shock ε has PDF (6). Then, there exists unique equilibrium 
in which prices only reveal λε/γI  + ν.  In this equilibrium, portfolios θ∗(p; ε) and θ∗ (p), I U 

risk-neutral probabilities πRN, and prices P (ε, ν) are given by: 
1 

θ∗(p; ε) = λε − Ω−1
(
v(p) − ã , (20) 

γI γI   
1 1 

 
(µ0/σ2)λ 

θ∗ (p) = 
(
E + Q 

−1  
Ω−1(v(p) ã) Ω−1(v(p) a) + 0 ,(21) 

U γ − − γ —  
γ (λTΣ−1λ/γ2 + 1/σ2) 

 
πRN 

I U 
vn RN 

U ν I 0 

n   = 1 +   N−1 , πN    = 1 +   N−1 
, (22) 

Pm(ε, ν) = πRNCm(ω1) + πRNCm(ω2) + . . . + πRNCm(ω ) e−rT , (23) 
1 2 N N 

I 
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where m = 1, . . . , M − 1; v(p) is a function of observed prices p given by (14) and Q ∈ 
R(N−1)×(N−1) is a matrix, which in equilibrium are given by the following equations 

1 γI b̃(2) + 2(µ0/σ0 )Ωλ   γ  γ   (  ( λε 
v(p) = ã + 2 γ + γ λTΣ−1 2 

I  U E + Q + ν , (24) 
I U ν  λ/γI  + 1/σ0 

1 
γI + γU γI 

Q = λλTΣ− 
γ 

(
λTΣ−1 2 , (25) 2 

γU  I ν  λ/γI  + 1/σ0 

E is the (N − 1) × (N − 1) identity matrix, Ω  ∈ R(N−1)×(N−1)   is a matrix with rows 
(2) T  −1 2 2 ˜(2) 

(Πn − ΠN )T, ã = (a1 − aN , . . . , aN−1 − aN )T, a = ã + 0.5b̃ /(λ Σν  λ/γI + 1/σ0 ), b = (b2 − b2 , . . . , b2 — b2 )T and λ = Ω−1(b1 − b , . . . , b − b )T.7 
1 N N−1 N N N−1 N 

Proposition 1 extends the no-arbitrage valuation approach to economies with asymmet- 
ric information and provides asset prices in terms of expected discounted cash flows under 
risk-neutral probabilities, familiar from the asset-pricing literature. The equilibrium prices 
are non-linear functions of shock ε and noise ν, in contrast to CARA-normal noisy REE 
models [e.g., Grossman and Stiglitz (1980); Admati (1985), among others]. However, the 
linearity is preserved for the vector v(p) of the log-likelihood ratios of risk-neutral probabil- 
ities, which determines optimal portfolios and prices. Furthermore, the tractability of our 
analysis allows us to study comparative statics for asset prices and investors’ portfolios, 
which we report in Proposition 2 below. 

Proposition 2 (Comparative statics). The comparative statics for price Pm(ε, ν) of 
asset m with respect to shock ε and noisy demands ν are as follows: 

∂Pm(ε, ν) = γU 
1 + λ Σν  λ/(γU γI ) 

λ/γ 
covRN

 (b, Cm )e−rT , (26) 

∂ε γU + γI λTΣ−1 2 + 1/σ2 ν I 0 
1 

∂Pm(ε, ν) = γU γI covRN(Cl, Cm ) + λTΣ− el/(γU γI ) covRN
 (b, Cm) e−rT .  (27) ∂νl γU + γI λTΣ−1 λ/γ 2 + 1/σ2 

ν I 0 

The comparative statics for investors’ portfolios with respect to prices p are as follows: 
∂θ∗(p; ε) 

∂p 
= 1 ( 

−γI
 

varRN[Π] 
−1

 erT , (28) 

∂θ∗ (p) 
 

1 
= − E + γU

 + γI λλTΣ−1 
 
 

(
varRN[Π]

 
 
−1

erT ,(29) ∂p γU γU γI γ 
(
λTΣ−1λ/γ2 + 1/σ2  + λTΣ−1λ 

γU   I ν I 0 ν 

7The inverse matrix (E + Q)−1 in Equation (21) can be computed in closed form, and is given by: 
TΣ−1 

(E + Q)−1 = E − λλ ν . 
γU γI 

(
λTΣ−

ν 
1λ/γ2 + 1/σ2 + λTΣ−

ν 
1λ 

I 0 

+ 
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The latter result can be directly verified by multiplying both sides of the above equality by matrix (E +Q). 
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where covRN(·, ·) and varRN(·) are covariance and variance-covariance matrices under the 
risk-neutral probability measure, and Π is the vector of risky asset payoffs in random state 
ω. Furthermore, informed investor’s demand for risky asset m is a downward-sloping 
function of that asset’s price pm, holding the prices of other assets fixed. 

The intuition for the effect of shock ε on asset prices is as follows. Positive shock ε increases 
the probabilities (both real and risk-neutral) of states with higher shock sensitivities bn. 
Therefore, the prices of assets that pay more in states with higher bn increase, and the 
opposite happens for a negative shock, which gives rise to the covariance term in (26). The 
asymmetry of information increases the sensitivity of asset prices to shock ε as captured 
by the second term in brackets in (26). Intuitively, the uninformed investors interpret high 
prices of assets that positively covary with b as the information that shock ε is positive, 
and hence, further increase the demand for such assets, which generates an amplifying 
spiral effect captured by the coefficient in front of covRN(b, Cm) in (26). 

The effect of noise traders’ demand on asset prices can be decomposed into substitution 
and information effects, which correspond to the first and second terms in the brackets in 
(27), respectively. The first term demonstrates that positive demand shock νl to asset l 
exerts positive pressure on the price of asset m if the cash flows of assets m and l have 
positive covariance. This is because following positive demand shock νl and the resulting 
increase in the price of asset l the investors partially substitute asset l with asset m which 
positively covaries with the former. As a result, the price of asset m increases.8 

The effects of ν and ε on asset prices might be difficult to disentangle, as demonstrated 
by the second term in (27). For example, consider an asset m with payoffs that positively 
covary with shock sensitivities b. If demand shock νl increases the price of asset m, the 
uninformed investors may partially attribute such an increase to a positive shock ε. The 
uninformed investors disentangle the effects of ν and ε by looking at the (risk-neutral) 
covariances between assets to see whether the asset prices can be explained by payoff 
covariances with b or Cl, which gives rise to the second term in (27). 

Equations (28) and (29) show the sensitivities of investors’ asset demands to prices. The 
demand (28) of the informed investor is determined by the inverse risk-neutral variance- 
covariance matrix. Consequently, the informed investor’s demand for risky asset m is a 
downward sloping function of that asset’s own price pm because the elements on the main 

 
 

8Similar demand pressure effects also arise in the symmetric-information incomplete-market option 
pricing model of Gârleanu, Pedersen and Poteshman (2008). 
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diagonal of a positive-definite matrix (varRN[Π])−1 are all positive.9 

The sensitivity of uninformed investor’s portfolio θ∗ (p) to prices p is determined by the 
two terms in brackets in Equation (29). The first term captures the substitution effects 
and is present even without asymmetric information. The second term, which depends on 
vector λ, captures the information effects. The latter term is absent in Equation (28) for 
∂θ∗(p; ε)/∂p because investor I has full information. In contrast to the demand of investor 
I, the demand of investor U for asset m can be an upward sloping function of pm. This 
is because high asset prices can be interpreted as positive information about shock ε, in 
which case the demand for asset m may increase despite high price pm. Admati (1985) 
finds a similar result in a multi-asset CARA-normal model with two dates. Our result 
extends the finding of Admati (1985) to the case of derivatives and assets with strictly 
positive cash flows. We note that the structure of sensitivities (28) and (29) is new to the 
literature, and it underscores how the information effects are determined by the replicating 
portfolio λ and the risk-neutral variance of the payoffs for determining the asset demands. 

To demonstrate the latter result more formally, assume for simplicity that noisy de- 
mands are i.i.d., and hence Σν  = σ2E.  Consequently, matrix λλTΣ−1 is positive semi- 

ν ν 

definite, and hence has non-negative elements on the main diagonal. If these elements are 
positive and sufficiently large, the matrix on the right-hand side of Equation (29) may 
have positive elements on the diagonal.10 

 

3.2. General Economy with M ≤ N Securities 

In this section, we study a general economy with M securities, where M ≤ N , which 

subsumes complete and incomplete market economies as special cases. For tractability, we 
impose the following assumption. 

Assumption 1 (Informational spanning condition). Shock sensitivity b is spanned 
by the traded assets in the economy. That is, there exist unique constant λ0 and vector 

 

 

9Element i on the diagonal of matrix A is given by eTAei, where ei = (0, 0, . . . , 1, . . . , 0)T is a vector 
with 1 on i’s place and all other components equal to zero. If A is positive-definite, then eTAei > 0, and 

hence the diagonal elements are positive. 
10We verify the above intuition for the price and information effects in a simple economy with two 

risky assets in which we set r = 0, T = 1, a = (−5.37, −4.11, −5.7)T and b = (1.19, 2.44, 3.69)T, where a 
and b are calibrated from gamma distributions, similarly to the example in Section 2. The risk aversions 
of investors are given by γI  = 0.004 and γU   = 0.04 [see the estimates in Paravisini, Rappoport, and 
Ravina (2010)]. We consider two risky assets with payoffs C1 = (0, 75, 300)T and C2 = (0, 0, 225)T. In 
this economy, investor U ’s demand for the first asset increases with the increase in its price, whereas the 
demand for the second security decreases with the increase in its price, holding other prices fixed. 
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λ = (λ1, . . . , λM−1)T ∈ R M−1 such that 
 

b = λ0IN  + λ1C1 + . . . λM−1CM−1, (30) 
 

or equivalently, bn = λ0 + ΠTλ, where IN ∈ R is a vector of ones, Cm are the payoffs of 
the risky assets, and Πn is the vector of risky asset payoffs in state n. 

We provide several plausible economies that satisfy informational spanning condition. First 
example is the complete-market economy, where M = N , and hence, there always exist 
constant λ0 and vector λ satisfying Equation (30). Second example is an incomplete- 
market economy with only one risky asset with payoff C1 = b/λ̃, where λ̃ is any positive 
constant. As discussed in Section 2.3, economies in Grossman and Stiglitz (1980) and 
Breon-Drish (2014) satisfy the latter condition. Third example is an economy with asset 
C1  = b/λ̃, and call options with payoffs C2  = (C1 − K2)+,. . . , C M−1 = (C1 − KM−1) 
written on asset 1, in which case λ0  = 0, λ1  = λ̃, λ2  = 0, . . . , λM −1 = 0. In particular, 
a CARA-normal model with a risky asset C1 and several call options written on it, is a 
special case of the latter economy. Fourth example is an economy with firms that have 
cash flows b and issue risky debt and equity with payoffs min(b, K) and (b − K)+, where 
K is the face value of debt, and hence λ0 = 0, λ1 = 1, λ2 = 1, λ3 = 0, . . . , λM−1 = 0. 

Assumption 1 implies that the information about the economy’s sensitivity to shock ε, 
which is captured by vector b, is spanned by the payoffs of tradable assets in the economy. 
We note, that the informational spanning condition does not imply market completeness 
because the number of states of the economy is allowed to exceed the number of tradable 
assets. Lemma 3 below demonstrates that the informed investor’s portfolio is a linear 
function of shock ε if the informational spanning condition is satisfied, which allows solving 
the updating problem of the uninformed investor in closed form. 

Lemma 3 (Optimal portfolios with M ≤ N assets). Suppose Assumption 1 is satis- 
fied, probabilities πn(ε) are given by Equation (5) and ε has a general PDF ϕε(x). Then, 
if problem (1) has finite solution θ∗(p; ε), this solution is a linear function of ε, given by 

 
λε θ∗(p) 

θ∗(p; ε) = − I
 , (31) 

γI γI 
 

where vector λ is such that equation (30) is satisfied, and θ∗(p) is a function of p. 

Lemma 3 pinpoints a general condition which makes informed investor’s portfolio linear 
in shock ε with general PDF ϕε(x). Therefore, it provides new economic insight on why 
informed investors’ portfolios are linear functions of signals in related models with one risky 
asset (e.g., Grossman and Stiglitz (1980); Breon-Drish (2014)), which are special cases of 

N 

+ 
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our model. In particular, it turns out that the linearity in those models arises because 
the informational spanning condition is satisfied, and hence, the informed investors can 
replicate the economy’s shock sensitivities b. Our paper is the first to demonstrate that 
the informed investor’s portfolio and the informativeness of asset prices in REE economies 
are determined by the informed investor’s incentive to replicate shock sensitivities b, which 
allows this investor to hold more wealth in more likely states, as elaborated in Section 3.1. 

The linearity of θ∗(p; ε) simplifies the inference problem of the uninformed investor. In 
particular, substituting θ∗(p; ε) into the market clearing condition (4) we obtain 

λε + ν + H(p) = 0, (32) 
γI 

where H(p) = θ∗ (p) − θ∗(p)/γI , which has a similar structure to the market clearing con- 
U I 

dition (16) in the complete-market economy. The derivation of equilibrium then proceeds 
similarly to the case of complete markets. Proposition 3 summarizes the main results. 

Proposition 3 (Equilibrium with M ≤ N assets). Suppose probabilities πn(ε) are 
given by Equation (5), shock ε has PDF given by (6), and the informational spanning 
condition is satisfied. Then, there exists unique equilibrium in which prices only reveal 
λε/γI + ν. In this equilibrium, the investors’ optimal portfolios are given by 

1 
θ∗(p; ε) = λε − f−1

(
erT p  , (33) 

γI γI   
1 1 

 
(µ0/σ2)λ 

θ∗ (p) = 
(
E + Q 

−1   (
e  p

 
f 

(
e  p  + 0 , (34) 

U γ I — γ U γ (λTΣ−1λ/γ2 + 1/σ2) 
I U U ν I 0 

price vector P (ε, ν) is a continuous, injective11  and differentiable function of λε/γ 
and is the unique solution of equation 

+ ν, 

1 (
e

 P (ε, ν)  + 1 
f 

(
e  P (ε, ν)  = 

(
E + Q 

( λε + ν  + (µ0/σ )λ 
, 

−1 rT 
U U 

−1 rT 
I I 

0 
γI γU (λTΣ−1λ/γ2 + 1/σ2) 

ν I 0 
(35) 

where E ∈ R(M−1)×(M−1)  is the identity matrix, Q ∈ R(M−1)×(M−1)  is a matrix given by 
Equation (25), and functions fI , fU : R 

 N 

M−1 
→ RM−1 are given by 

fI (x) = j=1 Πj exp {aj + ΠTx} 
 N 

j 
, (36) 

2  N 1 j T 
fU (x) = j=1 Πj exp {aj + 2 λTΣ−1 + Πj x} , (37) 

I 0 2   b   N exp {aj + 1 j 
Σ−1 + ΠTx} 

j=1 T  ν  λ/γ2 +1/σ2 j 
I 0 

 
 

11That is, P (ε1, ν1) = P (ε2, ν2) implies that λε1/γI + ν1 = λε2/γI + ν2 for all ε1, ν1, ε2 and ν2. 

2 λ 

I 

γ γ 
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2 

and f−1(y) and f−1(y) are inverse functions defined on the ranges of f (x) and f (x). 
I U I U 

Optimal portfolios (33) and (34) have the same structure as portfolios (20) and (21) in the 
complete-market economy. However, asset prices are no longer available in closed form, 
and solve a system of non-linear algebraic equations (35). The latter system of equations 
reveals that asset prices are functions of a linear combination of shocks, λε/γI + ν, similar 
to the complete-market case. 

The inverse functions x = f−1(y) can be found by solving M − 1 equations with M − 1 
unknowns y = fi(x). We observe that solving Equation (35) is equivalent to solving the 
following system of equations for xI and xU , which does not involve inverse functions: 

xI  + xU = 
(
E + Q 

( λε + ν  + (µ0/σ0 )λ 
 

, (38) γI γU γI γU (λTΣ−1λ/γ2 + 1/σ2) 
ν I 0 

p = e−rT f (x ), p = e−rT f (x ). (39) 
I I U U 

 
Furthermore, solving the above system reduces to finding xI , which satisfies equation 
fI (xI ) = fU γU R(ε, ν) − (γU /γI )xI , where R(ε, ν) denotes the right-hand side of Equation 
(38). The latter equation can be solved using Newton’s method [e.g., Judd (1998)], and 
then the equilibrium prices can be found from Equations (39). 

We note that functions fi(x) given by (36) and (37) can be considered as expected 
asset payoffs under certain probability measures. For example, fI (x) = Eq [Π], where the 
expectation is under probability measure πq (x) = exp {an + ΠTx}/ N

 exp {aj + ΠTx}. 
n n j=1 j 

Consequently, equations (39) imply that asset prices in incomplete markets are given by 
discounted expected payoffs under certain probability measures. 

An important result of our paper is the existence and uniqueness of the solution of the 
system (38)–(39), which implies the existence of equilibrium in our economy. The proof of 
existence is significantly complicated by the market incompleteness and the multiplicity of 
risky assets, which makes it impossible to apply the intermediate value theorem as in the 
related models with one risky asset [e.g., Breon-Drish (2014)]. Therefore, we devise a new 
approach that might be useful in various other multi-asset incomplete-market economies.12 

 
 

12In the proof of Proposition 3 in the Appendix, we show that solving system (38)–(39) reduces to solving 
an equation f (x; 0) = f (x̄ − c x; t), where f (x; t) is a smooth function of x and t such that f (x; 0) = fI (x) 
and f (x; t) = fU (x) when t = 0.5/(λTΣ−1λ/γ2 + 1/σ2). Next, we consider t as a parameter and notice ν I 0 
that the equation has a solution x = x̄/(1 + c) when t = 0. Hence, by the implicit function theorem [e.g., 
Rudin (1976)], there exists t̄ such that there exists unique and continuous solution x(t) for all t ∈ [0, t̄). 
Our methodological innovation is to show that t̄ = +∞, and hence, the solution exists for all values of t. 

( 
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4. Economic Applications 
 
In this Section, we provide several economic applications of our analysis. First, we de- 
rive general conditions under which the prices of derivative securities provide information 
about the aggregate shock and define a new concept of informationally redundant securi- 
ties. Next, we explore the economic role of incomplete markets and establish conditions 
under which the asset prices in economies with complete and incomplete markets coincide. 
Finally, we derive closed-form expressions for the prices of risky debt and equity of a firm 
and explore how the value of the firm depends on the face value of debt. 

 
4.1. Information Revelation and Market Transparency 

 
Here, we investigate the informational role of derivative securities and determine precise 
conditions under which their prices reveal information about the probabilities of states. We 
disentangle two sources of information revealed by asset prices: the demands of informed 
investors and the correlations of noisy demands across different assets. We first analyze 
the dependence of the informed investor’s demand on shock ε. Equation (31) demonstrates 
that the informed investor’s portfolio is given by θ∗(p; ε) = λε/γI − θ∗(p)/γI  for general 

I I 

PDFs ϕε(x) and any number of assets satisfying M ≤ N . The latter equation demonstrates 
that the demand for asset m releases new information about shock ε only if λm (the mth 

component of vector λ) is non-zero because otherwise the demand for asset m does not 
depend on shock ε, and hence such a security is informationally redundant. 

The informational redundancy of derivatives is a generic property of M -asset economies 
in which cash flows of the underlying asset are spanned by shock sensitivities b in a linear 
way, i.e., C1 = b/λ̃, and hence, the replicating portfolio λ is given by λ = (λ̃, 0, . . . , 0)T in 
accordance with the informational spanning condition (30). As demonstrated in Section 
2, condition C1 = b/λ̃ is satisfied in single risky asset economies of Grossman and Stiglitz 
(1980) and Breon-Drish (2014). Consequently, adding any non-redundant securities to 
these economies does not help reveal more information about ε (provided that noises ν are 
uncorrelated across assets, as elaborated below). 

The intuition for the role of vector λ in determining the informational role of asset prices 
is as follows. As demonstrated in Section 3, vector λε can be interpreted as a portfolio that 
replicates the economy’s shock sensitivities bε, which determine the probabilities of states 
ωn. Investing in portfolio λε allows the informed investor to exploit her informational 
advantage and hold more wealth in states with higher real probabilities πn(ε). Assets with 
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λm = 0 do not help the investor to replicate shock sensitivities bε, and hence the demand 
for such assets is not sensitive to ε. However, we observe from Equation (31) for portfolio 
θ∗(p; ε) that assets with λm = 0 are still held by the informed investor because they help 
complete the market, and hence, are non-redundant from the perspective of risk sharing. 

When the market is complete, a condition for informational redundancy can be derived 
for general probabilities πn(ε). In particular, Equation (11) for portfolio θ∗(p; ε) demon- 
strates that investor I’s holding of asset m does not depend on shock ε if and only if vector 
Ω−1

(
ln

(
(π1(ε)/π (ε), . . . , ln(π N−1 (ε)/πN (ε)   

T 
has zero mth element. The latter condition 

can be easily violated even with modest amount of nonlinearity in probabilities. However, 
in situations when log-likelihoods can be linearized in such a way that for small shocks 
o the approximation ln

(
(πn(ε)   ≈ an + bnε is satisfied, our intuition on informational 

redundancy has a first-order effect even when the log-likelihood ratios are non-linear. 

To quantify the informational transparency of financial markets, we suggest looking 
at the posterior precision of shock ε, as estimated by investor U , which is given by 1/σ 2, 
where σ 2 = var[ε|p]. To underscore the important economic role of precision 1/σ 2, we 
label it as the transparency index.  For simplicity, we derive the posterior variance σ 2 

assuming that shock ε has normal prior distribution ε ∼ N (µε, σ2), which yields a more 
tractable expression for σ 2 than the distribution ε ∼ N(µε, σ2) in (6). As argued in 
Section 2, the normal distribution ε ∼ N (µε, σ2) is a good approximation of distribution 
(6) under plausible parameters, and hence, the posterior variances of ε implied by the two 
distributions are close. Lemma 4 below provides the transparency index in closed-form. 
Lemma 4 (Market transparency). Let shock ε be normally distributed, ε ∼ N (µε, σ2). 
Then, the transparency index 1/σ 2, where σ 2 = var[ε|p], is given by 

ε 

1 
 

 

σ 2 

ε 

1 λTΣ−1λ 
= + 

2 2 
o I 

 

. (40) 
 

Equation (40) implies that 1/σ 2 > 1/σ2.  Intuitively, the presence of informed traders 
reduces the uncertainty about ε by releasing new information via asset prices. More for- 
mally, the quantity of the released information can be measured as the difference between 
the entropies of posterior and prior distributions of ε.13 In the case of normally distributed 
o the latter measure is given by ln(σε) − ln(σε) and, hence, is an increasing function of σε. 

Consistent with the above intuition, transparency 1/σ 2 is determined only by assets 
that replicate the vector of shock sensitivities b. Assume, for simplicity, that Σν = σ2E, 
where E is an identity matrix. If asset C1 = b is traded, we obtain that λ = (1, 0, . . . , 0)T, 

13Entropy ε is defined as − 
 ∞

 ϕε(x) ln ϕε(x)dx, and for ε ∼ N (0, σ2) is given by 0.5 ln(2πeσ2). 
−∞ ε ε 
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and hence 1/σ 2 = 1/σ2 + 1/(γ2σ2). Therefore, 1/σ 2 does not depend on the number of 
o ε I   ν ε 

traded derivatives because they do not help span shock sensitivities b. If instead there are 
two risky assets with payoffs (b−K)+ and min(b, K), interpreted as equity and debt, then 
λ = (1, 1, 0, . . . , 0)T. Therefore, 1/σ 2 = 1/σ2 + 2/(γ2σ2), and transparency increases.14 

o ε I   ν 

Transparency also depends on the variance-covariance matrix of noise trader demands 
ν. In particular, higher correlations make the market more transparent by allowing infer- 
ring more information by comparing the market clearing conditions across securities. For 
example, consider a model with two risky assets and assume that ν1 = ν2, so that noisy 
demands are perfectly correlated. Taking the difference of the market clearing conditions 
(16) for the two markets we find that (λ1 − λ2)ε/γI + (ν1 − ν2) + (1, −1)TH(p) = 0. There- 
fore, shock ε can be perfectly learned from prices if λ1 /= λ2. More formally, matrix Σν 

becomes close to singular when noisy demands cross-correlations become closer to one. 
Therefore, the determinant of Σ−1 becomes large, and hence transparency 1/σ 2 increases. 

ν ε 

The empirical literature on price discovery in financial markets finds that the prices 
of derivative securities reveal information about the payoffs of the underlying asset [e.g., 
Easley, O’Hara, and Srinivas (1998); Chakravarty, Gulen, and Mayhew (2004); Pan and 
Poteshman (2006)]. The empirical evidence is consistent with our model when the deriva- 
tives help span shock sensitivities b and/or noise trader demands are correlated across 
assets. However, to our best knowledge the previous literature does not disentangle the 
latter two sources of information that we identify in this paper. 

Finally, we note that transparency 1/σ 2 is a decreasing function of the informed in- 
vestor’s risk aversion γI . Intuitively, investors with higher risk aversions have smaller 
demands for risky assets. Therefore, their private information is more difficult to filter out 
from the market clearing conditions, and hence, the market becomes less transparent. 

 
4.2. Economic Role of Market Incompleteness 

 
In this subsection, we compare the complete and incomplete market equilibria derived in 
Propositions 1 and 3. Our main finding is that market incompleteness has only second- 
order effect on equilibrium as compared to the first-order effect of the asymmetry of in- 
formation. Therefore, our complete-market equilibrium emerges as a tractable alternative 
to single risky asset incomplete-market economies with asymmetric information. 

 
 

14The results on the informational role of derivatives explain why in Brennan and Cao (1996) investors 
do not learn from the derivative asset. In particular, they consider a CARA-normal framework with a 
stock and a derivative with quadratic payoff C2. In our terminology, the stock’s payoff linearly spans b. 
Therefore, λ = (1, 0)T, and hence the derivative does not reveal any useful information. 
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We consider an asset with payoffs Cn  = hn, where h = A/N , n = 1, . . . , N , A > 0. 
The probabilities of states ωn are given by equation (5) in which an and bn are given by: 

an = ln(Cn) − C2 
n , bn = 

2σ2 

Cn (41) 
2 
C 

In the limit of N → ∞ cash flow C and shock ε have the following PDFs: 

Ce−0.5(C−ε)2/σ2 
ϕC (x) =  +∞ 2     2 , C > 0, (42) 

0 Ce−0.5(C−ε) /σC dC ( 
1    −0.5(x/σC )2   x   ( 

x  
   −0.5(x−µ0)2/σ2+0.5x2/σ2 

ϕε(x) = √
2π e + Φ e 

C C 
0 C 

, (43)  +∞ 
( 

1   0.5(x/σC )2 + x Φ
( 

x     e−0.5(x−µ0)2/σ2+0.5x2/σ2 

−∞ √
2π e

−
 σC σC 

0 C dx 

where Φ(·) is the cumulative density function (CDF) of a standard normal distribution, 

and parameters µ0 and σ0 of PDF (42) are chosen in such a way that shock ε has certain 
prespecified mean E[ε] = µε and variance var[ε] = σ2. PDF (42) of cash flow C has positive 
support and is known as Rayleigh distribution. 

We complete the market by adding arbitrary non-redundant securities to the econ- 
omy. This economy satisfies the informational spanning condition of Section 3.2 with 
λ = (1/σ2 , 0, . . . , 0)T. Consistent with Section 4.1, the added securities do not reveal 
information about ε because their weight λm in portfolio λ is zero, and hence, their only 
role is to facilitate risk sharing. To make complete- and incomplete-market economies 
comparable, we assume that there are no noise traders in the markets for added securities 
2, . . . , M , and the noise traders only trade in the market for the risky asset with cash flow 
C.15 We compare the complete-market prices with those in an economy with an extreme 
form of incompleteness in which only one risky asset with cash flow C is traded, keeping 
the number of states N the same in both economies and greater than two. Proposition 4 
characterizes the asset prices in these economies. 

Proposition 4 (Comparison of complete and incomplete market equilibria). In 
the N → ∞ limit, the price of the risky asset with cash flow C in the complete and 
incomplete market economies is given by: 

 
P cm(s) = σRNΦ 

  
µRN(s) 

 

 

RN 
C 

e−rT , (44) 

 
P icm(s) = σ Φ µC (s) e−rT , (45) 

C 
  

 

σC 
 

 

15We derive the equilibrium as a limiting case of the equilibrium in Section 3.1 in which noises νm are 
independent across all assets and the variances of ν2, . . . , νM converge to zero. The resulting equilibrium 
is not fully revealing because the assets 2, . . . , M do not reveal information about ε, similar to Section 4.1. 

σ 
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Figure 2: Asset price in complete-market economy 
The figure shows asset prices P cm(s) when the market is complete for the following model pa- 
rameters: µε = 0, σε = 1, σν = 1, σC  = 1, γI  = 5, γU   = 5 and r = 0. 

 
2 RN RN 

respectively, where s = ε/(γI σC ) + ν1, µC  (s) and σC are the risk-neutral measure param- 
eters given by Equations (A.42) and (A.43) in the Appendix, µC (s) and σC are parameters 
given by Equations (A.48) and (A.47) in the Appendix, and function Φ (x) is given by: 

x2Φ(x) + (2x/
√

2π)e−0.5x2 + 1 (sgn(x)/
√

π)Γ(1.5, 0.5x2) 

Φ (x) = {x>0} −   
xΦ(x) + (1/  2π)e− 

where Γ(a, x) = 
 +∞ ya−1e−ydy is the incomplete gamma-function, 1 

function, and sgn(x) is the sign of x. 

 
{x>0} is an indicator 

Proposition 4 provides a fully closed-form asset price in the complete-market economy. 
Conveniently, the asset price does not depend on the type of securities which are used 
to complete the market. When the market is incomplete, the solution is explicit up to 
µC (s), which is found by solving Equations (A.46) and (A.48) in the Appendix numer- 
ically. Therefore, the incomplete-market equilibrium appears to be less tractable than 
the complete-market equilibrium introduced in our paper. Figure 2 depicts the complete- 

2 
market asset price P cm(s) as a function of s = ε/(γI σ ) + ν1 for the following exogenous 
model parameters: µε = 0, σε = 1, σν = 1, σC  = 1, γI  = 5, γU  = 5 and r = 0. The asset 
price turns out to be a strictly positive and convex function of s. 

We find a surprising result that despite severe market incompleteness in the econ- 
omy, the incomplete-market price P inc(s) is very close to P cm(s) so that  

(
P inc(s) − 

P cm(s) /Pcm(s) < 0.007 for all s. Because the plots of the two prices are indistinguish- 

P 
cm

(s
) 

C 
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able, we do not show P inc(s) in Figure 2. The closeness of prices is robust to perturbations 
of model parameters. The PDF (43) of shock ε is also very close to a standard normal 
PDF, and hence, is not shown for brevity. 

We attribute the closeness of prices P inc(s) and P cm(s) to the similarity of information- 
sensitive demands in complete- and incomplete-market economies, given by the first terms 
of portfolios (20) and (31), when the informational spanning condition is satisfied. The 
similarity of portfolios demonstrates that the informational spanning condition alleviates 
the effects of market incompleteness, allows for efficient allocation of wealth to more likely 
states, and hence, leads to the similarity of prices in incomplete and complete markets. 

Our results raise the question of finding conditions under which the asset prices in 
economies with complete and incomplete markets coincide. The following Proposition 
provides a sufficient condition. 

Proposition 5 (CARA-normal models with complete and incomplete markets). 
Consider a risky asset with cash flow C ∼ N (ε, σ2 ), where ε has prior distribution ε ∼ 
N (µε, σ2).  Then, the price of the latter asset is the same both in the economies with 
complete and incomplete markets, and is given by: 

P cm(s) = P icm(s) = µRN(s)e−rT , (47) 
 

2 RN 

where s = ε/(γI σC ) + ν1, and µC  (s) is given by Equation (A.42) in the Appendix, in which 
we set σ0 = 1/

I
1/σ2 + 1/σ2 and µ0 = (µε/σ2)σ2. 

o C ε 0 

As demonstrated in Section 3, the asset prices both in the economies with complete 
and incomplete markets can be represented as expected payoffs under certain probability 
measures. In the case of CARA-normal models it turns out that asset payoffs under 
these probability measures have the same mean but different variances. Consequently, the 
asset prices coincide despite the fact that distributions are different. The above results 
demonstrate the limited role of market incompleteness and suggest using complete-market 
equilibria as tractable alternatives to incomplete-market equilibria in economic research. 

 
4.3. Pricing Debt and Equity under Asymmetric Information 

 
In this section, we apply our results to study the pricing of risky debt and equity in REE 
with asymmetric information. We study a firm with cash flows C and face value of debt 
K. The firm issues risky debt with face value K > 0 and equity with payoffs min(C, K) 
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and (C − K)+ and prices P and PE , respectively.16 The firm value is then defined as the 
sum of the values of debt and equity, V = PD + PE . 

As in Section 4.2, we consider a complete-market economy in the limit of N → +∞ 
in which cash flows C and shock ε have distributions (42) and (43), respectively. It is 
immediate to observe that the informational spanning condition is satisfied in our economy 
because the vector of shock sensitivities is given by b = C/σ2 and is spanned by debt and 
equity so that b = 

(
min(C, K) + (C − K)+ /σ2 . Therefore, the replicating portfolio λ 

is given by λ = (1, 1, 0, . . . , 0)T/σ2 . Similar to the economy in Section 4.2, we allow for 
noise traders only in the debt and equity markets and denote their noisy demands by ν1 

and ν2 respectively. Noisy demands have the same volatility σν and correlation ρ.17  The 
equilibrium prices of debt and equity are reported in Proposition 6 below. 

Proposition 6 (Debt and equity pricing). 

1) The price of debt and equity in the above complete-market economy are given by: 
 

 +∞  min(C, K) C exp 
( 

(C − µ̃C )   
− 

  γ  γ  ( ν1 min(C, K) + ν2(C − K)+ dC 

I  U 2 0 
PD =  +∞ 

0 

 
C exp 

2(σRN) ( 
(      ˜ )2 

C + 
2(σRN)2 

γI + γU 

  γI γU      
(
ν min(C, K) + ν (C K)+ dC 

I U 

,(48) 

 +∞ 
( 

(C − µ̃C )     γ  γ  ( 
(C − K)+ C exp − + I  U 

2 
ν1 min(C, K) + ν2(C − K)+ dC 

0 
PE =  +∞ 

0 

 
C exp 

2(σRN) ( 
(      ˜ )2 

C + 
2(σRN)2 

γI + γU 

  γI γU      
(
ν min(C, K) + ν (C K)+ dC 

I U 

, (49) 

where volatility and drift parameters σRN and µ̃ are independent of the face value of debt 
K, σRN  is given by Equation (A.43) in the Appendix, and µ̃ is given by: 

  
2   2 

µ̃C = 
  γI γU   

γI + γU 

µ0/(σ0 σc )  
γ 

(
2/(γ2(1 + ρ)σ2σ4) + 1/σ2    

+
 

   ε   
γI σ2 

I ν   c 0 

2 
 (50) 

2ε/(γI σc 
( ) + ν1 + ν2  (σRN)2. 

γU γI 2/γ2 + (1 + ρ)(σ2σ4 /σ2) 
I ν  C 0 

 

2) The posterior distribution of shock ε does not depend on the face value of debt. 

Proposition 6 provides closed-form expressions for the prices of debt and equity in 
 

 

16We make the standard assumptions that debt holders have priority of payment and that equity holders 
are residual claimants with limited liability. 

17Consistent with the analyses in Sections 4.1 and 4.2, the equilibrium is not fully revealing despite the 
absence of noise in the other markets because the other assets are informationally redundant. 
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Figure 3: Expected firm value as a function of the face value of debt 
The figure shows the expected firm value V as a function of the face value of debt K for markets 
with asymmetric and symmetric information (when both investors observe ε) for the following 
model parameters: µε = 0, σε = 1, σν = 1, ρ = 0, σC  = 1, γI  = 5, γU  = 5 and r = 0. 

 
terms of easily computable integrals.18 These expressions allow studying the asset prices 
and the firm value as functions of the face value of debt K. In particular, summing up the 
equations for debt and equity prices we find that the value of the firm is given by 

 +∞ 
( 

(C − µ̃C )     γ  γ  ( 
C2 exp − + I  U ν1 min (C, K) + ν2(C − K)+ dC 

0 V =  +∞ 
 
C exp 

2(σRN)2 ( 
(C − µ̃C )   

− 

γI + γU 

  γ γ ( ν1 min(C, K) + ν2(C − K)+ . (51) dC 

+ I  U 

2 
0 2(σRN) γI + γU 

 

Equation (51) demonstrates that the value of the firm is affected by the face value of debt 
K, and hence the capital structure irrelevance theorem of Modigliani and Miller (1958), 
in general, is violated in our economy. One important result immediate from Equation 
(51) is that the face value of debt K does not affect distribution parameters σRN  and µ̃ 

C C 

that capture the effects of asymmetric information. The dependence of the firm value on 
K arises due to the price pressure of noise trader demands ν1 and ν2 and is present even 
in symmetric-information economies where all investors observe shock ε. 

Figure 3 plots the unconditional expectation of the firm value with respect to shock ε 
and noises ν1 and ν2 for economies with symmetric and asymmetric information when 
noises are uncorrelated (i.e., ρ = 0) and the other parameters are as in Section 4.2. 

 
 

18These integrals can be expressed in terms of the CDF of the standard normal distribution and incom- 

E
 [V

 (K
 )]
 

29  



plete gamma functions. However, expressions (48) and (49) appear to be more compact and intuitive. 
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In the symmetric information case, we assume that both investors observe shock ε.19 

The unconditional expectation E[V (K)] is then calculated using Monte-Carlo simulations. 
The results confirm the above economic intuition. In particular, the value of the firm 
appears to be a non-linear function of the face value of debt K. We also investigate the 
difference between the firm values in asymmetric- and symmetric-information economies 
(not reported for brevity). This difference is affected by the face value of K, and hence, the 
interaction between the asymmetry of information and noise trader demands contributes 
to the non-linear pattern on Figure 3, although the effect is small. Nevertheless, the 
asymmetry of information has a sizable effect on the level of the firm value. 

It can be easily observed from (51) that the firm value is independent of K if noisy 
demands are zero or perfectly correlated with ρ = 1. In the latter case, because the noises 
have the same variance, we obtain that ν1 = ν2, and hence, the price-effect of shocks is 
given by ν1 min(C, K) + ν2(C − K)+ = ν1C and does not depend on the face value of 
debt K. Albagli, Hellwig, and Tsyvinski (2013) derive a similar condition in a model with 
risk-neutral investors and position-limit constraints. Our analysis demonstrates this result 
in a general setting with risk-averse investors. To our best knowledge this analysis is new 
even for economies with symmetric information. 

Despite the fact that the capital structure irrelevance does not hold in our economy, 
the second part of Proposition 6 establishes an informational analogue of Modigliani-Miller 
theorem by showing that the face value of debt is irrelevant for the posterior distribution 
of ε. Therefore, slicing the firm cash flows into debt and equity in different way does not 
allow firms to manipulate the amount of information revealed by asset prices. The reason 
is that, as demonstrated above, the shock sensitivities b in the economy can be written 
as b = 

(
min(C, K) + (C − K)+  /σ2 .  Therefore, portfolio λ = (1, 1, 0, . . . , 0)T/σ2 that 

C C 

replicates sensitivities b does not depend on K. Then, consistent with Section 4.1, the face 
value of debt K does not affect the amount of information revealed by asset prices. 

We note that the replicating portfolio λ should not be confused with information sen- 
sitivities of asset prices measured by partial derivatives ∂PD (ε, ν)/∂ε and ∂PE (ε, ν)/∂ε. 

From Equation (26) for these sensitivities it is immediate to observe that they are affected 
by the face value of debt K. In particular, for low (high) K equity is more (less) sensitive 
to shock ε than debt. However, importantly for our analysis, summing up partial deriva- 
tives ∂PD (ε, ν)/∂ε and ∂PE (ε, ν)/∂ε it is immediate to observe that the sensitivity of the 

 
 

19As argued in the discussion of Lemma 2 in Section 3.1, the symmetric-information economy is a 
limiting case of the asymmetric-information economy when the parameters σ0 and µ0 of PDF (6) converge 
to 0 and ε, respectively. Therefore, the symmetric-information equilibrium prices can be computed by 
taking limits σ0 → 0 and µ0 → ε in Equations (48) and (49). 
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firm value V = PD + PE  with respect to ε does not depend on K. 

 
5. Extension to Economies with General Probabili- 

ties and Distributions 

In this section, we consider an economy with M = N assets and extend our analysis 
to an economy with general probabilities of states πn(ε), and also shocks ε and noises ν 
drawn from distributions with general PDFs ϕε(x) and ϕν (x), respectively. We show that 
despite the generality, the model preserves the structure of portfolios and prices derived 
in Proposition 1 for particular probabilities πn(ε) and PDFs ϕε(x), given by Equations (5) 
and (6), respectively. We obtain prices P (ε, ν) and investor I’s portfolio θ∗(p; ε) in closed 
form, and investor U ’s portfolio θ∗ (p) in terms of a solution of a fixed-point problem. 

In the economy with general distributions, portfolio θ∗(p; ε) is no longer a linear func- 
tion of ε but remains separable in shock ε and prices p due to CARA preferences. Because 
the optimal portfolio (11) in Lemma 1 is derived for general probabilities πn(ε) and dis- 
tributions of ε and ν, from (11) we find that portfolio θ∗(p; ε) is given by θ∗(p; ε) = 
η(ε)/γ − 1/γ Ω−1v(p), where vector η(ε) ∈ R N−1 

I I 

is defined as follows: 
 

η(ε) = Ω−1 ln
( π1(ε)   

, . . . , ln
( πN−1(ε)  

 
 
. (52) 

πN (ε) πN (ε) 
 

Substituting investors’ portfolios into market clearing conditions we obtain: 

η(ε) + ν + H�(p) = 0, (53) 
γI 

where H�(p) = θ∗ (p) − Ω−1v(p)/γ . Then, the derivation of equilibrium proceeds in the 
U I 

same way as in Section 3. Proposition 7 reports the results. 

Proposition 7 (Equilibrium with M = N and general distributions). Let proba- 
bilities πn(ε) and PDFs ϕε(x) and ϕν (x) of shock ε and noise ν be continuous, bounded 
and positive functions on R and RM−1, respectively. Then, the following statements hold. 
1) If there exists an REE, optimal portfolios θ∗(p; ε) and θ∗ (p), risk-neutral probabilities 

I U 

πn and asset prices P (ε, ν) are given by: 
 

θ∗(p; ε) = η(ε) 1 Ω−1v(p), (54) 
γI 

− 
γI 

1 
θ∗ (p) = −γ Ω−1 

( v(p) − Ψ 
(
H�(p) 

 

, (55) 
U 

 T 

I 
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k=1 evk
 

k=1 evk
 

(   (   

(   

I 

θ (p) = −γ I Ω 1 

πRN evn , πRN 1 
, (56) 

n   = 1 +   N−1 = 
N 1 +  N−1 

Pm(ε, ν) = πRNCm(ω1) + πRNCm(ω2) + . . . + πRNCm(ω ) e−rT , (57) 
1 2 N N 

 

where m = 1, . . . , M − 1, η(ε) is given by (52), matrix Ω is as in Proposition 1, and 
v(p) = (v1, . . . , vN−1)T is a function of p defined by (14), which in equilibrium is given by 

γU γI 1 
v(p) = Ψ − η(ε) η(ε) 

— ν  + Ω + ν
 

 
 

, (58) 
γU + γI γU γI γI 

 

functions H�(p) : RM−1 → RM−1  and Ψ(·) : RM−1 → RM−1  are defined by equations 
γU γI 1 

v(p) = Ψ H�(p)  − ΩH�(p) 
 

, (59) 
γU + γI γU 

Ψ(z) = 
(
Ψ1(z) − Ψ 

 

(z), . . . , Ψ 
 

N−1 (z) − ΨN (z)  
T
, (60) 

 
Ψn(z) = ln 

   
+∞ 

−∞ 

πn(x)ϕν 
(
− η(x) 

γI 

  

— z ϕε(x)dx 
 
. (61) 

2) There exists an REE iff function Ψ(x)/γU  − Ωx : R M−1 
→ RM−1 is an injective map.20 

3) If investor U observes both prices p and the residual demand θ∗(p; ε) + ν, then there 
always exists unique REE in which investor I’s portfolio and asset prices are given by 
Equations (54) and (57), respectively, and investor U’s portfolio is given by: 

  
∗ −1 
U 

U 

v(p) − Ψ 
1 

−γI
 
Ω−1v(p) − θ∗(p; ε) − ν 

 
. (62) 

 
 

Proposition 7 provides closed-form expressions for asset prices as functions of η(ε)/γI + ν 
for general probabilities and distributions and derives necessary and sufficient conditions 
for the existence of REE. The equilibrium is derived in terms of function Ψ(z) which, 
as shown in the proof of Proposition 7, can be interpreted as a vector of log-likelihood 
ratios of posterior probabilities of investor U . In the special case of normally distributed 
noises ν and shocks ε with PDF (6) function Ψ(z) becomes a linear function of z, and the 
equilibrium coincides with that in Proposition 1. 

Proposition 7 demonstrates the existence of REE when function Ψ(x)/γU − Ωx is in- 
jective.  If the latter function is not injective, Equations (57) and (58) imply that price 
P (ε, ν) is not an injective function. Therefore, there exist pairs (ε1, ν1) and (ε2, ν2) such 

20That is, for all x1 and x2 such that Ψ(x1)/γU − Ωx1 = Ψ(x2)/γU − Ωx2 ⇒ x1 = x2. Gale and Nikaidô 

N 
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(1965) show that an easily verifiable sufficient condition for a function to be injective is that all principal 
minors of its Jacobian matrix are positive. 
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that P (ε1, ν1) = P (ε2, ν2) and yet η(ε1)/γI  + ν1  /= η(ε2)/γI  + ν2.  Consequently, the in- 
formation contained in asset prices does not reveal the realization of η(ε)/γI + ν, which 
contradicts the market clearing condition (53), and hence cannot happen in equilibrium. 

In Proposition 7, similar to Breon-Drish (2010), we also demonstrate the existence 
of REE in economies in which uninformed investors in addition to prices p can observe 
the residual demand θ∗(p; ε) + ν, which is comprised of the demands of the informed and 
noise traders. The latter assumption is similar to that in Kyle (1985), where uninformed 
market makers observe the aggregate demand of informed and noise traders. Because 
θ∗(p; ε)+ν = η(ε)/γ +ν−Ω−1v(p)/γ , observing price p and the residual demand θ∗ (p; ε)+ν 
allows investor U to infer η(ε)/γI + ν in our economy even in situations when the latter 
information is not revealed via asset prices, that is, when markets are not weak-form 
efficient. Then, if η(ε)/γI +ν is known to investor U , the derivation of equilibrium proceeds 
in the same way as in part 1 of Proposition 7. 

 
6. Conclusion 

 
We provide a general framework that can be used as a building block to study asset 
pricing and information asymmetry in an REE setting. In contrast to previous works, our 
model allows for general payoffs of assets, which do not need to be normally distributed. 
We provide a tractable closed-form characterization of equilibrium for a large class of 
probabilities of states of the economy and probability density functions of signals. We 
derive exact conditions under which asset prices reveal information about the signal and 
provide several economic applications of our theory. The tractability of the model allows 
us to obtain simple comparative statics for optimal portfolios and asset prices and to prove 
the existence of equilibrium. 
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Appendix:  Proofs 
 
Lemma A.1 (Prior mean and prior variance of ε and prior probabilities). Assume 
that ε has PDF (6), then its mean µε and variance σ2 are given by the following expressions 
in terms of the parameters (µ0, σ2) and the vectors (a, b): 

 
 

µε = 

 

j=1 exp µ2    
aj + j µj 

2σ2 

 
 
, (A.1) 

j=1 exp 
 

µ2    
aj + j

 
2σ2 
  2    j 

 
 

2 2  j 
   N    2  N  

σ2 2 j=1 exp 
 aj + 2σ2 µj j=1 exp aj + 2σ2 µj  

ε = σ0 +  µ2 − 2         2 
 (A.2)  

 
j=1 exp a +   j   

j 2σ2 j=1 exp aj + 
 µj    

  
2σ2 

 

where µj = (bj + µ0/σ2)/(1/σ2). 
0 0 

 
Proof of Lemma A.1. The PDF of ε is given by 

  
=1 eaj +bjxφ (x; µ0, σ0) 

ϕε(x) = 
j 

 ∞     N 

−∞ j=1 
aj +bjx 

, 
φ (x; µ0, σ0) dx 

where φ(x; µ, σ) denotes the pdf of a random variable distributed N (µ, σ2), 
1 2 2 

φ(x; µ, σ) = e−(x−µ) /2σ . 2πσ2 

After some algebra, we rewrite ϕε(x) as follows: 
  N aj +bjµ0+σ2b2/2φ (x; σ2 

ϕε(x) = j=1 e 0  j 0 bj + µ0, σ0) , 
 N 

j=1 
  

 N 

aj +bjµ0+σ2b2/2 
 

2    j 

j=1 exp aj + 2σ2 φ (x; µj, σ0) 
= 0   

 
j=1 exp µ2 , 

aj + j
 

2σ2 
 

where by definition we set µj = σ2bj + µ0 = (bj + µ0/σ2)/(1/σ2). Computing µε and σ2 
0 0 0 ε 

with PDF ϕε(x), after straightforward algebra, we obtain Equations (A.1) and (A.2). 

 
Proof of Lemma 1. We derive portfolio (11) of the informed investor, whereas the 
proof for the uninformed is similar. Taking log on both sides of investor I’s FOC (10), 

e 

e 
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and substituting wealth WI,T ,n from the budget constraint (3), we obtain: 
 

(θ∗)T(Πn − erT p) = 1 (ln
( 

γI 
πn(ε) — ln 

( 
RN 
n + const, n = 1, . . . , N, (A.3) 

 

where const is a constant that does not depend on n. Writing down Equation (A.3) for 
n = N and subtracting it from the other equations in (A.3), we obtain the following system 
of N − 1 equations with N − 1 unknown components of vector θ∗: 

 

 1 ( πn (ε)   ( πRN    
(θ∗)T(Πn − ΠN ) = 

I 

ln 
πN (ε) — ln RN 

N 
, n = 1, . . . , N − 1, (A.4) 

 

where Πn − ΠN  = (C1(ωn) − C1(ωN ), . . . , CN−1(ωn) − CN−1(ωN ))T. Solving the system of 
equations (A.4), we obtain investor I’s optimal portfolio 

 

θ∗(p; ε) =  1 Ω−1
f(

ln
( π1 (ε) 

 
, . . . , ln

(
 πN −1 (ε) 

RN 

— ln 1 , . . . , ln
(
 

RN 

N−1 Tl
.
 

γI πN (ε) πN (ε) RN RN 
N N 

 

Finally, substituting probabilities πn(ε) from Equation (5) into the above equation, we 
obtain investor I’s portfolio weight (15). • 

 
Proof of Lemma 2. From Bayes rule we have that 

  ϕε̃|ε (y|x)ϕε (x)   
ϕε|ε̃(x|y) =  ∞  ϕ (y x)ϕ (x)dx

.
 

−∞ ε̃|ε | ε 

Note that, since ν ∼ N (0, Σν ), ε̃ = λε/γI + ν + H(p) conditional on ε has multivariate 
normal distribution N (λε/γI + H(p), Σν ). Hence substituting for ϕε̃|ε above, we have 

 

exp
f
−0.5

(
y − λx/γ — H(p)  

T
Σ−1

(
y − λx/γ — H(p) 

l
ϕε(x) 

ϕε|ε̃(x|y) = 
G (y; p) , (A.5) 

 

where G1(y; p) is a function that does not depend on state ωn and normalizes the density. 
Next, to find probability πU , from the market clearing condition (16), we note that by 
observing price p the uninformed investor can only learn that shock ε and noise trader 
demand ν satisfy Equation (16). Therefore, from Equation (13) for πU

 we obtain: 
 

πn = E[πn(ε)|λε/γI + ν + H(p) = 0] 
 ∞ ean+bnx 

= 
−∞ j=1 eaj +bjx 

ϕε|ε̃(x|0)dx = 1 
G1(y; p) 

 ∞ 
edn 

−∞ 

 

(x) 
 
dx, 

(A.6) 
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π 
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N 

where dn(x) is a quadratic function of x given by: 
 

dn(x) = an + bnx − 0.5
(
λx/γ + H(p) 

T
 Σ−1

(
λx/γ + H(p)   − 0.5(x − µ )2/σ2 

I ν I 0 0 
2 λTΣ−1 2 + 1/σ2    µ0/σ2  + bn  − λTΣ−1H(p)/γ 

= ν  λ/γI − 2 0 x − 0 ν I λTΣ−1 2 2 

n − 2bn 
(
λTΣ−1H(p)/γ 

ν  λ/γI  + 1/σ0 

− µ /σ2 

(A.7) 

+ an + 2 ν 
λTΣ−1 2 I 0 0 2 + g(p), 

ν  λ/γI  + 1/σ0 

where g(p) is some function which only depends on p, and not on x or n. Substituting 
Equation (A.7) back into integral (A.6), after integrating, we obtain Equation (19) for πU , 

1 
 

1 b2 
n
(
 1 

2   
 

πU ∗   


 n − 2b λ  Σν   H(p)/γI  − µ0/σ0     
n (p; θU (p)) = G (p) exp an + 2 λTΣ−1 2 2 , 

2  ν  λ/γI  + 1/σ0  

where G2(p) is a function, which does not depend on ωn and is not needed later. • 

Proof of Proposition 1. Let  v = 
(
ln(πRN/πRN), . . . , ln(πRN

 /πRN) 
T
.  Then, the risk- 

1 N N−1 N 

neutral probabilities are given by πRN
 = evn /(1 +   N−1 evj ) for n = 1, . . . , N − 1 and 

RN  = 1/(1 +  N−1 evj ).  Therefore, from Equation (7) for prices p we obtain that the 
prices are given by Equation (23). 

Investor I’s portfolio (20) is the same as in Equation (15) in Lemma 1. To find investor 
U ’s portfolio θ∗ (p), we use Equation (12) in Lemma 1, which gives θ∗ (p) in terms of 

U U 
investor U ’s probabilities πU (p; θ∗ (p)). Substituting probabilities πU (p; θ∗ (p)) from (19) 

n U n U 

into portfolio (12) we obtain: 

1 
   

     U       
  

( πU ∗ T 


 

θ∗ (p) = γ Ω−1 


  ln
( π1 (p; θU (p)) πU (p; θ∗ (p)) , . . . , ln N−1(p; θU (p)) 

πU (p; θ∗ (p)) — v


  
U N U N U (A.8) 

1 
 

b̃(2) − 2b̃
(
λTΣ−1 

2
  

= Ω−1 


ã + 1 ν   H(p)/γI  − µ0/σ0 v
 

, 
γU  2 λTΣ−1λ/γ2 + 1/σ2 −  

ν I 0 
 

where b̃(2)  = (b2 − b2 , . . . , b2 — b2 ) and b̃ = (b1 − b , . . . , b — b ).  Recalling that 
1 N N−1 N N N−1 N 

λ = Ω−1b̃, and rearranging terms in Equation (A.8), we obtain: 

θ∗ (p) = 
1 Ω−1a + 1 γ γ 

(µ0/σ2)λ 
λTΣ−1λ/γ2 + 1/σ2 

1 
— QH(p) − γ Ω−1v, (A.9) 

U U ν I 0 U 

where a and matrix Q are are given by: 

1 b̃(2) T  −1   ν   a = ã + 2 (λTΣ−1 2 2  , Q = 
(
λ Σ 

λ/γ + 1/σ2   
. (A.10) 

ν  λ/γI  + 1/σ0 ) γU γI 

  

π 
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U  0 
U 

U 

θ∗ (p) = 
(
E + Q 

−1  
Ω−1(v 0 

−1 0 

γ 

2 

n 

n π 

γ 

Next, we substitute H(p) = θ∗ − Ω−1
(
v − ã /γ from Equation (17) into Equation (A.9), 

and after some algebra, we obtain a system of linear equations for portfolio θ∗ (p): 
1 

θ∗ (p) = γ Ω−1a + 1 γ 
(µ0/σ2)λ 

λTΣ−1λ/γ2 + 1/σ2 
— Qθ∗ + QΩ−1

(
v − ã  − Ω−1v. 

U U ν I 0 I U 

Solving this system of equations, we obtain θ∗ (p) in Proposition 1, given by 
  

1
 Q ã) 

1 Ω−1(v  a) + (µ0/σ2)λ . 
U γ − − γ —  

γ (λTΣ−1λ/γ2 + 1/σ2) 
I U U ν I 0 

 

Next, we find equilibrium prices. Substituting optimal portfolios θ∗(p; ε) and θ∗ (p) 
I U 

from Equations (20) and (21) into the market clearing condition θ∗(p; ε) + θ∗ (p) + ν = 0, 
I U 

after rearranging terms, we obtain the following equation for vector v: 
( −1      1 
E + Q QΩ (v γI 

− ã) 
1 

— γU
 Ω

−1(v − a) + 
(µ0/σ2)λ 

γU (λTΣ−1λ/γ2 + 1/σ2) 
1 

−γI
 

ν 

Ω−1
(
v − ã  + 

I 0 
 
λε + ν = 0. 
γI 

(A.11) 

We observe that the above equation can be further simplified by noting that 

(E + Q)−1 1 
QΩ−1(v 

γI 

− ã) = (E + Q)−1(E + Q − 

1 

1 
E) Ω−1(v 

γI 

1 

− ã) 

= Ω−1(v − ã) − (E + Q)−1 Ω−1(v − ã). 
I I 

Substituting the latter expression into Equation (A.11), canceling like terms, substituting 
a from Equation (A.10) into Equation (A.11), and solving it for v − ã we obtain 

1 γI b̃(2) + 2(µ0/σ0 )Ωλ   γI γU            
( 

+ 
 ( λε 

v = ã + 2 γ + γ λTΣ−1λ/γ2 + 1/σ2 
Ω γI + γU 

E + Q + ν , 
γI I U ν I 0 

which gives v in Equation (24). The equilibrium asset prices are then given by Equation 
(23) in terms of vector v. Because v is a linear function of λε/γI + ν, function P (ε, ν) is 
a one-to-one mapping between λε/γI + ν and prices p. Therefore, observing asset prices 
indeed reveals λε/γI + ν, which completes the proof. • 

 

Proof of Proposition 2. Although vector v in Proposition 1 is (N − 1)-dimensional, for 

convenience we set vN = 0. First, we find comparative statics for prices. Differentiating 
risk-neutral probability πRN given by (22) with respect to ε we obtain: 

∂πRN 
 
= πRN ∂vn 

RN N 
n  ∂vk  vk 

∂ε n 
—   N 

k=1 evk 
e 

k=1  ∂ε 
 

(A.12) 
= πRN ∂vn RN    RN  ∂v(ω) , 

∂ε 

I 

1 
γ 

1 
γ 
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ERN 

U T ν U   I 

ν  λ/ 

T  −1 

k Ω 

k 

ν C 

where v(ω) now denotes a random variable that takes value vn in state ωn. Next, differ- 
entiating price (23) with respect to ε, and using Equation (A.12), we obtain: 

∂Pm (ε, ν ) = ERN  ∂v(ω) C (ω)
 
 RN   ∂v(ω) 

C (ω)
 
 

∂ε ∂ε m − E 
∂ε m

 (A.13) 
= covRN

( ∂v(ω) 
, C 

∂ε m
 
(ω) . 

 

Differentiating Equation (24) for vector v, substituting matrix Q from Equation (25), 
and denoting by ek = (0, . . . , 1, . . . 0)T ∈ RN−1  a vector with kth  element equal to 1 and 
other elements equal to 0, we obtain: 

∂vk γ ( ΩλλTΣ−1λ/(γ γ )   = e Ωλ + k λT   −1 2 2 
∂ε γU + γI Σν  λ/γI  + 1/σ0 (A.14) 

= γU (bk — bN )
(
1 + λ

 TΣ−1 (γ γI ) , γU + γI λTΣ−1λ/γ2 + 1/σ2 
ν I 0 

 

where to derive the second line we used the fact that eTΩλ = eT(b1 −bN , . . . , bN−1 −bN )T = 
k k 

bk − bN , when k < N . Equation (A.14) also holds for k = N , in which case ∂vN /∂ε = 0 
because bk − bN  = 0.  Therefore, using Equation (A.14) we compute the covariance in 
Equation (A.13), and obtain: 

 

∂Pm(ε, ν) = γU (
1 + λ Σν  λ/(γU γI ) 

  
covRN

 
 
(b, C )e−rT 

 
, (A.15) T   −1 2 2 m 

∂ε γU + γI λ Σν  λ/γI  + 1/σ0 

where we eliminated bN because subtracting a constant does not affect covariances. 

To find the derivative with respect to νl, following the same steps as above, we obtain: 

∂Pm(ε, ν) = covRN
( ∂v(ω) , C 

 
(ω) , (A.16) 

∂νl ∂νl 

where l = 1, . . . , M − 1. Then, differentiating Equation (24) for vector v and recalling that 

we additionally set vN = 0, similarly to Equation (A.14) we obtain: 
 

∂vk =   γU eT  
( E + Q)el 

∂νl γU + γI  
k Ωλλ  Σν 

1el/(γ  γ )   

= γU 

(
eTΩel 

+ e
T T  − U   I , (A.17) γU + γI λTΣ−1λ/γ2 + 1/σ2 

ν I 0 
1 

= γU γU + γI 

( 
k (ωl) − Ck (ωN ) + (bk − bN )λTΣ− el/(γU γI )  , λTΣ−1λ/γ2 + 1/σ2 

ν I 0 

where to derive the last line we used the fact that by the definition of matrix Ω and vector 
λ, eTΩel = Ck (ωl) − Ck (ωN ) and eTΩλ = bk − bN . Clearly, Equation (A.17) also holds for 

k k 

U 

m 
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n 

n 

i 

N N N 

k = N , because then it implies that ∂vk/∂νl = 0. Therefore, from Equations (A.17) and 
(A.16), we obtain the result in Proposition 2: 

∂Pm (ε, ν ) =  γU γI   covRN
(
Cl, Cm   

+ λ  Σν   el/(γU γI ) 
 

covRN
 

(
b, Cm e−rT . λT   −1 2 2 

∂νl γU + γI Σν  λ/γI  + 1/σ0 

Now, we find the derivatives of optimal portfolios with respect to prices p. First, we 
need to compute ∂v/∂p.  To do this, we find the Jacobian Jp = ∂p/∂v and then by the 
inverse function theorem we have ∂v/∂p = J−1. Substituting πRN = 1 − πRN − . . . − πRN

 
p N 1 N−1 

into Equation (7) for prices p in terms of risk-neutral probabilities, we obtain: 

pm = πRN
(
Cm(ω1) − Cm(ω ) + . . . + πRN

 
− 

(
Cm(ω N−1 ) −Cm (ωN ) + Cm (ωN ) e−rT , (A.18) 

where m = 1, . . . , N − 1.  Let Jπ  be the Jacobian of vector (πRN, . . . , πRN
 )T, that is, a 

1 N−1 

matrix with (n, k) element given by ∂πRN/∂vk .  Differentiating Equation (A.18) we find 
that Jp = ΩTJπe−rT , and hence 

JpΩ erT = ΩTJπ Ω. (A.19) 

To find Jπ we first calculate ∂πRN/∂vk , where πRN  is given by the first equation in (22): 
n n  

RN     RN 

∂πRN  −πn πk  , if n /= 
k, 

= 
(A.20) 

∂vk  πRN RN  2 

n    − (πn  ) , if n = k. 
From Equation (A.20) we find Jπ = diag{πRN, . . . , πRN

 }−(πRN, . . . , πRN
 )T(πRN, . . . , πRN    ), 

1 N−1 1 N−1 1 N−1 

where diag{. . .} is a diagonal matrix. Substituting Jπ into Equation (A.19) we obtain: 
JpΩ erT = ΩT

(
diag{πRN, . . . , πRN

 } − (πRN, . . . , πRN
 )T(πRN, . . . , πRN

 ) Ω. (A.21) 
1 N−1 1 N−1 1 

( 
N−1 

 T 
Recalling that Ω is a matrix with rows (Πn − ΠN )T, where Πn = C1(ωn), . . . , CM−1(ωn) 
and denoting C̃ = 

(
Cn (ω1) − Cn (ωN ), . . . , Cn (ωN−1 ) − Cn (ωN ) 

T
, we find that the (n, k) 

element of matrix JpΩerT is given by: 
{JpΩ erT }n,k = C̃Tdiag{πRN, . . . , πRN

 }C̃ — C̃T(πRN, . . . , πRN
 )T(πRN, . . . , πRN

 )C̃ 
n 1 N−1 k n 1 N−1 1 N−1 k 

 N 
i=1 

(
Cn(ωi) − Cn(ω 

) 
(
Ck

 (ωi) − Ck (ωN ) πRN 

(  
N

 

(
Cn(ωi) − Cn(ω 

) πRN    
(  

N
 

(
Ck (ωi) − Ck (ω 

) πRN
  − i=1 N i i=1 N i 

= covRN(Cn, Ck ), 

where to derive the second equality we added zero terms 
(
Cn(ω ) − Cn (ωN ) 

(
Ck

 
(ωN ) − 

Ck (ωN ) πRN, Cn(ωN ) − Cn(ωN ) πRN and Ck (ωN ) − Ck (ωN ) πRN to summations, and then 
removed constants Cn(ωN ) and Ck (ωN ), because they do not affect covariances. 

= 

N 

N 

N 
( ( 
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( 

U 

I,m 

m 

I,m 

n 

j=1 exp{aj + ΠT(λε − γI θI )} 
 N 

I 

i 

Therefore, we conclude that JpΩ erT  = varRN[Π]. Then, by the inverse function the- 
orem, we now find that Ω−1∂v/∂p = 

(
varRN[Π] 

−1
erT . Using the latter equality and 

differentiating optimal portfolios (20) and (21) with respect to p we obtain that the first 
of these two partial derivatives is given by (28) and the second is given by: 

∂θ∗ (p) 
 

 

∂p 

  
 1 

= E 
γI 

γI + γU 

γI γU 
(E + Q)−1 varRN[Π] 

−1
 erT . (A.22) 

We note the following equation for the inverse matrix (E + Q)−1: 
TΣ−1 

(E + Q)−1 = E − λλ ν , 
γU γI λTΣ−1λ/γ2 + 1/σ2 + λTΣ−1λ 

ν I 0 ν 

which can be verified by multiplying both sides of the latter equation by E + Q. Substi- 
tuting (E + Q)−1 above into Equation (A.22), we obtain Equation (29) for ∂θ∗ (p)/∂pT. 

Finally, we demonstrate that ∂θ∗ (p; ε)/∂pm  < 0, i.e.  investor I’s demand for asset 
m is downward sloping in asset mth price. This result follows from the fact that matrix 
(varRN[Π])−1 is positive-definite (as the inverse of a positive-definite matrix), and its ele- 
ment m of the diagonal is given by eT (varRN[Π])−1em > 0, where em = (0, 0, . . . , 1, . . . , 0)T 

is a vector with mth  element equal to 1 and other elements equal to zero.  Then, from 
Equation (28) it follows that ∂θ∗ (p; ε)/∂pm < 0. • 

 
Proof of Lemma 3. From Assumption 1 we have that bn = λ0 + ΠTλ, which we 
substitute into the objective function (1) of the informed investor. After some algebra, we 
rewrite investor I’s objective function as follows: 

E −e−γI WI,T |ε, p = −  N j=1 exp{aj + bjε − γ (Π — erT p)Tθ } 
I j I 

 
  N 

j=1 exp{aj + bjε} 
= − exp{(λ0 + erT pTλ)ε − erT pT(λε − γ θ )} 

I I 

 N (A.23) 
j × 

j=1 exp{aj + bjε}  
 N exp{aj + ΠTθ } 

= − exp{(λ0 + erT pTλ)ε − erT pTθ } j=1  N j  I  , 
j=1 exp{aj + bjε} 

where θI = λε−γI θI . From the last line in (A.23) we observe that finding optimal portfolio 
θ∗(p; ε) reduces to finding optimal θ∗, which solves the optimization problem 
I I 

max erT pTθ − g (θ ), (A.24) 
 

(  
N

 
θI 

I I I 

where gI (θI ) = ln i=1 exp{ai + ΠTθI } . From the optimization problem (A.24), we see 
that θ∗ does not depend on shock ε. Hence, portfolio θ∗(p; ε) is given by Equation (31). • 

I I 

− 
  ( 
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N

 
j I 

I 

| 
1 

n 

n 

U n=1 

l 

T 

n 

Proof of Proposition 3. Investor I’s optimization problem (A.24) yields the FOC for 
the optimal θ∗ = λε − γI θ∗: 

I I 

g 
(
θ∗   = erT p, (A.25) 

 
where gI (x) = ln 

 
j=1 exp 

I 
 

f
aj + ΠTx

l 
 

I 
 

and g (x) = ∂gI (x)/∂xT is a column vector for 
x ∈ RM−1. Assuming that g (·) is invertible (which we prove below), we find that θ∗ = 

I 

f−1(erT p).  Then, from equation θ∗ = λε − γ θ∗, which defines 
I 

θ∗, we obtain portfolio 
I I I I I 

θ∗(p, ε) in Equation (33). 

Now, we find the portfolio of investor U . Let ε̃ = λε/γI + ν + H(p), i.e., the left hand 
side of the market clearing condition (32), where H(p) = −θ∗(p)/γI + θ∗ (p). The inference 

I U 

problem of investor U is similar to that in the complete-market economy. Following exactly 
the same steps as in Lemma 1, we obtain: 

ϕε ε̃(x|y) = exp
f
 −0.5 y − λx/γI − H(p) −1

( 
ν 

y − λx/γI − H(p) 
 l   ϕε(x) 

G (y; p) , 
   2 T  −1  2         

πU ∗ f 1 bn − 2bn(λ Σν H(p)/γI  − µ0/σ0 ) 1 
n (p; θU (p)) = exp an + 2 λTΣ−1 2 2 , 

ν  λ/γI  + 1/σ0 G2(p) 
 

where G1(y; p) and G2(p) are some functions, irrelevant for subsequent derivations. More- 
over, using that, by Assumption 1, bn = λ0 + ΠTλ, from the last equation we obtain: 

 
  2 T 2 T −1  l 

πU ∗ f 1 bn + 2Πn (λµ0/σ0  − λλ  Σν H(p)/γI ) 
n (p; θU (p)) = exp an + 2 λTΣ−1 2 2 × 

ν  λ/γI  + 1/σ0 
(µ0/σ2  − λTΣ−1H(p)/γ ) l  1   

× exp
f
λ0 

0 ν I 1 2 1/σ2 G2(p) 
ν I 0 

1 b2  + 2ΠT(λµ0/σ2  − λλTΣ−1H(p)/γ ) l  1   
= exp

f
an + n 

2 
n 0 ν I , λTΣ−1 2 2 ( ) 

ν  λ/γI  + 1/σ0 G3  p 
 

where G3(p) is a function that does not depend on n and is not needed for the proofs. 
Using probabilities πU

 we rewrite investor U ’s objective function (8) as follows: 
 

—  N n (p; θ ) exp{−γ 
(
W e + θ  

(
Π  − e  p } = − exp{−γU WU,0er } × 

n=1 πU
 

rT 
U U,0 

T rT 
U G3(p) 

  2 T 2 T −1  l 
exp{γU er pTθ }  N exp

f
 an + 1 bn + 2Πn (λµ0/σ0  − λλ  Σν H(p)/γI ) — γU ΠTθU     . 2 λTΣ−1 2 2 n 

ν  λ/γI  + 1/σ0 
(A.26) 

Σ 
(  T 

U 

T 
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n 

+ Π 

b 
2 j 

I U 

0 ν I I   

ν 

U 

U U 

I − U 

n T I 

( j 

θ U 

  

Factoring out ΠT in the term in the curly brackets in the last line above we have 

1 b2  + 2ΠT(λµ0/σ2 − λλTΣ−1H(p)/γ ) 
an + 2 n 0 

λTΣ−1λ/γ2 
ν 

+ 1/σ2 — γU ΠTθU  = 
ν I 

1 b2 

0   
λµ0/σ2   − λλTΣ−1H(p)/γ an + 2 λTΣ−1 2 2 n 0 ν T  −1 2 2 − γU θU . 

ν  λ/γI  + 1/σ0 λ Σν  λ/γI  + 1/σ0 
M−1 M−1 

Now, similarly to gI (·), we define function gU : R → R for x ∈ R : 
N 

gU (x) = ln exp
f
 1 2 aj + 2 λTΣ−1 2 + ΠTx l 

.
 

j=1 ν  λ/γI  + 1/σ0 

Then, investor U ’s optimization problem from Equation (A.26), becomes 
  2 T  −1   

min 
θU 

γU e pTθU + gU 
( λµ0/σ0 − λλ  Σν 

λTΣ−1 2 H(p)/γI 2 — γU θU   . 

ν  λ/γI  + 1/σ0 

Let fU = g , then the FOC for the uniformed’s optimal portfolio, θ∗ is, 
U U 

( λµ0/σ2  − λλTΣ−1H(p)/γ 
f 0 U λTΣ−1 ν 2 + 1/σ2 — γU  

∗ = erT p. 
ν   λ/γI 0 

Assuming that fU is invertible, as shown below, and er p belongs to its range, we obtain 

λµ0/σ2   − λλTΣ−1H(p)/γ 0 ν I ∗ −1 rT 

λTΣ−1 2 2 − γU θU  = fU    (e p) . 
ν  λ/γI  + 1/σ0 

Substituting for H(p) = −f−1 (erT ) /γ + θ∗ and factoring out γU θ∗ 
U 

we have 

λµ0/σ2 + λλTΣ−1f−1 (erT p) /γ2 ∗ −1 rT 

λTΣ−1 2 2 — γU θU (E + Q) = fU    (e p) , 
ν  λ/γI  + 1/σ0 

where, as before, E is the (M − 1) × (M − 1) identity matrix and matrix Q is given by 

Q = λλTΣ− 
γ 

(
λTΣ−1 2 2

 
 

γU  I ν  λ/γI  + 1/σ0 

as in Proposition 1. Solving for θ∗ yields 
1 λµ0/σ2 + λλTΣ−1f−1 (erT p) /γ2 

θ∗ (p) = 
γ 

(E + Q)−1
 0 ν I λTΣ−1 2 2 

I − f−1 (erT p) 

U ν  λ/γI  + 1/σ0   
1 1 (µ0/σ2)λ (A.27) 

= (E + Q)−1  Qf−1
(
erT p

 
 γI γ f−1 (erT p) + γ 

0 . (λTΣ−1λ/γ2 + 1/σ2) 
U U ν I 0 

n I 

rT 

I 

T 

I 

1 
, 
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I  

j 

I 

U 

0 

I 

Now, we verify that function fI (x) is invertible. The invertibility of fU (x) is demon- 
strated along the same lines. Recalling that by definition exp (g (x)) =  N exp 
and then differentiating both sides of the latter equation twice, we obtain: 

f
an + ΠTx

l
 

∂g (x) N exp (g (x)) = Π exp 
f
a + ΠTx

l 
, (A.28) 

   
∂2g (x) 

∂xT 

∂g (x) ∂g (x) 
 

 

I j j j 
j=1 

N 
I + I 

I exp (g (x)) = 
 

Π ΠT exp 
f
a + ΠTx

l 
. (A.29) 

∂xTx ∂xT ∂x I j  j j j 
j=1 

Next, we introduce a new probability measure πq (x) = exp {an + ΠTx}/ N
 exp {aj + ΠTx}. 

n n  j=1  j 
N  

f l 
Dividing both sides of Equations (A.28) and (A.29) by exp (gI (x)) = j=1 exp 
respectively, we observe that the derivatives can be rewritten as 

2 

aj + ΠTx , 

∂gI (x) = Eq(x)[Π], ∂ 
gI (x) = varq(x)[Π], 

∂xT ∂xTx 
where Eq (x)[Π] and varq(x)[Π] are the mean and the variance of the risky assets payoffs 
vector Π under probability measure q(x). Because all assets are non-redundant, matrix 
varq(x)[Π] is positive-definite, and hence is invertible. Then, function f (x) = ∂g (x)/∂xT 

I I 

is injective and invertible on its range by Lemma A.2.  Similarly, fU (x) = ∂gI (x)/∂xT is 
injective and invertible on its range. 

Finally, we derive the equation for prices. Substituting θ∗ and θ∗ from Equations (33) 
I U 

and (34) into the market clearing condition θ∗(p; ε) + θ∗ (p) + ν = 0 yields, after some 
I U 

algebra, the following system of nonlinear algebraic equations for prices, 
2 

1 f−1 
(
erT P (ε, ν)  + 1 

f −1
(
erT P (ε, ν)  = 

(
E + Q 

( λε + ν  + (µ0/σ0 )λ 
. 

I γU γI γU (λTΣ−1λ/γ2 + 1/σ2) 
ν I 0 

1
( 

Next, we prove that the above equation has unique solution. Denote xI = f− erT P (ε, ν) 
and xU = f− 1

(
erT P (ε, ν) . Because functions fI (x) and fU (x) are injective, we obtain that 

if the equilibrium exists, then fI (xI ) = fU (xU ) = erT P (ε, ν). From the latter equation and 
the above equation for P (ε, ν) we obtain the following system of equations for xI and xU : 

2 
xI  + xU = 

(
E + Q 

( λε + ν  + (µ0/σ0 )λ . γI γU γI γU (λTΣ−1λ/γ2 + 1/σ2) 
 

fI (xI ) = fU (xU ). 
ν I 0 

 

The existence and uniqueness of xI and xU solving the latter system of equation follows 
from Lemma A.5 below because this system is a special case of Equation (A.32), in which 
x = x , c = γ /γ , t = 0.5/(λTΣ−1λ/γ2 + 1/σ2 ), f (x; 0) = fI (x), f (x; t) = fU (x) and 

 

x̄ = γU 

ν 

(
E + Q 

I 

 ( λε + ν
 γI 

0 

(µ0/σ2)λ + (λTΣ−1λ/γ2 + 1/σ2) . 
ν I 0 

I U I 

γ U 
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By Lemma A.5, xU and xI are continuous and differentiable functions of ε and ν. There- 
fore, there exists an equilibrium in which price P (ε, ν) exists, is unique and continuously 
differentiable in ε and ν. • 

 

Lemma A.2 (Gale and Nikaidô). Let f (x) : RM−1 → RM−1 be a continuous differen- 

tiable function with a positive-definite Jacobian. Then, function f (x) is injective. That is, 
∀x1, x2 ∈ RM−1  such that f (x1) = f (x2) ⇒ x1 = x2. 

Proof of Lemma A.2. See the proof of Theorem 6 in Gale and Nikaidô (1965). 

 
Lemma A.3. Consider a sequence xk such that |xk| → ∞ as k → ∞. Then, there exists 
index m such that sequence |ΠT xk| is unbounded. 

Proof of Lemma A.3. Suppose, on the contrary, sequence |ΠT xk| is bounded for all 
m. Therefore, there exists constant A such that |ΠT xk| < A for all m and k. Because all 
securities are non-redundant, matrix Π with columns Πn, n = 1, . . . , N has rank M − 1. 
Therefore, vectors Πn span RM−1. Without loss of generality, assume that Π1,. . . , Π 

form basis in RM−1 (states ωn can be always renumbered accordingly). 
M−1 

Consider vector el = (0, . . . , 0, 1, 0, . . . , 0)T∈ RM−1  with lth  element equal to 1 and all 
other elements equal to 0. Then, there exist constants αm,l such that el = α1,lΠ1 + . . . + 
αM−1,lΠN . Then, it can be easily observed that for all l 

 
|eTxk| ≤ |α1,l||ΠTxk| + . . . + |αM−1,l||ΠT xk| ≤ A(M − 1) max |αml|. 

l 1 M−1 m,l 
 

Therefore, all elements of vector xk are uniformly bounded, which contradicts the fact that 

|xk| → ∞. Hence, |ΠT xk| is unbounded for some m. • 
 

Lemma A.4. Consider a sequence xk such that |xk| → ∞ as k → ∞. Then, there exists 
index m such that sequence |ΠT xk − ΠT xk| is unbounded. 

m m+1 
Proof of Lemma A.4. Suppose, on the contrary, sequence |ΠT xk − ΠT xk| is bounded 

m m+1 
for all m. It can be easily observed that the latter fact implies that there exists constant A 
such that for all i and j we have inequality |ΠTxk −ΠTxk| < A. Because all risky assets and 

i j 

the riskless asset are non-redundant, column vectors (ΠT, 1)T ∈ RM , where n = 1, . . . , N , 
span RM . Without loss of generality, we assume that the first M vectors (ΠT, 1)T, where 
n = 1, . . . , M , form a basis in RM  (otherwise, states ωn can be renumbered). Therefore, 
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 N 

there exists unique vector (α1, . . . , αM )T which solves the following system of equation: 
 

α1Π1 + . . . + αM ΠM  = 0, 
α1 + . . . + αM  = 1. 

(A.30) 
 

We pick the solution of system (A.30) and for an arbitrary index m we obtain: 

|ΠT xk| = |(α1 + . . . + αM )ΠT xk − (α1ΠTxk + . . . + αM ΠT xk )| 
m m 1 M 

≤ |α1||ΠT xk − ΠTxk| + . . . + |αM ||ΠT xk − ΠT xk| ≤ A max |αl|, 
m 1 m M l 

 

contradicting the fact that according to Lemma A.3 |ΠT xk| is unbounded for some m. • 

 
Lemma A.5 Consider function f (x; t) with scalar parameter t, such that for a fixed t 
f (·; t) : RM−1 → RM−1 and is given by the following expression 

  N 2 T 

f (x; t) = j=1 Πj exp{aj + tbj + Πj x} 
j=1 exp{aj + tb2 + ΠTx} . (A.31) 

j j 
 

Then, for all fixed x̄ ∈ RM−1, c > 0 and t ∈ R there exists unique x which solves equation 

f (x; 0) = f (x̄ − c x; t). (A.32) 

Moreover, solution x(x̄; t), considered as a function of x̄ and t, is continuous and differ- 
entiable with respect to its variables. 

Proof of Lemma A.5. It can be easily observed that for t = 0 Equation (A.32) has 
unique solution x = x̄/(1 + c). Moreover, function f (x; 0) − f (x̄ − c x; t) is continuously 
differentiable with respect to x and t, and its derivative with respect to x has positive- 
definite Jacobian. In particular, we observe that f (x; 0) = fI (x), where fI (x) is defined by 
Equation (36), and hence f (x; 0) has positive-definite Jacobian, as demonstrated in the 
proof of Proposition 3. Exactly in the same way, it can be shown that −f (x̄ − c x; t) also 
has a positive-definite Jacobian with respect to x. Furthermore, it can be easily verified 
that f (x; 0) − f (x̄ −c x; t) is continuously differentiable with respect to t. Therefore, by the 
implicit function theorem (e.g., Rudin (1976)), there exists an open interval (−t̃, t̃) and a 
continuous and differentiable multi-variate function x(t) that solves Equation (A.32) for 
all t ∈ (−t̃, t̃). Next, we show that the solution exists for all t ∈ R. For brevity, we show 
the existence for t ∈ R+, and the existence for t ∈ R− is demonstrated analogously. 

Let t̄ be the lowest upper bound of t to which solution x(t) can be extended: 

t̄ = sup{t : ∀τ ∈ [0, t) ∃ unique x such that f (x; 0) = f (x̄ − c x; τ )}. (A.33) 
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By the implicit function theorem, t̄ > 0. Next, we show by contradiction that t̄ = +∞. 
Suppose, t̄ < +∞, and consider two cases. First, suppose that Equation (A.32) has 
solution x(t̄) for t = t̄. Then, applying the implicit function theorem one more time at 
t = t̄ we extend solution x(t) to some t > t̄, which contradicts the definition of t̄ in 
(A.33). Second, suppose that (A.32) does not have a solution for t = t̄. Next, we get a 
contradiction with the latter statement by showing that x(t) can be extended to t̄. 

Consider a sequence tk ↑ t̄. By the definition of t̄ in (A.33) there exist xk such that 

f (xk ; 0) = f (x̄ − c xk ; tk ). (A.34) 

Suppose, xk are bounded, so that there exists constant A such that |xk| < A. Then, by 
Bolzano-Weierstrass Theorem, there exists a convergent subsequence such that xkn → x∗ 

as n → +∞ (e.g., Rudin (1976)).  To simplify the notation, throughout this proof the 
elements of subsequences are numbered by k rather than kn, which can be achieved by 
renumbering the elements of the subsequence.  Then, using the continuity of function 
f (x; t) and taking the limit k → ∞ in (A.34) we find that x∗ is a solution of (A.32) for 
t = t̄. Moreover, this solution is unique by Lemma A.2 because f (x; 0) − f (x̄ − c x; t) has 
positive-definite Jacobian, which leads to a contradiction with the assumption that the 
solution does not exist for t = t̄. Therefore, t̄ = +∞. 

It remains to show that xk is indeed bounded. Next, we assume that xk is unbounded 
and get the contradiction. If xk is unbounded, there exists a subsequence such that |xkn | → 
∞. By relabeling elements kn of the subsequence by k, we assume that |xk| → ∞. Let 
j(k) = arg max ΠTxk . Because j(k) takes only finite number of values, there exists index 

j j 

j∗ such that j∗ = j(kn) for an infinite sequence of kn → ∞.  Without loss of generality, 
we assume that j∗ = 1 (otherwise, we relabel states ωn accordingly) and also focus on 
subsequence kn and relabel its elements by k. Hence, for this subsequence ΠTxk ≥ ΠTxk 

1 j 

for all j = 1, . . . , N . Proceeding similarly, we obtain subsequence xk such that 
 

ΠT T T T 

1 xk ≥ . . . ≥ Πmxk > Πm+1xk ≥ . . . ≥ ΠN xk, (A.35) 
 

for all k, where m is the fist index for which ΠT xk − ΠT xk  → +∞ as k → ∞.  The 
m m+1 

existence of such an index m is guaranteed by Lemma A.4. 

Next, define function πj (x; t) as follows: 
exp{aj + tb2 + ΠTx} 

πj (x; t) = j j . (A.36)  
j=1 exp{aj + tb2 + ΠTx} 

j j 

Consider sequences πj (xk ; t). Because 0 ≤ πj (xk ; t) ≤ 1, by Bolzano-Weierstrass theorem 
there exists a subsequence xk  such that πj (xk ; 0) → π+  and πj (x̄ − c xk ; tk ) → π− for all 

j j 
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j=1 π π j j 

− 

π+ 

π+ j 

m 

m+1 

m 

π− 
m+1 + ΠT m+1 

j j = 1, . . . , N , where    N + 
 N − 

j=1  j = 1, 0 ≤ π+ ≤ 1 and 0 ≤ π− ≤ 1.  Next, we 
demonstrate that 

 

j = 0, for j = m + 1, . . . , N, (A.37) 

πj  = 0, for j = 1, . . . , m. (A.38) 
 

To derive equalities (A.37)–(A.38), by employing inequalities (A.35) and the fact that 
ΠT T 

mxk − Πm+1xk → +∞ as k → ∞, for all j > m we obtain: 
 

j = lim πj (xk ; 0) ≤  lim exp{aj + ΠTxk} 
k→+∞ k→+∞ exp{am + ΠT xk} 

≤ 
k 
lim exp{aj + ΠT xk} = 0. 

 
Similarly, for all j ≤ m we obtain: 

→+∞ exp{am + ΠT xk} 

exp{aj + tkb2 + ΠTx̄ − cΠTxk} 
j = lim πj (x̄ − c xk ; tk ) ≤  lim j j j 

k→+∞ k→+∞ exp{am+1 + tkb2 m+1 x̄ − cΠT xk} 
exp{aj + tkb2 + ΠTx̄ − cΠT xk} 

lim 
k→+∞ exp{am + tkb2 

j j 
+ ΠT 

m 
x̄ − cΠT xk} = 0. 

m m+1 m+1 

Using Equations (A.37)–(A.38) and taking limit k → +∞ in (A.34) we obtain: 
 

π+ + − − 

m+1Πm+1 + . . . + πN ΠN  = π1 Π1 + . . . + πmΠm. 

The above equation implies that 
 

π+ T +   T −  T −  T 

m+1Πm+1xk + . . . + πN ΠN xk = π1 Π1 xk + . . . + πmΠmxk. (A.39) 
 

From the fact that    N π+ =   N π− = 1, demonstrated above, from Equations (A.37)– 
j=1  j j=1  j 

(A.39) and inequality (A.35) we obtain: 
 

π+ T +   T T T −  T −   T 

m+1Πm+1xk + . . . + πN ΠN xk ≤ Πm+1xk < Πmxk ≤ π1 Π1 xk + . . . + πmΠmxk. 

The last inequality contradicts Equation (A.39). Consequently, xk is bounded, and hence, 
as shown above, there exists unique solution x(t̄) of Equation (A.32) for t = 
by the implicit function theorem, the solution x(t) can be extended beyond 

t̄. Then, 
t̄, which 

contradicts the definition of t̄ in (A.33). Therefore, t̄ = +∞, which proves the global 
existence. Therefore, there exists unique x(x̄; t). The continuity and differentiability of 
x(x̄; t) w.r.t. x̄ follow from the implicit function theorem applied to an arbitrary point x̄, 
which completes the proof of Lemma A.5. • 

= 

≤ 
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C 

ν 

Proof of Lemma 4. The proof is similar to that of Lemma 2. Assume that ε ∼ 
N (µε, σ2), and we observe vector ε̃ = λε + ν + H(p). From Bayes’ rule 

 

  ϕε̃|ε (y|x)ϕε (x)   
ϕε|ε̃(x|y) =  ∞  ϕ (y x)ϕ (x)dx

, (A.40) 
−∞ ε̃|ε | ε 

where now ϕε(x) = (1/
I
2πσ2) exp(−0.5(x − µε)2/σ2). Since ν ∼ N (0, Σν ), ε̃ = λε/γ + 

o ε I 

ν + H(p) conditional on ε has a multivariate normal distribution N (λε/γI + H(p), Σν ). 
Substituting for ϕε̃|ε and ϕε in the numerator above, we have 

ϕε|ε̃(x) = exp −0.5 y − λx/γI − H(p) Σ−1
(
 y − λx/γI − H(p) − 0.5(x − µε) /σ 2

l 1 G (y, p) , 
ν ε 

1 2 + (y − H(p))T Σ−1λ/γI 2l 1   
= exp

f
−0.5

(
1/σ2  + λTΣ−1λ/γ2   

(
x − µε/σε ν o ν I 1/σ2 T  −1 2 

ε + λ Σν  λ/γI G2(y; p) 

where G1(y; p) and G2(y; p) are some functions that do not depend on x. We observe 
that the above equation gives the PDF of a standard normal distribution with mean and 
precision parameters given by 

µε/σ2 + (y − H(p))T Σ−1λ/γI 1  1 λTΣ−1λ 
µε = ε 

1/σ2 + λT Σ−1 
ν 

λ/γ2 , σ2  = σ2 + γ2 , 
o ν I 

which completes the proof. • 

ε ε I 

Proof of Proposition 4. 1) The expression for the asset price is given in closed form 
by Equation (23) in Proposition 1. To solve the model without noise trader demands in 
derivatives market, we first consider a diagonal volatility matrix of noise trader demands 
Σν   = diag(σ2, σ̃2, . . . , σ̃2).   Because in this economy b = C/σ2 ,  we obtain that λ = ν ν ν C 

(1, 0, . . . , 0)T/σ2 . Given the structure of λ, the equilibrium does not depend on σ̃ν because 
λTΣ−1 T 2   2 T   −1 2   2 

ν  λ = 1/(σνσC ) and λ Σν ν = ν1/(σνσC ). After deriving the equilibrium prices (23) 
we take the limit σ̃ν → 0, which allows us to set ν = (ν1, 0, . . . , 0)T. Passing to N → ∞ in 
the resulting equation for the asset price, taking into account the expressions for an and 
bn in terms of asset cash flows in Equations (41), and after simple algebra, we obtain: 

  +∞ 2 RN 2 RN  2 

P cm(s) = 0 C  +∞ exp {−0.5(C − µC   (s)) /(σC   ) }dC , (A.41) 0 C exp {−0.5(C − µRN(s))2/(σRN)2}dC 
C C 

where µRN(s) and σRN  are given by: 
C C 

  
γ γ 

 1/(σ2σ4  ) 


 
µRN(s) =   1 + ν   C s (A.42) 

γI + γU γI γU 

(
1/(γ2σ2σ4 ) + 1/σ2  


 

I   ν   C 0 

f (  T 

I U 
C 
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I I 

C 

C 

2  2 l 

+ γI µ0/(σ0 σC ) (σRN)2, γI + γU 1/(γ2σ2σ4) + 1/σ2 
I  ν   c 0 

σRN = σC . (A.43) C γ 1/σ2   I C   1 − 
γ + γ 1/(γ2σ2σ4 ) + 1/σ2 
I U I  ν  C 0 

 

Using a simple change of variable y = (C − µRN)/σRN and calculating integrals in Equation 
C C 

(A.41) we obtain that the asset price is given by (44). 

2) As demonstrated in Section 3.2, the asset price in the incomplete market can be found 
by solving the system of equations (38) and (39), which can be rewritten as follows: 

 

P icm = f 
(
x∗(s) e−rT = f 

(
x̄(s) − (γ /γ )x∗(s) e−rT , (A.44) 

 

where we denote x∗(s) = xI , and x̄(s) is given by: 
  

1/(σ2σ4  ) 


 µ0/(σ2σ2 ) 
x̄(s) = γU 

1 + (   s + 0   C 2   2   4 2 , (A.45) 
γI γU 1/(γ2σ2σ4 ) + 1/σ2 1/(γI σνσc ) + 1/σ0 

I   ν   C 0 
 

Taking limit N → ∞ in Equation (A.44) in which fI (x) and fU (x) are given by Equa- 
tions (36) and (37), we obtain the following equation: 

 

σC Φ (x∗(s)σC ) = σC Φ (x̄(s) − (γU /γI )x∗(s))σC , (A.46) 
 

where x(s) is given by (A.45) and σC is given by: 
σC 

σC =    

1 − 1/σ2 
 

 1/(γ2σ2σ4 ) + 1/σ2 

. (A.47) 

I   ν   C 0 
 

The price is then given by Equation (45) in which 
 

µC (s) = x̄(s) − (γU /γI )x∗(s) σ2 . • (A.48) 
 
Proof of Proposition 5. The proof is analogous to the proof of Proposition 4, except 
that all the integrals can be evaluated in closed form due to the assumption that C and ε 
are normally distributed. In particular, in the limit of N → ∞ functions fI (x) and fU (x) 

2 2 
given by equations (36) and (37) converge to fI (x) = σC x and fU (x) = σC x, where σC  is 
given by (A.47). Substituting the latter functions into Equation (35) for the asset price 
we recover expression (47). • 

C 

U U 

ν  C 

( 

( 
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 ν 

ν 

ν 

C 

I U I 

n 

U 

U 

I 

  

 

− 

Proof of Proposition 6. 1) Similar to the proof of Proposition 4, we first derive the 
equilibrium in the market with the following volatility matrix of noise trader demands: 

 
σ2 2 

 
ν  ρσν   0 0  . . . 0    ρσ2 σ2 0 0  . . . 0  

 ν ν    
0 0 

Σν = 
σ̃2 0  . . . 0 


  

  
0 0 0  σ̃2  . . . 0  . (A.49)  

  
. . . . . . . . . . . . . . . . . . 


  

 
0 0 0 0 0 

 

σ̃2 


 

Because λ = (1, 1, 0, . . . , 0)T/σ2 , similar to the proof of Proposition 4, we observe that 
terms λTΣ−1λ and λTΣ−1ν do not depend on σ̃ν . Therefore, after deriving the equilibrium ν ν 

with matrix (A.49) we then take the limit σ̃ν → 0, which allows us to set ν3 = ν4 = . . . = 0. 
The rest of the proof is analogous to the proof of Proposition 4 adjusted to the case of two 
risky assets. 2) The proof follows from the results of Lemma 4 and Section 4.2. • 

 

Proof of Proposition 7. Let ε̃ = η(ε)/γ + ν + H�(p), where H�(p) = θ∗ (p) − (1/γ )Ω−1v. 

Then, conditional density ϕε|ε̃(x|y) is given by: 
ϕν 

(
y − η(x)/γ 

 
− H�(p) ϕε(x) 

ϕε|ε̃(x|y) =  +∞ ϕ 
(
y
 η(x)/γ H(p)  ϕ (x)dx

. (A.50)
 

−∞ ν − I − �  
ε 

 

Suppose the equilibrium exists. Portfolio (54) of investor I remains exactly the same as 
in Equation (11) in Lemma 1. Next, we find investor U ’s portfolio. Similarly to Equation 
(A.6) in the Proof of Lemma 2, we note from the market clearing condition (53) that in 
equilibrium ε̃ = 0, and hence find investor U ’s posterior probabilities πU

 as follows: 

πn = 
 +∞ 

−∞ 
πn(x)ϕε|ε̃(x|0)dx 

 
 
 

f ( l 
1  +∞ 

= πn(x)ϕν 
(
− η(x) — H�(p) ϕε(x)dx = exp Ψn  H�(p) , (A.51) 

G1(p) −∞ γI G2(p) 
where G1(p) and G2(p) are some functions that do not depend on n.  The integrals in 
(A.50) and (A.51) exist because ϕν (·) and ϕε(·) are bounded and continuous PDFs. From 
Equation (A.51) we obtain that ln(πU /πU ) = Ψn

(
H�(p)  − Ψ 

(
H�(p)  .  Substituting the 

n N N 

latter expression into (12) for investor U ’s portfolio we obtain portfolio θ∗ (p) in (55). 
Subtracting (1/γ )Ω−1v from both sides of investor U ’s portfolio (55), multiplying both 

sides by Ω, using the definition of H�(p), and rearranging terms we obtain Equation (59): 

Ψ
(
H�(p)

 
ΩH�(p) = 

γ
U 

γU + γI γU γI 

I 

1 
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v(p). (A.52) 
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Next, we derive vector v. From the market clearing condition (53) we observe that in 
equilibrium H�(p) = −η(ε)/γI − ν. Substituting the latter expression into Equation (A.52) 
and solving it for v, we obtain Equation (58). Then, risk-neutral probabilities and asset 
prices are given by Equations (56) and (57), respectively, which can be shown exactly in 
the same way as in Proposition 1. This completes the derivation of equilibrium. 

Now we prove part 2 of the proposition. Suppose, there exists an REE but function 
Ψ(x)/γU − Ωx is not injective; that is, there exist x1 and x2 such that Ψ(x1)/γU − Ωx1 = 
Ψ(x2)/γU  − Ωx2  but x1  /= x2.  Pick (ε1, ν1) and (ε2, ν2) such that x1  = η(ε1)/γI  + ν1  and 
x2 = η(ε2)/γI + ν2. Then, Equations (57) and (58) for price P (ε, ν) and vector v(p) imply 
that P (ε1, ν1) = P (ε2, ν2) but η(ε1)/γI  + ν1  /= η(ε2)/γI  + ν2.  However, market clearing 
condition (53) clearly implies that price P (ε, ν) is injective, that is, P (ε1, ν1) = P (ε2, ν2) 
⇒ η(ε1)/γI + ν1 = η(ε2)/γI + ν2, which leads to contradiction. 

Next we prove that if Ψ(x)/γU − Ωx is injective, then there exists an equilibrium. 

Portfolios and prices (54)–(57) are in equilibrium if price P (ε, ν) is injective. This is 
because the equilibrium is derived from the fact that price p = P (ε, ν) uniquely reveals 
η(ε)/γI + ν via the market clearing condition (53). Suppose, there exist pairs (ε1, ν1) 
and (ε2, ν2) such that P (ε1, ν1) = P (ε2, ν2) but η(ε1)/γI  + ν1  /= η(ε2)/γI  + ν2.  Because 
there is one-to-one mapping between P (ε, ν) and v, from equation (58) we observe that 
Ψ(x)/γU − Ωx is not injective, which contradicts the assumption of the proposition. 

Finally, we prove part 3. Suppose, investor U observes prices p and the residual demand 
 

θ∗(p; ε) + ν = η(ε) + ν 1 Ω−1v(p). 
γI 

− 
γI 

 

The latter equation implies that investor U can now infer η(ε)/γI + ν even if prices P (ε, ν) 
are not injective. Then, investor U finds the posterior distribution of ε, equilibrium port- 
folios and prices in the same way as in part 1 of the proposition. • 

I 
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