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Abstract 
 

This paper presents a new lower bound on the equity premium in terms of 
a volatility index, SVIX, that can be calculated from index option prices. This 
bound, which relies only on very weak assumptions, implies that the equity 
premium is extremely volatile, and that it rose above 20% at the height of the 
crisis in 2008. More aggressively, I argue that the lower bound—whose time- 
series average is about 5%—is approximately tight and that the high equity 
premia available at times of stress largely reflect high expected returns over the 
very short run. 
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The expected excess return on the market, or equity premium, is one of the central 
quantities of finance.  Aside from its obvious intrinsic interest, the equity premium 
is a key determinant of the risk premium required for arbitrary assets in the CAPM 
and its descendants; and time-variation in the equity premium lies at the heart of the 
literature on excess volatility. 

The starting point of this paper is an identity that relates the market’s expected 
return to its risk-neutral variance. Under the weak assumption of no-arbitrage, the 
latter can be measured unambiguously from index option prices. I call the associated 
volatility index SVIX and use the identity (coupled with a minimal assumption, the 
negative correlation condition, introduced in Section 1) to derive a lower bound on 
the equity premium in terms of the SVIX index. The bound implies that the equity 
premium is extremely volatile, and that it rose above 21% at the height of the crisis in 
2008. At horizons of less than a year, the equity premium fluctuates even more wildly: 
the lower bound on the monthly equity premium exceeded 4.5% (unannualized) in 
November 2008. 

I go on to argue, more aggressively, that the lower bound appears empirically to be 
approximately tight, so that the SVIX index provides a direct measure of the equity 
premium. While it is now well understood that the equity premium is time-varying, this 
paper deviates from the literature in its basic aim, which is to use theory to motivate 
a signal of whether expected returns are high or low at a given point in time that 
is based directly on asset prices. The distinctive features of my approach, relative to 
the literature, are that (i) the predictor variable, SVIX2, is motivated by asset pricing 
theory; (ii) no parameter estimation is required, so concerns over in-sample/out-of- 
sample fit do not arise; and (iii) since the SVIX2 index is an asset price, I avoid the 
need to use infrequently-updated accounting data. My approach therefore allows the 
equity premium to be measured in real time. 

The SVIX2 index can be interpreted as the equity premium perceived by an uncon- 
strained rational investor with log utility who is fully invested in the market. This is 
a sensible benchmark even if there are many investors who are constrained and many 
investors who are irrational, and it makes for a natural comparison with survey evi- 
dence on investor expectations, as studied by Shiller (1987) and Ben-David, Graham 
and Harvey (2013), among others. In particular, Greenwood and Shleifer (2014) em- 
phasize the unsettling fact that the ‘expectations of returns’ extracted from surveys are 
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Figure 1: Equity premium forecasts based on Campbell–Thompson (CT, 2008) and on 
SVIX. Annual horizon. 

 
 
negatively correlated with subsequent realized returns. Greenwood and Shleifer also 
document the closely related fact that a range of survey measures of return expectations 
are negatively correlated with the leading predictor variables used in the literature to 
forecast expected returns. I show that the SVIX-based equity premium forecast is also 
negatively correlated with the survey measures of return expectations. But the SVIX 
forecast is positively correlated with subsequent returns—a minimal requirement for a 
measure of rationally expected returns. 

The view of the equity premium that emerges from the SVIX measure deviates 
in several interesting ways from the conventional view based on valuation-ratio-based 
measures. Figure 1 plots the SVIX equity premium measure on the same axes as the 
smoothed earnings yield predictor of Campbell and Thompson (2008), whose work 
I take as representative of the vast predictability literature because their approach, 
like mine, avoids the in-sample/out-of-sample critique of Goyal and Welch (2008).1 

The figure illustrates the results of the paper: I argue that the equity premium is 
more volatile, more right-skewed, and that it fluctuates at a higher frequency than the 
literature has acknowledged. 

I sharpen the distinction between the SVIX and valuation-ratio views of the world 
 

1Early papers in this literature include Keim and Stambaugh (1986), Campbell and Shiller (1988), 
and Fama and French (1988). A more recent paper that also argues for volatile discount rates is 
Kelly and Pruitt (2013). I thank John Campbell for sharing an updated version of the dataset used 
in Campbell and Thompson (2008). 
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by focussing on two periods in which their predictions diverge. Valuation-ratio-based 
measures of the equity premium were famously bearish throughout the late 1990s (and 
as noted by Ang and Bekaert (2007) and Goyal and Welch (2008), that prediction is 
partially responsible for the poor performance of valuation-ratio predictors in recent 
years); in contrast, the SVIX index suggests that, at horizons up to one year, expected 
returns were high in the late 1990s. I suggest that this distinction reflects the fact 
that valuation ratios should be thought of as predictors of very long run returns, 
whereas the SVIX index aims to measure short-run expected returns. The most striking 
divergence in predictions, however, occurs on one of the most dramatic days in stock 
market history, the great crash of October 1987, when option prices soared as the 
market collapsed.2 On the valuation-ratio view of the world, the equity premium 
barely changed on Black Monday; on the SVIX view, it exploded. 

 
 
1 Expected returns and risk-neutral variance 

 

 
If we use asterisks to denote quantities calculated with risk-neutral probabilities, and 
MT to denote the stochastic discount factor (SDF) that prices time-T payoffs from the 
perspective of time t, then we can price any time-T payoff XT either via the SDF or by 
computing expectations with risk-neutral probabilities and discounting at the (gross) 
riskless rate, Rf,t, which is known at time t. The SDF notation, 

 

time-t price of a claim to XT  at time T = Et(MT XT ), (1) 
 
is commonly used in equilibrium models or, more generally, whenever there is an em- 
phasis on the real-world distribution (whether from the subjective perspective of an 
agent within a model, or from the ‘objective’ perspective of the econometrician). 

The risk-neutral notation, 
1 

time-t price of a claim to XT  at time T = 
f,t 

 

E∗ XT , (2) 
 

is commonly used in derivative pricing, or more generally whenever the underlying 
logic is that of no-arbitrage. The choice of whether to use SDF or risk-neutral notation 

2Figure 15, in the appendix, shows that the VXO index—that is, 1-month at-the-money implied 
volatility on the S&P 100—rose extremely sharply on October 19, 1987. (The VIX index itself did 
not exist at that time.) As it turned out, the annualized return on the S&P 500 index was 81.2% over 

the month, and 23.2% over the year, following Black Monday. 
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is largely a matter of taste; I will tend to follow convention by using the risk-neutral 
notation when no-arbitrage logic is emphasized. 

Equations (1) and (2) can be used to translate between the two notations; thus, for 
example, the conditional risk-neutral variance of a gross return RT  is 

var∗ RT = E∗ R2 − (E∗ RT )2 = Rf,t Et 
(
MT R2 ) − R2 

 
. (3) 

t t T t T f,t 
 

Expected returns and risk-neutral variance are linked by the following identity: 
 

Et RT − Rf,t =  
r
Et(MT R2 ) − Rf,t

l 
− 

r
Et(MT R2 ) − Et RT 

l
 

T T 
1 

= 
Rf,t 

var∗ RT − covt(MT RT , RT ). (4) 
 

The first equality adds and subtracts Et(MT R2 ); the second exploits (3) and the fact 
that Et MT RT  = 1. 

The identity (4) decomposes the asset’s risk premium into two components. It 
applies to any asset return RT , but in this paper I will focus on the case in which 
RT is the return on the S&P 500 index. In this case the first component, risk-neutral 
variance, can be computed directly given time-t prices of S&P 500 index options, as 
will be shown in Section 3. The second component is a covariance term that can be 
controlled: under a weak condition (discussed in detail in Section 2), it is negative. 

 

Definition 1. Given a gross return RT and stochastic discount factor MT , the negative 
correlation condition (NCC) holds if covt (MT RT , RT ) ≤ 0. 

 
Together, the identity (4) and the NCC imply the following inequality, from which 

the results of the paper flow: 

1 
Et RT − Rf,t ≥ 

f,t 

 

var∗ RT . (5) 
 

This inequality can be compared to the Hansen–Jagannathan (1991) bound. The two 
inequalities place opposing bounds on the equity premium: 

1 
 

Rf,t 
var∗ RT  ≤ Et RT − Rf,t ≤ Rf,t · σt(MT ) · σt(RT ), 

 

where σt(·) denotes conditional (real-world) standard deviation. The left-hand inequal- 
ity is (5). It has the advantage that it relates the unobservable equity premium to a 
directly observable quantity, risk-neutral variance; but the disadvantage that it requires 
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the NCC to hold. In contrast, the right-hand inequality, the Hansen–Jagannathan 
bound, has the advantage of holding completely generally; but the disadvantage (noted 
by Hansen and Jagannathan) that it relates two quantities neither of which can be di- 
rectly observed. Time-series averages must therefore be used as proxies for the true 
quantities of interest, forward-looking means and variances. This procedure requires 
assumptions about the stationarity and ergodicity of returns over appropriate sam- 
ple periods and at the appropriate frequency. Such assumptions are not completely 
uncontroversial—see, for example, Malmendier and Nagel (2011). 

The inequality (5) is reminiscent of the approach of Merton (1980), based on the 
equation 

instantaneous risk premium = γσ2 , (6) 
 
where γ is a measure of aggregate risk aversion, and σ2 is the instantaneous variance of 
the market return, and of a closely related calculation carried out by Cochrane (2011, 
p. 1082). 

There are some important differences between the two approaches, however. The 
first is that Merton assumes that the level of the stock index follows a geometric 
Brownian motion, thereby ruling out the effects of skewness and of higher cumulants 
by construction.3  In contrast, we need no such assumption.  Related to this, there 
is no distinction between risk-neutral and real-world (instantaneous) variance in a 
diffusion-based model: the two are identical, by Girsanov’s theorem. Once we move 
beyond geometric Brownian motion, however, the appropriate generalization relates 
the risk premium to risk-neutral variance. As a bonus, this will have the considerable 
benefit that—unlike forward-looking real-world variance—forward-looking risk-neutral 
variance at time t can be directly and unambiguously computed from asset prices at 
time t, as I show in Section 3. 

A second difference is that (6) requires that there is a representative agent with 
constant relative risk aversion γ. The NCC holds under considerably more general 
circumstances, as shown in Section 2. 

Third, Merton implements (6) using realized historical volatility rather than by 
exploiting option price data, though he notes that volatility measures can be calculated 
“by ‘inverting’ the Black–Scholes option pricing formula.”   However,  Black–Scholes 

 
3Cochrane’s calculation also implicitly makes this assumption; I will argue in Section 6.1 that it is 

inconsistent with the data. 
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implied volatility would only provide the correct measure of σ if we really lived in a 
Black–Scholes (1973) world in which prices followed geometric Brownian motions. The 
results of this paper show how to compute the right measure of variance in a more 
general environment. 

 
 
2 The negative correlation condition 

 

 
This section examines the NCC more closely in the case in which RT is the return on 
the market; it is independent of the rest of the paper. I start by laying out various 
sufficient conditions for the NCC to hold. It is worth emphasizing that these conditions 
are not necessary : the NCC may hold even if none of the conditions below applies. The 
sufficient conditions cover many of the leading macro-finance models, including Camp- 
bell and Cochrane (1999), Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich and 
Yaron (2012), Campbell, Giglio, Polk and Turley (2012), Barro (2006), and Wachter 
(2013).4 

The NCC is a convenient and flexible way to restrict the set of stochastic discount 
factors under consideration. It may be helpful to note that the NCC would fail badly 
in a risk-neutral economy—that is, if MT were deterministic. We will need the SDF 
to be volatile, as is the case empirically (Hansen and Jagannathan (1991)). We will 
also need the SDF to be negatively correlated with the return RT ; this will be the case 
for any asset that even roughly approximates the idealized notion of ‘the market’ in 
economic models.5 

The first example of this section indicates, in a conditionally lognormal setting, why 
the NCC is likely to hold in practice. It shows, in particular, that the NCC holds in 
several leading macro-finance models. (All proofs for this section are in the appendix.) 

 

Example 1. Suppose that the SDF MT and return RT are conditionally lognormal 
and write rf,t = log Rf,t, µR,t = log Et RT , and σ2 = vart log RT .  Then the NCC 

 
4In fact, I am not aware of any model that attempts to match the data quantitatively in which the 

NCC does not hold. 
5The NCC would fail for hedge assets (such as gold or, in recent years, US Treasury bonds) whose 

returns tend to be high at times when the marginal value of wealth is high—that is, for assets whose 
returns are positively correlated with the SDF. Indeed, it may be possible to exploit this fact to derive 
upper bounds on the returns on such assets. 
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Rf,t t 

t 

is equivalent to the assumption that the conditional Sharpe ratio of the asset, λt ≡ 
(µR,t − rf,t)/σR,t, exceeds its conditional volatility, σR,t. 

 
The NCC therefore holds in any conditionally lognormal model in which the mar- 

ket’s conditional Sharpe ratio is higher than its conditional volatility. Empirically, the 
Sharpe ratio of the market is on the order of 50% while its volatility is on the order of 
16%, so it is unsurprising that this property holds in the calibrated models of Campbell 
and Cochrane (1999), Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich and Yaron 
(2012) and Campbell, Giglio, Polk and Turley (2012), among many others. 

The special feature of the lognormal setting is that real-world volatility and risk- 
neutral volatility are one and the same thing.6 So if an asset’s Sharpe ratio is larger 
than its (real-world or risk-neutral) volatility, then its expected excess return is larger 
than its (real-world or risk-neutral) variance. That is, by (4), the NCC holds. 

Unfortunately, the lognormality assumption is inconsistent with well-known prop- 
erties of index option prices. The most direct way to see this is to note that equity 
index options exhibit a volatility smile: Black–Scholes implied volatility varies across 
strikes, holding option maturity constant. (See also Result 4 below.) This concern 
motivates the next example, which provides an interpretation of the NCC that is not 
dependent on a lognormality assumption. 

 

Example 2. Suppose that there is an unconstrained investor who maximizes ex- 
pected utility over next-period wealth, whose wealth is fully invested in the market, 
and whose relative risk aversion (which need not be constant) is at least one at all 
levels of wealth. Then the NCC holds for the market return. Moreover, if (but not 
only if) the investor has log utility, the covariance term in (4) is identically zero; then, 

the inequality (5) holds with equality, and Et RT − Rf,t = 1 var∗ RT . 
 

Example 2 does not require that the identity of the investor whose wealth is fully 
invested in the market should be fixed over time; thus it allows for the possibility that 
the portfolio holdings and beliefs of (and constraints on) different investors are highly 
heterogeneous over time. Moreover, it does not require that all investors are fully 
invested in the market, that all investors are unconstrained, or that all investors are 
rational. In view of the evidence presented by Greenwood and Shleifer (2014), this is 

 

6More precisely, vart log RT = var∗ log RT if MT and RT are conditionally jointly lognormal under 
the real-world measure. 
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an attractive feature. Under the interpretation of Example 2, the question answered 
by this paper is this: What expected return must be perceived by an unconstrained 
investor with log utility who chooses to hold the market? This is a natural benchmark: 
there are many ways to be constrained, but only one way to be unconstrained. For 
reasons that will become clear in Sections 4.2 and 6.1, I prefer to interpret the data 
from the perspective of a log investor who holds the market, rather than the familiar 
representative investor who consumes aggregate consumption. Thus my approach has 
nothing to say about—in particular, it does not resolve—the equity premium puzzle. 
In fact, on the contrary, the paper documents yet another dimension on which existing 
equilibrium models fail to fit the data; see Section 6.1. 

By focussing on a one-period investor, Example 2 abstracts from intertemporal 
issues, and therefore from the presence of state variables that affect the value function. 
To the extent that we are interested in the behavior of long-lived utility-maximizing 
investors, we may want to allow for the fact that investment opportunities vary over 
time, as in the framework of Merton (1973). When will the NCC hold in (a discrete-time 
analog of) Merton’s framework? Example 1 provided one answer to this question, but 
we can also frame sufficient conditions directly in terms of the properties of preferences 
and state variables, as in the next example (in which the driving random variables are 
Normal, as in Example 1; this assumption will shortly be relaxed). 

Example 3a. Suppose, in the notation of Cochrane (2005, pp. 166–7), that the SDF 
takes the form 

VW (WT , z1,T , . . . , zN,T ) 
MT = β  VW (Wt, z  1,t 

 

, . . . , z 
, 

N,t) 
 

where WT is the time-T wealth of a risk-averse investor whose wealth is fully invested 
in the market, so that WT   = (Wt  − Ct)RT   (where Ct   denotes the investor’s time-t 

consumption and RT the return on the market); VW is the investor’s marginal value of 
wealth; and z1,T , . . . , zN,T are state variables, with signs chosen so that VW is weakly 
decreasing in each (so a high value of z1,T is good news, just as a high value of WT is 
good news). Suppose also that 

(i) Risk aversion is sufficiently high: −W VW W /VW ≥ 1 at all levels of wealth W and 

all values of the state variables. 
 

(ii) The market return, RT , and state variables, z1,T , . . . , zN,T , are increasing func- 
tions of conditionally Normal random variables with (weakly) positive pairwise 
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correlations. 
 
Then the NCC holds for the market return. 

 
Condition (i) imposes an assumption that risk aversion is at least one, as in Example 

2; again, risk aversion may be wealth- and state-dependent. Condition (ii) ensures that 
the movements of state variables do not undo the logic of Example 1. To get a feel for 
it, consider a model with a single state variable, the price-dividend ratio of the market 
(perhaps as a proxy for the equity premium, as in Campbell and Viceira (1999)).7 For 
consistency with the sign convention on the state variables, we need the marginal value 
of wealth to be weakly decreasing in the price-dividend ratio. It is intuitively plausible 
that the marginal value of wealth should indeed be high in times when valuation ratios 
are low; and this holds in Campbell and Viceira’s setting, in the power utility case, if 
risk aversion is at least one.8 Then condition (iii) amounts to the (empirically extremely 
plausible) requirement that the correlation between the wealth of the representative 
investor and the market price-dividend ratio is positive. Equivalently, we need the 
return on the market and the market price-dividend ratio to be positively correlated. 
Again, this holds in Campbell and Viceira’s calibration. 

Example 3a assumes that the investor is fully invested in the market. Roll (1977) 
famously criticized empirical tests of the CAPM by pointing out that stock market 
indices are imperfect proxies for the idealized notion of ‘the market’ that may not fully 
capture risks associated with labor or other sources of income. Without denying the 
force of this observation, the implicit position taken is that although the S&P 500 index 
is not the sum total of all wealth, it is reasonable to ask, as a benchmark, what equity 
premium would be perceived by someone fully invested in the S&P 500. (In contrast, 
it would be much less reasonable to assume that some investor holds all of his wealth 
in gold in order to estimate the expected return on gold.) 

Nonetheless, one may want to allow part of the investor’s wealth to be held in assets 
other than the equity index. The next example generalizes Example 3a to do so. It 
also generalizes in another direction, by allowing the driving random variables to be 

 
7The price-dividend ratio is positive, so evidently cannot be Normally distributed; this is why con- 

dition (ii) allows the state variables to be arbitrary increasing functions of Normal random variables. 
For instance, we may want to assume that the log price-dividend ratio is conditionally Normal, as 
Campbell and Viceira do. 

8Campbell and Viceira also allow for Epstein–Zin preferences, which I handle separately below. 
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non-Normal. 
 

Example 3b. Modify Example 3a by assuming that only a fraction αt of wealth net 
of consumption is invested in ‘the market’ (that is, in the equity index that is the focus 
of this paper), with the remainder invested in some other asset or portfolio of assets 
that earns the gross return R(i): 

 

WT = αt(Wt − Ct)RT + (1 −αt)(Wt − Ct)R(i) . 
m  arket we

'"
a
,.
lth, WM 

_
 non-mar

'"
k
,.
et wealth 

_
 

 

If the signs of state variables are chosen as in Example 3a, and if 
 

(i) Risk aversion is sufficiently high: −W VW W /VW  ≥ WT /WM,T . 
 

(ii) RT , R(i), z1,T , . . . , zN,T  are associated random variables.9 

then the NCC holds for the market return. 

Condition (i) shows that we can allow the investor’s wealth to be less than fully 
invested in the market (for example, in bonds, housing, and human capital), so long 
as he cares more about the position he does have—that is, has higher risk aversion. If, 
say, at least a third of the investor’s time-T wealth is invested in the market, then the 
NCC holds so long as risk aversion is at least three. 

The next example handles models, such as Wachter (2013), that are neither condi- 
tionally lognormal nor feature investors with time-separable utility. 

Example 4a. Suppose that there is a representative agent with Epstein–Zin (1989) 
preferences. If (i) risk aversion γ ≥ 1 and elasticity of intertemporal substitution ψ ≥ 1, 
and (ii) the market return RT and wealth-consumption ratio WT /CT are associated, 
then the NCC holds for the market return. 

 
As special cases, condition (ii) would hold if, say, the log return log RT and log 

wealth-consumption ratio log WT /CT are both Normal and nonnegatively correlated; or 
if the elasticity of intertemporal substitution ψ = 1, since then the wealth-consumption 

 

9The concept of associated random variables (Esary, Proschan and Walkup (1967)) extends the 
concept of nonnegative correlation  in a manner that can be extended  to the multivariate  setting. 
In particular, jointly Normal random variables are associated if and only if they are nonnegatively 
correlated (Pitt (1982)), and increasing functions of associated random variables are associated; thus 
Example 3a is a special case of Example 3b. 
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Ft,T 

 
Figure 2: The prices, at time t, of call and put options expiring at time T . 

 
 
ratio is constant (and hence, trivially, associated with the market return). This second 
case covers Wachter’s (2013) model with time-varying disaster risk. 

 

Example 4b. If there is a representative investor with Epstein–Zin (1989) prefer- 
ences, with risk aversion γ = 1 and arbitrary elasticity of intertemporal substitution 
then the NCC holds with equality for the market return. This case was considered (and 
not rejected) by Epstein and Zin (1991) and Hansen and Jagannathan (1991). 

 
 
3 Risk-neutral variance and the SVIX index 

 

 
We now turn to the question of measuring the risk-neutral variance that appears on 
the right-hand side of (5). The punchline will be that risk-neutral variance is uniquely 
pinned down by European option prices, by a static no-arbitrage argument. To stream- 
line the exposition, I will temporarily assume that the prices of European call and put 
options expiring at time T on the asset with return RT are perfectly observable at all 
strikes K; this unrealistic assumption will be relaxed below. 

Figure 2 plots a generic collection of time-t prices of calls expiring at time T with 
strike K (written callt,T (K)) and of puts expiring at time T with strike K (written 
putt,T (K)). The figure illustrates two well-known facts that will be useful. First, call 
and put prices are convex functions of strike.  (Any non-convexity would provide a 
static arbitrage opportunity.) This property will allow us, below, to deal with the issue 
that option prices are only observable at a limited set of strikes. Second, the forward 
price of the underlying asset, Ft,T , which satisfies 

Ft,T  = E∗ ST , (7) 
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Figure 3: The payoff S2 (dotted line); and the payoff on a portfolio of options (solid 
line), consisting of two calls with strike K = 0.5, two calls with K = 1.5, two calls with 
K = 2.5, two calls with K = 3.5, and so on. Individual option payoffs are indicated 
by dashed lines. 

 
can be determined by observing the strike at which call and put prices are equal, i.e., 
Ft,T is the unique solution x of the equation callt,T (x) = putt,T (x). This fact follows 
from put-call parity; it means that the forward price can be backed out from time-t 
option prices. 

We want to measure 1 
f,t 

var∗ RT . I assume that the dividends earned between times 
t and T are known at time t and paid at time T ,10 so that 

 
1 var∗ RT = 1  

1  
1 

 
E∗ S2 − 

l 
(E∗ ST )2

 

 
 
. (8) 

Rf,t 
t
 

2 Rf,t 
t T

 Rf,t 
t
 

 

We can deal with the second term inside the square brackets using equation (7), so the 
challenge is to calculate 1 E∗ S2 . This is the price of the ‘squared contract’—that is, 

Rf,t t T 

the price of a claim to S2 paid at time T . 
How can we price this contract, given put and call prices as illustrated in Figure 2? 

Suppose we buy two call options with a strike of K = 0.5; two calls with a strike of 
K = 1.5; two calls with a strike of K = 2.5; two calls with a strike of K = 3.5; and so 
on, up to arbitrarily high strikes. The payoffs on the individual options are shown as 
dashed lines in Figure 3, and the payoff on the portfolio of options is shown as a solid 
line.  The idealized payoff S2 is shown as a dotted line.  The solid and dotted lines 

 
10If dividends are not known ahead of time, it is enough to assume that prices and dividends 

are (weakly) positively correlated, since then var∗ RT  ≥ var∗(ST /St), so that using 1 var∗(ST /St) 
t t Rf,t t 

instead of the ideal lower bound, 1 
f,t 

var∗ RT , is conservative. 

13  



t S 

t,T 

∞ 

almost perfectly overlap, illustrating that the payoff on the portfolio is almost exactly 
S2 2 

T (and it is exactly ST at integer values of ST ). Therefore, the price of the squared 
contract is approximately the price of the portfolio of options: 

 1 
E∗ S2  ≈ 2 

 
 callt,T (K). (9) 

Rf,t 
t T

  K=0.5,1.5,... 
 

I show in the appendix that the squared contract can be priced exactly by replacing 
the sum with an integral: 

1  
E∗ S2  = 2 

r
  

callt,T (K) dK. (10) 
Rf,t 

t T
 
 

K=0 
 

This is an application of the classic result of Breeden and Litzenberger (1978). 
In practice, however, option prices are not observable at all strikes K, so we will 

need to approximate the idealized integral (10) by a sum along the lines of (9). To see 
how this will affect the results, notice that Figure 3 also demonstrates a subtler point: 
the option portfolio payoff is not just equal to the ‘squared payoff’ at integers, it is 
tangent to it, so that the payoff on the portfolio of options very closely approximates 
and is always less than or equal to the ideal squared payoff. As a result, the sum 
over call prices in (9) will be slightly less than the integral over call prices in (10). 
This implies that the bounds presented are robust to the fact that option prices are 
not observable at all strikes: they would be even higher if all strikes were observable. 
Section 3.1 expands on this point. 

Finally, since deep-in-the-money call options are neither liquid in practice nor intu- 
itive to think about, it is convenient to split the range of integration into two and use 
put-call parity to replace in-the-money call prices with out-of-the-money put prices. 
Doing so, and substituting the result back into (8), we find that 

 

1 
Rf,t 

 

var∗ RT = 2 
1r Ft,T 

2 
t 0 

 
 
putt,T (K) dK + 

r ∞ 

 
Ft,T 

l 
 

callt,T (K) dK 

 
 
. (11) 

 

The expression in the square brackets is the shaded area shown in Figure 2. 
The right-hand side of (11) is strongly reminiscent of the definition of the VIX 

index, and indeed there are links that will be explored in Section 6. To bring out the 
connection it will be helpful to define an index, SVIXt, via the formula 

 

SVIX2 = 
2Rf,t

 

1r Ft,T  put r ∞ (K) dK + 
 
call 

l 
 (K) dK 

 
. (12) 

t (T − t)F 2 0 
t,T  

Ft,T 

t,T 
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t 

S 

t 

 

horizon mean s.d. skew kurt min 1% 10% 25% 50% 75% 90% 99% max 

1 mo 
 

2 mo 
 

3 mo 
 

6 mo 
 

1 yr 

5.00 
 

5.00 
 

4.96 
 

4.89 
 

4.64 

4.60 
 

3.99 
 

3.60 
 

2.97 
 

2.43 

4.03 
 

3.37 
 

3.01 
 

2.37 
 

1.87 

24.6 
 

17.5 
 

14.0 
 

9.13 
 

5.99 

0.83 
 

1.01 
 

1.07 
 

1.30 
 

1.47 

1.03 
 

1.20 
 

1.29 
 

1.53 
 

1.64 

1.54 
 

1.65 
 

1.75 
 

1.95 
 

2.07 

2.44 
 

2.61 
 

2.69 
 

2.88 
 

2.81 

3.91 
 

4.11 
 

4.24 
 

4.39 
 

4.35 

5.74 
 

5.91 
 

5.95 
 

6.00 
 

5.72 

8.98 
 

8.54 
 

8.17 
 

7.69 
 

7.19 

25.7 
 

23.5 
 

21.4 
 

16.9 
 

13.9 

55.0 
 

46.1 
 

39.1 
 

29.0 
 

21.5 
 

Table 1:  Mean, standard deviation, skewness, excess kurtosis, and quantiles of the 
lower bound on the equity premium, Rf,t · SVIX2, at various horizons (annualized and 

measured in %). 
 
 
The SVIX index measures the annualized risk-neutral variance of the realized excess 
return: comparing equations (11) and (12), we see that 

SVIX2 = 
1
 var∗(R /R  ). (13) 

t T − t t T f,t 

Inserting (11) into inequality (5), we have a lower bound on the expected excess 
return of any asset that obeys the NCC: 

 

2 
Et RT − Rf,t ≥ 2 

t 

1r Ft,T 

 
0 

 
putt,T (K) dK + 

r ∞ 
 

Ft,T 

l 
 

callt,T (K) dK 
 

(14) 
 

or, in terms of the SVIX index, 
 1 

T − t (Et RT − Rf,t) ≥ Rf,t · SVIX2 . (15) 

The bound will be applied in the case of the S&P 500; from now on, RT always refers 
to the gross return on the S&P 500 index. I construct a time series of the lower bound 
from January 4, 1996 to January 31, 2012 using option price data from OptionMetrics; 
Appendix B.1 contains full details of the procedure. I compute the bound for time 

horizons T − t = 1, 2, 3, 6, and 12 months. I report results in annualized terms; that 
is, both sides of the above inequality are multiplied by 1 

T −t 
with t and T measured in 

years (so, for example, monthly expected returns are multiplied by 12 to convert them 
into annualized terms). 

Figure 4a plots the lower bound, annualized and in percentage points, at the 1- 
month horizon. Figures 4b and 4c repeat the exercise at 3-month and 1-year horizons. 
Table 1 reports the mean, standard deviation, and various quantiles of the distribution 
of the lower bound in the daily data for horizons between 1 month and 1 year. 
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Figure 4: The lower bound on the annualized equity premium at different horizons. 
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The mean of the lower bound over the whole sample is 5.00% at the monthly 
horizon. This number is strikingly close to typical estimates of the unconditional equity 
premium, which suggests that the bound may be fairly tight: that is, it seems that the 
inequality (14) may approximately hold with equality. Below, I provide further tests 
of this possibility and develop some of its implications. 

The time-series average of the lower bound is lower at the annual horizon than it is 
at the monthly horizon where the data quality is best (perhaps because of the existence 
of trades related to VIX, which is itself a monthly index). It is likely that this reflects 
a less liquid market in 1-year options, with a smaller range of strikes traded, rather 
than an interesting economic phenomenon. I discuss this further in Section 3.1 below. 

The lower bound is volatile, right-skewed, and fat-tailed. At the annual horizon 
the equity premium varies from a minimum of 1.22% to a maximum of 21.5% over 
my sample period. But variation at the one-year horizon masks even more dramatic 
variation over shorter horizons. The monthly lower bound averaged only 1.86% (annu- 
alized) during the “Great Moderation” years 2004–2006, but peaked at 55.0%—more 
than 10 standard deviations above the mean—in November 2008, at the height of the 
subprime crisis. Indeed, the lower bound hit peaks at all horizons during the recent 
crisis, notably from late 2008 to early 2009 as the credit crisis gathered steam and the 
stock market fell, but also around May 2010, coinciding with the beginning of the Eu- 
ropean sovereign debt crisis. Other peaks occur during the LTCM crisis in late 1998; 
during the days following September 11, 2001; and during a period in late 2002 when 
the stock market was hitting new lows following the end of the dotcom boom. 

Figure 13, in the appendix, shows that there was an increase in daily volume and 
open interest in S&P 500 index options over my sample period. The peaks in SVIX in 
2008, 2010, and 2011 are associated with spikes in volume. 

Consider, finally, a thought experiment. Suppose you find the lower bound on the 
equity premium in November 2008 implausibly high. What trade should you have 
done to implement this view? You should have sold a portfolio of options, namely 
an at-the-money-forward straddle and (equally weighted) out-of-the-money calls and 
puts. Such a position means that you end up short the market if the market rallies and 
long the market if the market sells off: essentially, you are taking a contrarian position, 
providing liquidity to the market. At the height of the credit crisis, extraordinarily 
high risk premia were available for investors who were able and prepared to take on 
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this position. 
 
 
3.1    Robustness of the lower bound 

 
Were option markets illiquid during the subprime crisis? One potential concern is 
that option markets may have been illiquid during periods of extreme stress. If so, 
one would expect to see a significant disparity between bounds based on mid-market 
option prices, such as those shown in Figure 4, and bounds based on bid or offer prices, 
particularly in periods such as November 2008. Thus it is possible in principle that 
the lower bounds would decrease significantly if bid prices were used. Figure 14, in the 
appendix, plots bounds calculated from bid prices. Reassuringly, the results are very 
similar: the lower bound is high at all horizons whether mid or bid prices are used. 

Option prices are only observable at a discrete range of strikes. Two issues arise 
when implementing the lower bound. Fortunately, both issues mean that the numbers 
presented in this paper are conservative: with ideal data, the lower bound would be 
even higher. 

First, we do not observe option prices at all strikes K between 0 and ∞. This means 
that the range of integration in the integral we would ideally like to compute—the 
shaded area in Figure 2—is truncated. Obviously, this will cause us to underestimate 
the integral in practice. This effect is likely to be strongest at the 1-year horizon, 
because (in my dataset) 1-year options are less liquid than shorter-dated options. 

Second, even within the range of observable strikes, prices are only available at a 
discrete set of strikes. Thus the idealized lower bound that emerges from the theory 
in the form of an integral (over option prices at all strikes) must be approximated by 
a sum (over option prices at observable strikes). What effect will this have? In the 
discussion of Figure 2, I provided an example in which the price of a particular portfolio 
of calls with a discrete set of strikes would very slightly underestimate the idealized 
measure, and hence be conservative. The general case, using out-of-the-money puts 
and calls, is handled in Appendix B.2. The conclusion is the same: discretization leads 
to underestimates of risk-neutral variance, and hence to a conservative bound. 
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horizon α   s.e. β s.e. R2 R2 

1 mo 
 

2 mo 
 

3 mo 
 

6 mo 
 

1 yr 

0.012 
−0.002 

−0.003 

−0.056 

−0.029 

[0.064] 
 

[0.068] 
 

[0.075] 
 

[0.058] 
 

[0.093] 

0.779 
 

0.993 
 

1.013 
 

2.104 
 

1.665 

[1.386] 
 

[1.458] 
 

[1.631] 
 

[0.855] 
 

[1.263] 

0.34% 
 

0.86% 
 

1.10% 
 

5.72% 
 

4.20% 

0.42% 
 

1.11% 
 

1.49% 
 

4.86% 
 

4.73% 
 

t 

 
OS 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Coefficient estimates for the regression (16). 
 
 

4 SVIX as predictor variable 
 

 
The time-series average of the lower bound in recent data is approximately 5% in annu- 
alized terms, a number close to conventional estimates of the equity premium. Over the 
period 1951–2000, Fama and French (2002) estimate the unconditional average equity 
premium to be 3.83% or 4.78%, based on dividend and earnings growth respectively.11 

It is therefore natural to wonder whether the lower bound might in fact be tight. We 
want to test the hypothesis that 1 

T −t (Et RT − Rf,t) = Rf,t · SVIX2. Table 2 shows the 
results of regressions 

 
1 

 
 
(RT − Rf,t) = α + β × Rf,t · SVIX2 +εT , (16) 

T − t t 
 

together with robust Hansen–Hodrick standard errors that account for heteroskedas- 
ticity and overlapping observations. The null hypothesis that α = 0 and β = 1 is not 
rejected at any horizon. The point estimates on β are close to 1 at all horizons, lending 
further support to the possibility that the lower bound is tight. This is encouraging 
because, as Goyal and Welch (2008) emphasize, this period is one in which conventional 
predictive regressions fare poorly. 

One might worry that these results are entirely driven by the period in 2008 and 
2009 in which volatility spiked and the stock market crashed before recovering strongly. 
To address this concern, Table 5, in the appendix, shows the result of deleting all 
observations that overlap with the period August 1, 2008–July 31, 2009. Over horizons 

 
11These are the ‘bias-adjusted’ figures presented in their Table IV. In an interview with Richard 

Roll available on the AFA website at http://www.afajof.org/details/video/2870921/Eugene-Fama- 
Interview.html, Fama says, “I always think of the number, the equity premium, as five per cent.” 

19  

http://www.afajof.org/details/video/2870921/Eugene-Fama-


t 

ν 

t 

OS 

OS 

of 1, 2, and 3 months, deleting this period in fact increases the forecastability of 
returns by SVIX, reflecting the fact that the market continued  to drop for a time 
after volatility spiked up in November 2008. On the other hand, the subsequent strong 
recovery of the market means that this was a period in which 1-year options successfully 
predicted 1-year returns, so by removing the crash from the sample, the forecasting 
power deteriorates at the 1-year horizon. 

We now have seen from two different angles that the lower bound (14) appears to 
be approximately tight: (i) as shown in Table 1 and Figure 4, the average level of the 
lower bound over my sample is close to conventional estimates of the average equity 
premium; and (ii) Table 2 shows that the null hypothesis that α = 0 and β = 1 in the 
forecasting regression (16) is not rejected at any horizon. These observations suggest 
that SVIX can be used as a measure of the equity premium without estimating any 
parameters—that is, imposing α = 0, β = 1 in (16), so that 

1 
T − t (Et RT − Rf,t) = Rf,t · SVIX2 . (17) 

To assess the performance of the forecast (17), I follow Goyal and Welch (2008) in 
computing an out-of-sample R-squared measure 

  
ε2 

R2  t 

OS = 1 −      2 , (18) 
t 

where εt is the error when SVIX (more precisely, Rf,t · SVIX2) is used to forecast the 
equity premium and νt is the error when the historical mean equity premium (computed 
on a rolling basis) is used to forecast the equity premium.12 

The rightmost column of Table 2 reports the values of R2 at each horizon. These 
out-of-sample R2 values can be compared with corresponding numbers for forecasts 
based on valuation ratios, which are the subject of a vast literature.13  Goyal and Welch 
(2008) consider return predictions in the form 

equity premiumt = a1 + a2 × predictor variablet ,            (19) 

where a1 and a2 are constants estimated from the data, and argue that while con- 
ventional predictor variables perform reasonably well in-sample, they perform worse 

 
12More detail on the construction of the rolling mean is provided in the appendix. 

 
13Among many others, Campbell and Shiller (1988), Fama and French (1988), Lettau and Ludvigson 

(2001), and Cochrane (2008) make the case for predictability. Other authors, including Ang and 
Bekaert (2007), make the case against. 
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out-of-sample than the rolling mean. Over their full sample (which runs from 1871 to 
2005, with the first 20 years used to initialize estimates of a1 and a2, so that predictions 
start in 1891), the dividend-price ratio, dividend yield, earnings-price ratio, and book- 

to-market ratio have negative out-of-sample R2s of −2.06%, −1.93%, −1.78% and 
−1.72%, respectively.  The performance of these predictors is particularly poor over 
Goyal  and  Welch’s  ‘recent  sample’  (1976  to  2005),  with  R2s  of  −15.14%,  −20.79%, 
−5.98% and −29.31%, respectively.14 

Campbell and Thompson (2008) confirm Goyal and Welch’s finding, and respond 
by suggesting that the coefficients a1 and a2 be fixed based on a priori considerations. 

Motivated by the Gordon growth model D/P = R − G (where D/P is the dividend- 
price ratio, R the expected return, and G expected dividend growth), Campbell and 
Thompson suggest making forecasts of the form 

equity premiumt = dividend-price ratiot + dividend growtht − real interest ratet 

or, more generally, 

equity premiumt = valuation ratiot + dividend growtht − real interest ratet, (20) 

where in addition to the dividend-price ratio, Campbell and Thompson also consider 
earnings yields, smoothed earnings yields, and book-to-market as valuation ratios. 
Since these forecasts are drawn directly from the data without requiring estimation of 
coefficients, they are a natural point of comparison for the forecast (17) suggested in 
this paper. 

Over the full sample, the out-of-sample R2s corresponding to the forecasts (20) 
range from 0.24% (using book-to-market as the valuation ratio) to 0.52% (using smoothed 
earnings yield) in monthly data; and from 1.85% (earnings yield) to 3.22% (smoothed 
earnings yield) in annual data.15  The results are worse over Campbell and Thompson’s 
most recent subsample, from 1980–2005:  in monthly data, R2  ranges from −0.27% 
(book-to-market) to 0.03% (earnings yield).   In annual data, the forecasts do even 
more poorly, each underperforming the historical mean, with R2s ranging from −6.20% 
(book-to-market) to −0.47% (smoothed earnings yield). 

 
14Goyal and Welch show that the performance of an out-of-sample version of Lettau and Ludvigson’s 

(2001) cay variable is similarly poor, with R-2 of −4.33% over the full sample and −12.39% over the 
recent sample. 

15Out-of-sample forecasts are from 1927 to 2005, or 1956 to 2005 when book-to-market is used. 
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Figure 5:  Cumulative returns on $1 invested in cash, in the S&P 500 index, or in a 
market-timing strategy whose allocation to the market is proportional to Rf,t · SVIX2. 

Log scale. 
 
 

In relative terms, therefore, the out-of-sample R-squareds shown in Table 2 compare 
very favorably with the corresponding R-squareds for predictions based on valuation 
ratios. But are they too small to be interesting in absolute terms? No. Ross (2005, 
pp. 54–57) and Campbell and Thompson (2008) point out that high R2 statistics in 
predictive regressions translate into high attainable Sharpe ratios, for the simple reason 
that the predictions can be used to formulate a market-timing trading strategy; and 
if the predictions are very good, the strategy will perform extremely well. If Sharpe 
ratios above some level are ‘too good to be true,’ then one should not expect to see 
R2s from predictive regressions above some upper limit. 

With this thought in mind, consider using risk-neutral variance in a contrarian 
market-timing strategy: invest, each day, a fraction αt in the S&P 500 index and the 

remaining fraction 1−αt at the riskless rate, where αt is chosen proportional to 1-month 
SVIX2 (scaled by the riskless rate, as on the right-hand side of (15)). The constant of 
proportionality has no effect on the strategy’s Sharpe ratio, so I choose it such that 
the market-timing strategy’s mean portfolio weight in the S&P 500 is 35%, with the 
remaining 65% in cash; the resulting median portfolio weight is 27% in the S&P 500, 
with 73% in cash.  Figure 5 plots the cumulative return on an initial investment of 
$1 in this market-timing strategy and, for comparison, on strategies that invest in the 
short-term interest rate or in the S&P 500 index.  In my sample period, the daily 
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Sharpe ratio of the market is 1.35%, while the daily Sharpe ratio of the market-timing 
strategy is 1.97%; in other words, the out-of-sample R2 of 0.42% reported in Table 2 
is enough to deliver a 45% increase in Sharpe ratio for the market-timing strategy 
relative to the market itself. This exercise also illustrates the attractive feature that 
since risk-neutral variance is an asset price, it can be computed in daily data, or at 
even higher frequency, and so permits high-frequency market-timing strategies to be 
considered. 

As illustrated in Figure 1, valuation ratios and SVIX tell qualitatively very different 
stories about the equity premium. First, option prices point toward a far more volatile 
equity premium than do valuation ratios. Second, SVIX is much less persistent than are 
valuation ratios, and so the SVIX predictor variable is less subject to Stambaugh (1999) 
bias. It is also noteworthy that SVIX forecasts a relatively high equity premium in 
the late 1990s. In this respect it diverges sharply from valuation-ratio-based forecasts, 
which predicted a low or even negative 1-year equity premium at the time. 

But perhaps the most striking aspect of Figure 1 is the behavior of the Campbell– 
Thompson predictor variable on Black Monday, October 19, 1987. This was by far the 
worst day in stock market history. The S&P 500 index dropped by over 20%—more 
than twice as far as on the second-worst day in history—and yet the valuation-ratio 
approach suggests that the equity premium barely responded. In sharp contrast, option 
prices exploded on Black Monday, implying that the equity premium was even higher 
than the peaks attained in November 2008. 

 
 
4.1 The term structure of equity premia 

 
Campbell and Shiller (1988) showed that any dividend-paying asset satisfies the ap- 
proximate  identity 

∞ 

dt − pt = constant + Et         ρj (rt+1+j − ∆dt+1+j ) , 
j=0 

which relates its log dividend yield dt − pt to expectations of future log returns rt+1+j 

and future log dividend growth ∆dt+1+j . Empirically, dividend growth is approximately 
unforecastable; to the extent that this is the case, we can absorb the terms Et ∆dt+1+j 

into the constant, giving 
∞ 

dt − pt = constant + Et         ρj rt+1+j . (21) 
j=0 
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This points a path toward reconciling the differing predictions of SVIX and valua- 
tion ratios. We can think of dividend yield as providing a measure of expected returns 
over the very long run. In contrast, the SVIX index measures expected returns over the 
short run.16  The gap between the two is therefore informative about the gap between 

long-run and short-run expected returns.  In the late 1990s, for example, dt − pt  was 
extremely low, indicating low expected long-run returns (Shiller (2000));17 but Figures 
4a–4c show that SVIX, and hence expected short-run returns, were relatively high at 
that  time. 

We can also compare expected returns across shorter horizons. For example, Figures 
4a–4c suggest that an unusually large fraction of the elevated 1-year equity premium 
available in late 2008 was expected to materialize over the first few months of the 
12-month period. To analyze this more formally, define the annualized forward equity 
premium from T1  to T2  (calculated from the perspective of time t) by the formula 

  1 
(

 Et Rt→T2 EtRt→T1 

\
 

EPT1→T2  ≡ 
2 — T1 

log  

Rf,t→T2 
− log  

Rf,t→T1 
, (22) 

 

and the corresponding ‘spot’ equity premium from time t to time T by 
 

    1   
EPt→T ≡ T − t log 

 

EtRt→T . 
Rf,t→T 

 

Using (17) to substitute out for Et Rt→T1  and Et Rt→T2  in (22), we can write 
 

  1   
 

1 + SVIX2 
→ 

(T2 − t) 
 

   1 ( 2 ) 

EPT1→T2 = 
2 — T1 

log 1 + SVIX2 
→ (T1 − t) and EPt→T = T − t log 1 + SVIXt→T (T − t) . 

 

(I have modified previous notation to accommodate the extra time dimension: for 
example, Rt→T2  is the simple return on the market from time t to time T2, Rf,t→T1  is 

 
16It would be interesting to narrow the gap between ‘long’ and ‘short’ run by exploring, in future 

research, expected returns over the intermediate horizons that should be most relevant for macro- 
economic aggregates such as investment. How do risk premia at, say, five- or ten-year horizons 
behave? Data availability is a major challenge here: long-dated options are relatively illiquid. 

17There is an important caveat. The discussion surrounding equation (21) follows much of the 
literature in blurring the distinction between expected arithmetic returns and the expected log returns 

that appear in the Campbell–Shiller loglinearization. Since Et rt+1+j = log Et Rt+1+j − 1 vart rt+1+j −  ∞ κ(n) (rt+1+j ) (n) 
n=3 n! , where κt   (rt+1+j ) is the nth conditional cumulant of rt+1+j , the gap between the 

two depends on the cumulants of log returns. So a low dividend yield may be associated with high 
expected arithmetic returns at times when log returns are highly volatile, right-skewed, or fat-tailed. 
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Figure 6: The term structure of equity premia. 10-day moving average. 
 
 

the riskless return from time t to time T1, and SVIX2 is the time-t level of the SVIX 
index calculated using options expiring at T2.) 

The definition (22) is chosen so that, for arbitrary T1, . . . , TN , we have the decom- 
position 

T1 −t T2 −T1 TN —TN −1 

EPt→TN = 
N 

EPt→T1 + 
— t TN 

EPT1→T2  + · · · + 
— t 

EPTN    1→T   , (23) 
TN − t − N

 

which expresses the long-horizon equity premium EPt→TN    as a weighted average of 
forward equity premia, exactly analogous to the relationship between spot and forward 
bond yields. 

Figure 6 shows how the annual equity premium previously plotted in Figure 4c 
decomposes into a one-month spot premium plus forward premia from one to two, two 
to three, three to six, and six to twelve months.  The figure stacks the unannualized 

forward premia—terms of the form (Tn − Tn−1)/(TN  − t) EPTn−1→Tn —which add up to 
the annual equity premium, as shown in (23).  For example, on any given date t, the 
gap between the top two lines represents the contribution of the unannualized 6-month- 
6-month-forward equity premium, 1 EPt+6mo →t+12mo, to the annual equity premium, 
EPt→t+12mo. 

In ‘normal’ times, the 6-month-6-month-forward equity premium contributes about 
half of the annual equity premium, as might have been expected. More interestingly, the 
figure shows that at times of stress, much of the annual equity premium is compressed 
into the first few months. For example, about a third of the equity premium over the 
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year from November 2008 to November 2009 can be attributed to the (unannualized) 
equity premium over the two months from November 2008 to January 2009. 

 
 
4.2 Expectations of returns and expected returns 

 
The view of the equity premium proposed above can usefully be compared with the 
expectations reported in surveys of market participants, as studied by Shiller (1987), 
Ben-David, Graham and Harvey (2013), and others. In particular, Greenwood and 
Shleifer (2014) emphasize that survey-based return expectations are negatively corre- 
lated with expected return forecasts based on conventional predictor variables. We will 
now see that this is also true when SVIX is used as a predictive variable. 
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Figure 7:  Expectations of returns (blue) and SVIX-implied expected returns (red). 
The units in panel (a) are percentage points.  The time series in panels (b), (c), and 
(d) are normalized to have zero mean and unit variance.  The forecasting horizon is 
one year for panels (a), (b), and (d), and six months for panel (c). 
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Figure 7 shows four of the survey measures considered by Greenwood and Shleifer: 
the Graham–Harvey Chief Financial Officer surveys, the Gallup investor survey mea- 
sure, the American Association of Individual Investors (AAII) survey, and Robert 
Shiller’s investor survey. The Graham–Harvey survey is based on the expectations of 
market returns reported by the chief financial officers of major US corporations; this 
survey can be compared directly with the expected return implied by SVIX. The other 
three measures are not in the same units, so panels (b), (c), and (d) of Figure 7 show 
time series standardized to have zero mean and unit variance. The Gallup survey 
measure is the percentage of investors who are “optimistic” or “very optimistic” about 
stock returns over the next year, minus the percentage who are “pessimistic” or “very 
pessimistic.” The AAII survey measure is the percentage of surveyed individual in- 
vestors (members of the AAII) who are “bullish” about stock returns over the next six 
months, minus the corresponding “bearish” percentage. The Shiller measure reports 
the percentage of individual investors surveyed who expected the market to go up over 
the following year. 

Each panel also shows the time series of expected returns implied by the SVIX 
index (calculated by adding the riskless rate to the right-hand side of (17)). To be 
consistent with the phrasing of each survey, I compare the the Gallup, Graham–Harvey 
and Shiller surveys to the SVIX-implied equity premium (or expected return) at the 
1-year horizon, and the AAII survey to the 6-month SVIX-implied equity premium (or 
expected return). 

The most notable feature of Figure 7 is that survey expectations tend to move in 
the opposite direction from the rational measure of expected returns based on SVIX, as 
emphasized by Greenwood and Shleifer. As Table 3 reports, all four survey series are 
negatively correlated with the SVIX-implied equity premium.18 This is true whether 
one measures correlations in levels or in differences, and whether one compares the 
surveys to the expected return on the market (that is, including the riskless rate, as in 
the series shown in Figure 7) or to the expected excess return on the market. There 
is also a contrast in that the skewness and excess kurtosis of the return expectations 
series are negative or close to zero, whereas they are strongly positive for SVIX, as 

 
18I convert the SVIX-implied equity premium into a monthly series by averaging within months, 

and calculate correlations over all dates that are shared by SVIX and the appropriate survey-based 
measure. 
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 Gallup Graham–Harvey AAII Shiller 

skewness −0.73 −0.10 0.04 0.06 

excess kurtosis 0.04 −0.28 −0.53 −1.03 
corr(survey,ER) −0.06 −0.29 −0.20 −0.45 

[0.232] [0.030] [0.003] [0.000] 

corr(survey, EER) −0.53 −0.50 −0.37 −0.46 

[0.000] [0.000] [0.000] [0.000] 

corr(∆survey, ∆ER) −0.40 −0.21 −0.29 −0.16 

[0.000] [0.097] [0.000] [0.035] 

corr(∆survey, ∆EER) −0.44 −0.22 −0.27 −0.16 

[0.000] [0.083] [0.000] [0.032] 
 

Table 3: Skewness and excess kurtosis of return expectation measures; and correlations 
between return expectations and SVIX-implied expected returns (ER), and between 
return expectations and SVIX-implied expected excess returns (EER), in levels and 
in differences (denoted by ∆). Numbers in square brackets indicate p-values on the 
hypothesis that the correlation between the two series is zero. 

 
 
shown in Table 1.19 Moreover, the lowest points in the Graham–Harvey and Gallup 
series coincide with the highest point in the SVIX series. 

Consistent with the thesis of Greenwood and Shleifer, it is implausible, given this ev- 
idence, that the surveyed investors have rational expectations.20 This fact is unsettling 
for proponents of rational-expectations representative-agent models. (To compound 

 

19The negative kurtosis of the Gallup and AAII measures may reflect the design of the surveys, 
each of which provides a fixed scale of possible responses. 

20On the other hand, the findings of Shiller (1987)—reporting the results of investor surveys that 
were sent out in the immediate aftermath of the crash in October 1987—are potentially consistent 
with the thesis that subjectively expected returns may have been very high at short horizons following 
Black Monday. Although the survey questions Shiller asked are hard to compare directly with the 
results of this paper, he documents that a substantial fraction of investors expected a market rebound 
from the crash. Shiller also reports that some investors had more nuanced expectations of market 
returns: for instance, some thought that the market would perform better over shorter horizons than 
over long horizons, consistent with the results of Section 4.1. 
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the problem, I consider a range of leading representative-agent models in Section 6.1, 
and show that none can match the behavior of VIX and SVIX quantitatively, or even 
qualitatively.) Seen in a certain light, however, this cloud may have a silver lining: 
the fact that there is a systematic—albeit negative—relationship between (rationally) 
expected returns and the expectations of surveyed investors points to a pattern that 
may be amenable to modelling. Barberis, Greenwood, Jin and Shleifer (2015) take 
a first step in this direction by presenting an equilibrium model in which irrational 
extrapolators interact with rational investors. It is the latter class of investors whose 
expectations should be thought of as reflected in the SVIX index. 

 
 
5 What is the probability of a crash? 

 

 
The theory presented in Section 1 was based on a rather minimal assumption, the NCC. 
I argued in subsequent sections that the NCC may hold with equality, that is, that 
we may have covt(MT RT , RT ) = 0. I now strengthen this latter condition further by 
taking the perspective of an investor with log utility who chooses to invest fully in the 
market. The next result shows how to convert the problem of inferring the subjective 
expectations of such an investor into a derivative pricing problem. 

 
Result 1. Let XT be some random variable of interest whose value becomes known at 
time T , and suppose that we can price a claim to XT Rt→T delivered at time T . Then 

we can compute the expected value of XT from the perspective of an investor with log 
utility whose wealth is invested in the market by pricing an asset: 

 

E-t XT = time-t price of a claim to the time-T payoff XT Rt→T . (24) 
 

Proof. Such an investor must perceive the market as growth-optimal. The reciprocal 
of the growth-optimal return is an SDF (Long (1990)), so from the perspective of 
this log investor, 1/Rt→T  is an SDF. The right-hand side of (24) therefore equals 
E-t 

r 
1

 
Rt→ 

XT Rt   T 
T 

l
; the result follows immediately. 

 

If the payoff XT Rt→T can be replicated, and hence priced, then we are done. The 

next result applies Result 1 to calculate a measure of the probability of a market 
crash.21 

 
21The link between option prices and tail probabilities has been studied by several authors using 
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Figure 8: Calculating the probability of a crash, P- (RT < α), from put prices. 
 
 
Result 2. For simplicity, assume there are no dividend payments between times t and 
T , so that RT = ST /St. Then the log investor’s subjective probability that the return 
on the market is less than α is 

 

P- (RT < α) = α 
1 

/ 
t,T 

 

(αSt) − putt,T (αSt) 
l
 

αSt 

 
. (25) 

 

Proof. Since P- (RT < α) = E- 
(
1{RT <α}

)
, we must (by Result 1) price a claim to the 

payoff RT 1{RT <α}. The result follows because 
 
 
 

RT 1{RT <α} = 

 
 

ST 
S 

1{ST <αSt} = α   1{ST <αSt} 

 
 

 1   − 

 
 

max {0, αSt − ST } , 

dig ital p
'"
u
,.
t pa

_
yoff 

αSt 
put payoff 

 

since (as is well-known) the price of a digital put with strike αSt—that is, the price of 
a claim to $1 paid if and only if ST  < αSt—is put/ (αSt). 

 

The crash probability index (25) has a geometrical interpretation that is illustrated 
in Figure 8: the tangent to putt,T (K) at K = αSt cuts the y-axis at −St P- (RT < α). 

Thus the crash probability is high when put prices exhibit significant convexity (as a 
function of strike) at and below K = αSt. 

Figure 9 shows the (log investor’s subjective) probability of a 20% market crash 
at various horizons, smoothed by taking a 20-day moving average.  Over my sample 
period, the probability of a crash in the next month averages 0.85% and peaks at 

 

various different approaches; see, for example, Bates (1991), Backus, Chernov and Martin (2011), 
Bollerslev and Todorov (2011), and Barro and Liao (2016). 
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Figure 9: The probability, in percent, of a 20% market crash at various horizons (20-day 
moving average). 

 

 
8.4%, while that of a crash in the next year averages 8.7% and peaks at 17.2%. It is 
interesting to note, in panel (d), that the run-up in the 1-year crash probability started 
in 2007, at a time when the S&P 500 index was at or near historic highs, well before 
the onset of the crash proper. 

 
 
6 VIX, SVIX, and variance swaps 

 

 
The SVIX index, defined in equation (12), can usefully be compared to the VIX index: 

 
VIX2 ≡ 2Rf,t

 

(r Ft,T 
 

1 put 
r ∞ 

(K) dK + 
 

1 call 
 
 t,T 

 
 
(K) dK 

 
 

. (26) 
t T − t 0 K2 

t,T 
Ft,T  K 

 

We saw in equation (13) that the SVIX index measures the risk-neutral volatility of 
the return on the market. What does VIX measure? Since option prices are equally 
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(eσ2
 

weighted by strike in the definition of SVIX, but weighted by 1/K2 in the definition of 
VIX, it is clear that VIX places relatively more weight on out-of-the-money puts and 
less weight on out-of-the-money calls; and hence places more weight on left-tail events. 

 

Result 3 (What does VIX measure?). If the underlying asset does not pay dividends, 
so that RT = ST /St, then VIX measures the risk-neutral entropy of the simple return: 

VIX2 = 
2
 L∗(R /R  ), (27) 

t T − t t T
 

f,t 

where entropy is defined by L∗(X) ≡ log E∗ X − E∗ log X. 
t t t 

 

Proof. As an application of the result of Breeden and Litzenberger (1978), the price of 
a claim to log RT  is 

 1   
Rf,t 

 

E∗ log RT = log Rf,t 

Rf,t 

r Ft,T 

− 
0 

 1 

K2 putt,T (K) dK − 
r ∞ 
 

Ft,T 

 1 

K2 callt,T (K) dK. 

The result follows by combining this with the fact that E∗ RT = Rf,t. 
 

Entropy is a measure of the variability of a positive random variable.22 Like variance 
it is nonnegative by Jensen’s inequality, and like variance it measures variability by the 
extent to which a concave function of an expectation of a random variable exceeds an 
expectation of a concave function of a random variable. 

If the VIX index measures entropy, and the SVIX index measures variance, which 
is a better measure of return variability? The answer is that both are of interest. 
Entropy is more sensitive to the left tail of the return distribution, while variance is 
more sensitive to the right tail, as can be seen by comparing the entropy measure (26), 
which loads more strongly on out-of-the-money puts, with the variance measure (12), 
which loads equally on options of all strikes. 

The next result shows that VIX and SVIX take a particularly simple form in con- 
ditionally lognormal models. 

 

Result 4. If the SDF MT   and return RT   are conditionally jointly lognormal, then 
SVIX2 = 1 t (T −t) − 1) and VIX2 = σ2 , where σ2 = 1    vart log RT . In particular, 

t T −t t t t T −t 

SVIXt > VIXt. 
 

22Entropy makes appearances elsewhere in the finance literature: see, for example, Alvarez and 
Jermann (2005), Backus, Chernov and Martin (2011), and Backus, Chernov and Zin (2013). The 
Hansen–Jagannathan (1991) bound relates to the variance of the stochastic discount factor, while the 
Alvarez–Jermann (2005) bound relates to its entropy. 
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(b) VIX minus SVIX 
 
Figure 10: Left: Time series of closing prices of VIX (dotted line) and SVIX (solid 
line). Right: VIX minus SVIX. Both figures show 10-day moving averages. 

 
Proof. The claims in the first sentence are proved in Appendix D. Since ex − 1 > x for 

any real number x, it follows that SVIXt > VIXt  under lognormality. 
 

It would also follow under lognormality that the difference between SVIX and VIX— 
which the above result shows would be positive—should be negligible for empirically 

relevant values of σt  and T − t: if for example σt = 20% and T − t = 1/12 (i.e., at 
a 1-month horizon) then we would have VIXt = 20% and SVIXt = 20.02%. Figure 
10 shows (also at a 1-month horizon) that these predictions are dramatically violated 
in the data. The gap between VIX and SVIX is particularly large at times of market 
stress, but VIX is higher than SVIX on every single day in my sample. This is direct, 
model-free evidence that the market return and SDF are not conditionally lognormal 
at the 1-month horizon. It is not that nonlognormality only matters at times of crisis; 
it is a completely pervasive feature of the data. It is also worth emphasizing that this 
evidence is much stronger than the familiar observation that histograms of log returns 
are not Normal, since that leaves open the possibility that log returns are conditionally 
Normal (with, perhaps, time-varying conditional volatility). Figure 10b excludes that 
possibility. 
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6.1 VIX and SVIX as diagnostics of equilibrium models 
 
The characterizations of VIX and SVIX in terms of risk-neutral variance and entropy 
can be read in reverse, as a way to calculate implied VIX and SVIX indices within 
equilibrium models: it is far easier to calculate risk-neutral entropy and variance than 
it is to compute option prices and then integrate over strikes. 

Can equilibrium models account for the behavior of VIX and SVIX? It might seem 
that there is room for optimism, given that consumption growth spiked downwards in 
late 2008 as SVIX spiked upwards (see Figure 17, in the Appendix); but as we will now 
see, leading consumption-based models are unable to match the properties of the two 
series. 

The top panel of Table 4 reports various summary statistics of VIX, SVIX, and 
VIX minus SVIX: namely, the mean, median, standard deviation, maximum, mini- 
mum, skewness, excess kurtosis, and autocorrelation of each series (computed on a 
monthly basis; full details are provided in Appendix D). The panels below report the 
corresponding quantities calculated within six leading consumption-based models: the 
Campbell–Cochrane (CC, 1999) habit formation model, the long-run risk model in the 
original stochastic volatility calibration of Bansal–Yaron (BY, 2004) and in the more 
recent calibration of Bansal, Kiku and Yaron (BKY, 2012), Wachter’s (2013) model 
with a time-varying disaster arrival rate, and two models that explicitly address the 
properties of option prices, Bollerslev, Tauchen and Zhou (BTZ, 2009), and Drechsler 
and Yaron (DY, 2011). These numbers are generated by simulating 1,000,000 sample 
paths of VIX and SVIX within each model, and computing the average value of the 
mean, median, etc., across the paths. I also generate an empirical p-value for each 
statistic: this represents the proportion of the 1,000,000 paths that generate values 
that are as, or more, extreme as observed in the data. 

The results are easily summarized. None of the models comes close to matching 
the properties of either VIX or SVIX. The difference between the two is particularly 
problematic: for all six models, the mean (and median) level of VIX minus SVIX 
observed in the data lies outside the support of the 1,000,000 trials. In the case of the 
CC, BY, BKY, and BTZ models, which are approximately conditionally lognormal, 
this failure is a consequence of Result 4. The DY model is not lognormal, but still does 
not generate a sufficiently large mean gap between VIX and SVIX. The Wachter model, 
with its extreme disasters, generates too large a mean gap. The models also fail on the 
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Data mean median s.d. min max skewness kurtosis AC(1) 

VIX 21.73 20.36 8.54 10.08 67.60 1.91 6.25 0.802 

SVIX 20.96 19.77 7.89 9.91 62.31 1.77 5.51 0.803 

VIX − SVIX 0.77 0.56 0.75 0.10 6.08 3.60 18.32 0.714 

CC mean median s.d. min max skewness kurtosis AC(1) 

VIX 18.56 18.72 2.33∗∗∗ 13.46∗∗∗ 22.74∗∗∗ −0.24∗∗∗ −0.49∗∗ 0.959∗∗∗ 

SVIX 18.58 18.75 2.34∗∗∗ 13.47∗∗∗ 22.79∗∗∗ −0.24∗∗ −0.49∗∗ 0.959∗∗∗ 

VIX − SVIX −0.03∗∗∗ −0.03∗∗∗ 0.01∗∗∗ −0.05∗∗∗ −0.01∗∗∗ −0.09∗∗ −0.28∗∗ 0.957∗∗∗ 

BY mean median s.d. min max skewness kurtosis AC(1) 

VIX 17.20∗∗∗ 17.26∗ 1.38∗∗∗ 14.08∗ 19.90∗∗∗ −0.15∗∗∗ −0.49∗∗∗ 0.962∗∗∗ 

SVIX 17.21∗∗ 17.27∗ 1.38∗∗∗ 14.08∗ 19.92∗∗∗ −0.15∗∗∗ −0.49∗∗∗ 0.962∗∗∗ 

VIX − SVIX −0.01∗∗∗ −0.01∗∗∗ 0.00∗∗∗ −0.02∗∗∗ −0.01∗∗∗ −0.14∗∗∗ −0.53∗∗∗ 0.962∗∗∗ 

BKY mean median s.d. min max skewness kurtosis AC(1) 

VIX 16.64 16.76 2.18∗∗∗ 11.97 20.65∗∗∗ −0.19∗∗∗ −0.54∗∗∗ 0.967∗∗ 

SVIX 16.65 16.77 2.18∗∗∗ 11.98 20.67∗∗∗ −0.19∗∗∗ −0.54∗∗∗ 0.967∗∗ 

VIX − SVIX −0.01∗∗∗ −0.01∗∗∗ 0.00∗∗∗ −0.02∗∗∗ −0.01∗∗∗ −0.28∗∗∗ −0.47∗∗∗ 0.968∗∗∗ 

BTZ mean median s.d. min max skewness kurtosis AC(1) 

VIX 19.50 19.72 8.63 0.90∗ 38.02∗∗∗ −0.08∗∗∗ −0.50∗∗∗ 0.907∗ 

SVIX 19.53 19.74 8.65 0.90∗ 38.15∗∗ −0.08∗∗∗ −0.50∗∗∗ 0.907∗ 

VIX − SVIX −0.03∗∗∗ −0.02∗∗∗ 0.03∗∗∗ −0.13∗∗∗ 0.00∗∗∗ −1.37∗∗∗ 2.08∗∗ 0.911∗∗ 

DY mean median s.d. min max skewness kurtosis AC(1) 

VIX 16.71∗ 15.27∗∗ 4.34∗ 13.06∗∗∗ 37.78∗∗ 2.48 7.95 0.825 

SVIX 16.62∗ 15.20∗∗ 4.25 13.06∗∗∗ 37.33∗ 2.50 8.05 0.824 

VIX − SVIX 0.09∗∗∗ 0.06∗∗∗ 0.09∗∗∗ 0.00∗∗∗ 0.45∗∗∗ 1.81∗∗ 3.97∗∗ 0.838 

W mean median s.d. min max skewness kurtosis AC(1) 

VIX 38.86 38.79 9.42 19.85 58.25 0.02∗∗∗ −0.59∗∗∗ 0.966∗∗∗ 

SVIX 32.41 32.37 7.69 16.92 48.18 0.02∗∗∗ −0.59∗∗∗ 0.966∗∗∗ 

VIX − SVIX 6.44∗∗∗ 6.42∗∗∗ 1.73∗∗ 2.93 10.06 0.04∗∗∗ −0.56∗∗∗ 0.965∗∗∗ 
 

Table 4: One asterisk: p-value < 0.05. Two asterisks: p-value < 0.01. Three asterisks: 
p-value = 0.000 to three d.p. Figures in bold indicate that the value observed in 
the data lies outside the range generated in 1,000,000 trials of the given model (so 
p-value < 10−6). “Kurtosis” refers to excess kurtosis, which equals zero for a Normal 
random variable. 

35  



0 

other statistics of VIX minus SVIX: its volatility (the Wachter model generates too 
much, the others not enough), its spikiness (all the models generate too little skewness 
and kurtosis), and its autocorrelation (higher in the models than in the data). As for 
VIX and SVIX themselves, only the DY model can match their high skewness and 
kurtosis and relatively low autocorrelation, and it fails on the other dimensions. 

 
 
6.2 Variance swaps and simple variance swaps 

 
The equation underpinning the VIX index (26) is a definition rather than a statement 
about asset pricing, but the form of the definition originally emerged from the theory 
of variance swap pricing. This section explores this connection in further detail, and 
proposes a definition of a tradable contract, the simple variance swap, that is to SVIX 
as variance swaps are to VIX. As we will see, simple variance swaps are considerably 
more robust than conventional variance swaps. In particular, they can be hedged even 
if the underlying asset is subject to jumps. This is an attractive feature, because the 
variance swap market collapsed during the events of 2008. 

A variance swap is an agreement (initiated, say, at time 0) to exchange 
 

( 
log S∆ 

\2 

S0 

( 
+ log 

S2∆ 
\2

 

S∆ 

 

+ · · · + 
( 

log ST   
\2 

ST −∆ 

 
(28) 

 

for some fixed “strike” V- at time T . Here ∆ is some small time-increment; typically, 
∆ = 1 day. The market convention is to set V- so that no money needs to change hands 
at initiation of the trade: 

 

V- = E∗ 
1( 

S∆ 
\2 

log 
S0 

( 
+ log 

S2∆ 
\2

 

S∆ 

 

+ · · · + 
(
log  

ST 

ST −∆ 

\2l   
. (29) 

 

The following result, which is due to Carr and Madan (1998) and Demeterfi, Der- 
man, Kamal, and Zou (1999), building on an idea of Neuberger (1994), shows how to 
price a variance swap—that is, how to compute the expectation on the right-hand side 
of (29)—under some assumptions that are standard in the variance swap literature but 
that were not required in preceding sections: 

 
A1 the continuously-compounded interest rate is constant, at r; 

 
A2 the underlying asset does not pay dividends; and 
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A3 the underlying asset’s price follows an Itô process dSt = rSt dt + σtSt dZt under 
the risk-neutral measure (so that, in particular, there are no jumps). 

 
Result 5. Under Assumptions A1–A3, the strike on a variance swap is 

(r F0,T 1 
 

r ∞ 1 
V- = 2erT  put0,T (K) dK + call0,T (K) dK (30) 

0 K2 F0,T  K 
 

in the limit as ∆ → 0; and this quantity has the interpretation 
 

V- = E∗ 
1r T 

 
0 

l 
σ2 dt 

 
 
. (31) 

 

The variance swap can be hedged by holding 
 

(i) a static position in (2/K2) dK puts expiring at time T  with strike K, for each 

K ≤ F0,T , 
 

(ii) a static position in (2/K2) dK calls expiring at time T with strike K, for each 

K ≥ F0,T , and 
 

(iii) a dynamic position in 2(F0,t/St − 1)/F0,T   units of the underlying asset at time t, 

financed by borrowing. 

Sketch proof of (30) and (31). In the limit as ∆ → 0, the right-hand side of (29) 

converges to 

V- = E∗ 
1r T 
 

0 

l 
(d log St)2   . 

(Jarrow et al. (2010) provide a rigorous analysis.) Neuberger (1994) observed that, by 
Itô’s lemma and Assumption A5, d log St = (r − 1 σ2)dt + σt dZt under the risk-neutral 

2  t 

measure, so (d log St)2 = σ2 dt, and 
 
 

V- = E∗ 
1r T 

 
0 

l 
σ2 dt 

1r T  1 r T l 
=  2 E∗    dSt − d log St 

0 St 0 
ST 

=  2rT − 2 E∗ log 
0 

. (32) 
 

This shows that the strike on a variance swap is determined by pricing a notional 
contract that pays, at time T , the logarithm of the underlying asset’s simple return 
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RT = ST /S0. Carr and Madan (1998) and Demeterfi et al. (1999) then showed how to 
use the approach of Breeden and Litzenberger (1978) to find the price of this contract, 
Plog, in terms of the prices of European call and put options on the underlying asset: 

 

Plog ≡ e−rT E∗ log RT  = rT e−rT − 
r F0,T 

 
0 

 

1 

K2 put0,T (K) dK − 
r ∞ 
 

F0,T 

 

1 

K2 call0,T (K) dK. 
 

Substituting back into (32), we have the result. 
 

This result is often referred to as “model-free,” since it applies if the underlying 
asset’s price follows any sufficiently well-behaved Itô process. But this is a very strong 
condition.  In reality, the market does not follow an Itô process, so VIX2  does not 
correspond to the fair strike on a variance swap, V- ;23 the replicating portfolio provided 
in Result 5 does not replicate the variance swap payoff; and neither V- 

the interpretation (31). 
nor VIX2 has 

Since variance swaps cannot be hedged at times of jumps, market participants have 
had to impose caps on their payoffs. These caps—which have become, since 2008, the 
market convention in index variance swaps as well as single-name variance swaps— 
limit the maximum possible payoff on a variance swap, but further complicate the 
pricing and interpretation of the contract. A fundamental problem with the definition 
of a conventional variance swap can be seen very easily: if the underlying asset—an 
individual stock, say—goes bankrupt, so that St hits zero at some point before expiry 
T , then the payoff (28) is infinite. 

Simple variance swaps do not suffer from this deficiency. A simple variance swap is 
an agreement to exchange 
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S∆ −S0 

\2
 

F0,0 
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S2∆  −S∆ 

\2
 

F0,∆ 

 

+ · · · + 
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ST —ST ∆ 
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F0,T −∆ 

 

 
(33) 

 

for a pre-arranged strike V at time T . (Recall that F0,t is the forward price of the 
underlying asset to time t, which is known at time 0.) The choice to put forward prices 
in the denominators is important: below we will see that this choice leads to a huge 
simplification of the formula for the strike V , and of the associated hedging strategy, 
in the limit as the period length ∆ goes to zero. In an idealized frictionless market, 

 
23Äıt-Sahalia, Karaman and Mancini (2012) document a large gap between index variance swap 

strikes and VIX-type indices (squared) at all horizons: on the order of 2% in volatility units, compared 
to an average volatility level around 20%. 
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this simplification of the hedging strategy would merely be a matter of analytical 
convenience; in practice, with trade costs, it acquires far more importance. 

The following result shows how to price a simple variance swap (i.e. how to choose 
V  so that no money need change hands initially) in the ∆ → 0 limit.  From now on, 
I write V for the fair strike on a simple variance swap in this limiting case, and write 
V (∆) when the case of ∆ > 0 is considered. The result depends on weaker assumptions 
than were required for the conventional variance swap. Most important, there is no 
need to assume that the underlying asset follows a diffusion. 

 
B1 the continuously-compounded interest rate is constant, at r; and 

B2 the underlying asset pays dividends continuously at rate δSt per unit time. 

Given these assumptions, F0,t = S0e(r−δ)t. Dividends should be interpreted broadly: 
if the underlying asset is a foreign currency then δ corresponds to the foreign interest 
rate. Appendix E.4 considers other ways of dealing with dividend payouts. 

Result 6 (Pricing and hedging a simple variance swap in the ∆ → 0 limit). Under 

Assumptions B1 and B2, the strike on a simple variance swap is 

2erT 
(r F0,T 

V = F 2 

r ∞ 

put0,T (K) dK + 

 
 
call0,T (K) dK 

 
 

, (34) 
0,T 0 F0,T 

 

and the payoff on a simple variance swap can be replicated by holding 
 

(i) a static position in (2/F 2 ) dK puts expiring at time T with strike K, for each 

K ≤ F0,T , 
 

(ii) a static position in (2/F 2 

 
 
 
) dK calls expiring at time T with strike K, for each 

K ≥ F0,T , and 
 

(iii) a dynamic position in 2e−δ(T −t)(1 − St/F0,t)/F0,T  units of the underlying asset at 

time t, 
 
financed by borrowing. 

 
Proof. The derivation of (34) divides into two steps. Step 1 : The absence of arbitrage 
implies that there are stochastic discount factors M∆, M2∆, . . . such that a payoff Xj∆ 

at time j∆ has price Ei∆ 
r
M(i+1)∆M(i+2)∆ · · · Mj∆Xj∆

l 
at time i∆. The subscript on 
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− 

− − 

i∆] − (2e − (i−1)∆ 

i 

0,t 

F 2 

V 

δ
 

− 

the expectation operator indicates that it is conditional on time-i∆ information. I 
abbreviate M(j∆)  ≡ M∆M2∆ · · · Mj∆. 

V is chosen so that the swap has zero initial value, i.e., 
 
 
 
 
 
We have 

1 
 

E  M(T ) 

(( 
S∆ −S0 

\2
 

F0,0 

 
+ · · · + 

( 
ST —ST ∆ 

\2 
l

 
F0,T −∆ 

−
 

 
 
= 0. (35) 

 

E[M(T )(Si∆ − S(i   1)∆)2] = e −r(T −i∆) E[M(i∆)(Si∆ − S(i   1)∆)2] 

= e−r(T −i∆) {E[M(i∆)S2 −δ∆ — e−r∆ ) E[M((i   1)∆)S2 ]
�  

, 
 

using (i) the law of iterated expectations; (ii) the fact that the interest rate r is con- 
r∆ 

stant, so that E(i−1)∆ Mi∆ = e− ; and (iii) the fact that if dividends are continuously 
reinvested in the underlying asset, then an investment of e−δ∆S(i −1)∆ at time (i − 1)∆ 
is worth Si∆ at time i∆, which implies that E(i−1)∆ Mi∆Si∆ = e− S(i−1)∆. If we define 
Π(i) to be the time-0 price of a claim to S2, paid at time i, then 

 

E 
r
M(T ) 

(
Si∆ − S(i 

) 
−1)∆ 

2
l 
= e−r(T −i∆) 

r
Π(i∆) − 

(
2 − e −(r−δ)∆) e−δ∆ Π((i − 1)∆)

l 
. 

 

Substituting this into (35), we find that 
 

T /∆ 

V (∆) = 
 

 

 

eri∆ 

F 2 

 

r
Π(i∆) − (2 − e−(r−δ)∆)e−δ∆Π((i − 1)∆)

l 
. (36) 

i=1 0,(i−1)∆ 
 

As we have already seen, 
 
 

r ∞ 

Π(t) = 2 
0 

 
 
 
 
call0,t(K) dK (37) 

 

or, using put-call parity to express Π(t) in terms of out-of-the-money options, 
 

 
Π(t) = 2 

r F0,t 

 
0 

 
put0,t(K) dK + 2 

r ∞ 
 

F0,t 

 

call0,t(K) dK + e−rtF 2 
 
. (38) 

 

Step 2. Observe that (36) can be rewritten 

T /∆ ( eri∆ 

V (∆) =
  r

P (i∆) − (2 − e−(r−δ)∆)e−δ∆P ((i − 1)∆)
l
 

 
 
 

+ T (
e(r−δ)∆ 1

)2 , ∆ 
 
 
where 

i=1 0,(i−1)∆ 
 
 
P (t) ≡ 2 

 
 
(r F0,t 

 
0 

 
 
 
 
put0,t(K) dK + 

 
 
r ∞ 

 
F0,t 

 
 
 
 
call0,t(K) dK . 
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F F F 
= 

− 

2 

0,
 

2 

For 0 < j < T /∆, the coefficient on P (j∆) in this equation is 
 

erj∆ 

2 
0,(j−1)∆ 

er(j+1)∆ 

— 2 
0,j∆ 

 

(2 − e−(r 

 

−δ)∆ 
 

)e−δ∆ erj∆ 

2 
0,j∆ 

(
e(r 

 

−δ)∆ − 1
)  

. 

 

(The definition (33) was originally found by viewing the normalizing constants F0,j∆, 
for j = 0, . . . T /∆, as arbitrary, and choosing them so that the above equation would 
hold.) We can therefore rewrite 

 
 

erT T /∆−1  erj∆ 2 T 2 
V (∆) = 

F 2 P (T ) + 
      (

e(r−δ)∆ 1
) 

F 2 
P (j∆) + ∆ (e(r−δ)∆  − 1

) . (39) 
0,T −∆ j=1 0,j∆ 

   '",. _ 
O(1/∆) terms of size O(∆ ) 

 

The second term on the right-hand side is a sum of T /∆ − 1 terms, each of size on the 

order of ∆2; all in all, the sum is O(∆). The third term is also O(∆), so both tend to 

zero as ∆ → 0. The first term tends to erT P (T )/F 2 , as required. 
The above argument implicitly supplies the dynamic trading strategy that replicates 

the payoff on a simple variance swap. Appendix E.1 describes the strategy in detail. 
 

The derivation of the pricing result (34) has two main components. The first is 
the exact expression (36), which applies for fixed ∆ > 0. It shows that the strike on a 
simple variance swap is dictated by the prices of options across all strikes and the whole 
range of expiry times ∆, 2∆, . . . , T . But, correspondingly, the hedge portfolio requires 
holding portfolios of options of each of these maturities. Although this is not a serious 
issue if ∆ is large relative to T , it raises the concern that hedging a simple variance 
swap may be extremely costly in practice if ∆ is very small relative to T . Fortunately, 
the second component shows that this concern is misplaced: by choosing forward prices 
as the normalizing weights in the definition (33), both the pricing formula (36) and the 

hedging portfolio simplify nicely in the limit as ∆ → 0. In principle, we could have 
put any other constants known at time 0 in the denominators of the fractions in (33). 
Had we done so, we would have to face the unappealing prospect of a hedging portfolio 
requiring positions in options of all maturities between 0 and T . Using forward prices 
lets us sidestep this problem, meaning that the hedge calls only for a single static 
portfolio of options expiring at time T , and equally weighted by strike. 

The dynamic position in the underlying can be thought of as a delta-hedge: if, say, 
the underlying’s price at time t happens to exceed F0,t = S0e(r−δ)t, then the replicating 
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portfolio is short the underlying in order to offset the effects of increasing delta as calls 
go in-the-money and puts go increasingly out-of-the-money. 

Robustness.  What happens if sampling and trading occurs at discrete intervals 
∆ > 0, rather than continuously? What if deep-out-of-the-money options cannot 
be traded? What are the effects of different dividend payout policies? I show in 
Appendix E that simple variance swaps have good robustness properties in each case. 

 
 
7    Conclusion 

 

 
The starting point of this paper is the identity (4), which shows that the expected 
excess return on any asset equals the risk-neutral variance of the asset’s return minus 
a covariance term. If options are traded on the asset, then risk-neutral variance can be 
unambiguously measured without requiring any assumptions other than the absence of 
arbitrage. I apply the identity to the return on the market. In this case, risk-neutral 
variance is equal to the square of a volatility index, SVIX, that is similar to the VIX 
index, and I argue that the covariance term is weakly negative. The square of the 
SVIX index is therefore a lower bound on the equity premium. 

I construct the SVIX index using S&P 500 index option data from 1996 to 2012. 
The index is strikingly volatile; it implies that in late 2008, the equity premium rose 
above 21% at the 1-year horizon and above 55% (annualized) at the 1-month horizon. 
More aggressively, I argue that the lower bound is approximately tight —that is, risk- 
neutral variance is not merely a lower bound on the equity premium, it is approximately 
equal to the equity premium. 

The implications of this fact represent a challenge to finance theory: I have shown 
that none of the leading equilibrium models of financial markets can generate the 
sudden shifts in VIX and SVIX that are observed in the data. More broadly, the 
results point to a novel view of the equity premium, with important implications for 
finance and macroeconomics. 

First, they suggest that the equity premium is far more volatile than implied by the 
valuation-ratio predictors of Campbell and Thompson (2008). The distinction between 
the two views is sharpest on days such as Black Monday, in 1987, when the S&P 500 
and Dow Jones indices experienced very severe declines, with daily returns roughly 
twice as negative as the next-worst day in history. On the Campbell–Thompson view 
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of the world, the equity premium rose on the order of two or three percentage points 
during this episode. In sharp contrast, option prices are known to have exploded on 
Black Monday, which I argue implies also that the equity premium exploded. 

Second, this volatility often reflects movements in the equity premium at weekly, 
daily, or even higher frequency. The macro-finance literature, which seeks to rationalize 
market gyrations at the business cycle frequency, typically has not acknowledged or 
attempted to address such movements. 

Third, the equity premium is strongly right-skewed: the median equity premium 
is on the order of 3 or 4%, but there are occasional opportunities for unconstrained 
investors to earn a much higher equity premium. 

Fourth, the term structure of the equity premium reveals that during such episodes, 
a disproportionate fraction of the equity premium is concentrated in the form of ex- 
tremely high expected returns over the very short run. 
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A The negative correlation condition 
 

 
This section contains proofs that the examples in Section 2 satisfy the NCC. 

 2 2 

Example 1. Write MT = e−rf,t+σM,tZM,T −σM,t/2 and RT = eµR,t+σR,tZR,T −σR,t/2, where 
ZM,T  and ZR,T  are (potentially correlated) standard Normal random variables.  The 
requirement that Et MT RT  = 1 implies that µR,t − rf,t + covt(log MT , log RT ) = 0. This 
fact, together with some straightforward algebra, implies that Et MT R2 ≤ Et RT  if and 
only if λt ≥ σR,t, where λt is the conditional Sharpe ratio (µR,t − rf,t)/σR,t. 

Example 2. By assumption, there is an investor with wealth Wt and utility function 
u(·) who chooses, at time t, from the available menu of assets with returns R(i), i = 
1, 2, . . .. In other words, he chooses portfolio weights {wi} to solve the problem 

 

1 
 

max Et u  Wt 
{wi} 

I \l 
  

wiR(i) 

i 

 
 

subject to wi = 1. (40) 
i 
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The first-order condition for (say) wj  is that 
1 

Et    Wtu/ 

I \ 
Wt        wiR(i) 

l 
(j) 
T 

 
 
= λt, 

i 
 

where λt > 0 is the Lagrange multiplier associated with the constraint in (40). Since 
the investor chooses to hold the market, we have     wiR(i) = RT . Thus, 

 
 

Wt Et 

 
 
u/ (WtRT ) R 

 

 
 
(j) T 

 
  

= 1 
 λt    '",. _ 

T 
 

for any return R(j). It follows that the SDF is proportional (with a constant of pro- 
portionality that is known at time t) to u/(WtRT ). 

To show that the NCC holds, we must show that covt(u/(WtRT )RT , RT ) ≤ 0. 
This holds because u/(WtRT )RT is decreasing in RT : its derivative is u/(WtRT ) + 
WtRT u//(WtRT ) = −u/(WtRT ) [γ(WtRT ) − 1], which is negative because risk aversion 
γ(x) ≡ −xu//(x)/u/(x) is at least one. 

If the investor has log utility, then γ(x) ≡ 1, so the inequality holds with equality. 
But it is not necessary for the investor to have log utility for the inequality to hold with 
equality: all we require is that MT RT is uncorrelated with RT . That is, we merely need 
that MT = IT /RT where IT and RT are uncorrelated (and Et IT = 1 since Et MT RT 

must equal one). Log utility is the special case in which IT ≡ 1. 
 

Examples 3a and 3b. For reasons given in the text, Example 3a is a special case 
of Example 3b, which we now prove. We must check that covt(MT RT , RT ) ≤ 0, or 
equivalently  that 

covt(−RT VW (WT , z1,T , . . . , zN,T ), RT ) ≥ 0. (41) 

That is, we must prove that the covariance of two functions of RT , R(i), z1,T , . . . , zN,T 

is positive. The two functions are 
 

f (RT , R(i), z1,T , . . . , zN,T ) = −RT VW (αt(Wt−Ct)RT +(1−αt)(Wt−Ct)R(i), z1,T , . . . , zN,T ) 
T 

 
 
and 

 

 
 
 
 
g(RT , R(i), z1,T , . . . , zN,T ) = RT . 

T 

(42) 

 

(Since the covariance is conditional on time-t information, αt and (Wt − Ct) can be 
treated as known constants.) By the defining property of associated random variables, 
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T 

T 

T 

0 

R 

(41) holds so long as f and g are each weakly increasing functions of their arguments. 
This is obviously true for g, so it only remains to check that the first derivatives of f 
are all nonnegative. 

Differentiating (42) with respect to RT , we need −VW (WT , z1,T , . . . , zN,T ) − αt(Wt − 
Ct)RT VW W (WT , z1,T , . . . , zN,T ) ≥ 0, or equivalently 

 

WT VW W (WT , z1,T , . . . , zN,T ) 
 

 WT  , − 
VW (WT , z1,T , . . . , zN,T ) 

≥ 
WM,T 

 

where WT  and WM,T  are as given in the main text.  This is the constraint on risk 
aversion. 

Differentiating (42) with respect to R(i), we need −RT (1−αt)(Wt−Ct)VW W (WT , z1,T , . . . , zN,T ) ≥ 
0, which follows because VW W  < 0. 

Differentiating (42) with respect to zj,T , we need −RT VW j (WT , z1,T , . . . , zN,T ) ≥ 0, 
which follows because VW j (the cross derivative of the value function with respect to 
wealth and the jth state variable) is weakly negative due to the choice of sign on the 
state variables. 

 

Examples 4a and 4b. With Epstein–Zin preferences, the SDF is proportional (up 
to quantities known at time t) to (WT /CT )(γ−1)/(1−ψ)R−γ , so the desired inequality, 

covt(MT RT , RT ) ≤ 0, is equivalent to 
 
 

covt 

1 ( 
WT 

\(γ−1)/(1−ψ) 

− CT
 

l 
R1−γ , RT

 
 

≥ 0. 
 

If γ = 1, as in Example 4b, then this holds with equality. 
If WT /CT and RT are associated, as assumed in Example 4a, then we need to check 

that the first derivatives of f (x, y) = −x(γ−1)/(1−ψ)y1−γ are nonnegative. That is, we 
need γ ≥ 1 and ψ ≥ 1, as claimed. 

 
 
 

B Calculating risk-neutral variance 
 

Note that for any x ≥ 0, we have x2  = 2 
r ∞ max {0, x − K} dK.  Setting x = ST , 

taking risk-neutral expectations, and multiplying by 1   , 
f,t 

 1   
E∗ S2 r ∞ 1 =  2 

 

E∗ max {0, ST  − K} dK 
Rf,t 

t T
 0 Rf,t 

t
 

r ∞ 
=  2 callt,T (K) dK. (43) 

0 
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t S 
F 

Rf,t 

F 

t S 

l 

It follows from (7), (8), and (43) that risk-neutral variance can be calculated from 
option prices: 

1 
Rf,t 

var∗ RT = 1 
1  r ∞ 

2     2 
t 0 

callt,T (K) dK − 
2 
t,T 

Rf,t 

 
. (44) 

This expression incorporates the prices of in-the-money calls, which are usually illiquid. 
But by put-call parity, callt,T (K) = putt,T (K) +  1 (Ft,T  − K), so 

 

r ∞ 
callt,T (K) dK = 

0 

r Ft,T 

 
0 r Ft,T 

 
callt,T (K) dK + 
 

1 

r ∞ 
 

Ft,T 

 
callt,T (K) dK 

r ∞ 

= putt,T (K) + 
0 

 

Rf,t 
(Ft,T − K) dK +  

Ft,T 

callt,T (K) dK 
r Ft,T 

= 
0 

 
putt,T (K) dK + 

2 
t,T 

2Rf,t 

r ∞ 
+ 

Ft,T 

 
callt,T (K) dK. 

 

Substituting this into (44), we have the formula (11) for risk-neutral variance: 
 

1 
Rf,t 

 

 

var∗ RT = 2 
1r Ft,T 

2 
t 0 

 
 
putt,T (K) dK + 

 

r ∞ 

 
Ft,T 

l 
 

callt,T (K) dK  . 

 
B.1 Construction of the lower bound 

 
The data are from OptionMetrics, runnning from January 4, 1996, to January 31, 2012; 
they include the closing price of the S&P 500 index, and the expiration date, strike 
price, highest closing bid and lowest closing ask of all call and put options with fewer 
than 550 days to expiry. I clean the data in several ways. First, I delete all replicated 
entries. Second, for each strike, I select the option—call or put—whose mid price is 
lower. Third, I delete all options with a highest closing bid of zero. Finally, I delete all 
Quarterly options, which tend to be less liquid than regular S&P 500 index options and 
to have a smaller range of strikes. Having done so, I am left with 1,165,585 option-day 
datapoints. I compute mid-market option prices by averaging the highest closing bid 
and lowest closing ask, and using the resulting prices to compute the lower bound by 
discretizing the right-hand side of inequality (14). 

On any given day, I compute the lower bound at a range of time horizons de- 
pending on the particular expiration dates of options traded on that day, with the 
constraint that the shortest time to expiry is never allowed to be less than 7 days; 
this is the same procedure that the CBOE follows. I then calculate the bound for 
T = 30, 60, 90, 180, and 360 days by linear interpolation. Occasionally, extrapolation 

48  



 

 

0 
 N 

t,T i i ≤ 
f,t 

is necessary, for example when the nearest-term option’s time-to-maturity first dips 
below 7 days, requiring me to use the two expiry dates further out; again, this is the 
procedure followed by the CBOE. 

 
 
B.2 The effect of discrete strikes 

 
The integrals that appear throughout the paper are idealizations: in practice we only 
observe options at some finite set of strikes. Write Ωt,T (K) for the price of an out-of- 
the-money option with strike K, that is, 

 
 

 putt,T (K) if K < Ft,T 

Ωt,T (K) ≡ ; 
 callt,T (K) if K ≥ Ft,T 

 
write K1, . . . , KN  for the strikes of observable options; write Kj  for the strike that 
is nearest to the forward price Ft,T ;24   and define ∆Ki  ≡ (Ki+1 − Ki −1)/2. Then 

the idealized integral 
r ∞ Ωt,T (K) dK is replaced, in practice, by the observable sum 

i=1 Ωt,T (Ki) ∆Ki. (This is the CBOE’s procedure in calculating VIX, and I follow it 
in this paper.) Figure 11a illustrates. 

The question is, how well does the sum approximate the integral? The next result 
shows that there are two forces pushing in the direction of underestimation (of the 
integral by the sum) and one pushing in the direction of overestimation. But the latter 
effect is very minor in practice, so one should think of discretization as leading to 
underestimation of the integral. 

 
Result  7  (The effect of discretization by strike). Discretizing by strike will tend to 
lead to an underestimate of the idealized lower bound, in that 

2 N 2 
r ∞  (∆K )2 

 
    

Ω (K ) ∆K (T − t)Rf,tS2 (T − t)R S2  Ωt,T (K) dK  
+ 

j 
4(T − t) · R2 . · S2 

t  i=1 t 0   f,t t 

discre
'"
ti
,.
zation 

_
 idealized 

'"
lo
,.
wer bound 

_
 very

'"
s
,.
mall 

_
 

24For simplicity, I assume that strikes are evenly spaced near-the-money, Kj+1 − Kj = Kj − Kj 
 

−1. 
This is not essential, but it is almost always the case in practice and lets me economize slightly on 
notation. 
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(b) Out-of-the-money:  an underestimate 
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(c) At-the-money:  an overestimate 
 

(d) The worst-case scenario in Lemma 1 
 

Figure 11: The effect of discretization. Different panels use different scales. 
 
 
Proof. Non-observability of deep-out-of-the-money options obviously leads to an un- 
derestimate of the lower bound. 

Consider, first, the out-of-the-money puts with strikes K1, . . . , Kj−1. The situation 

is illustrated in Figure 11b: by convexity of putt,T (K), the light grey areas that are 
included (when they should be excluded) are smaller than the dark grey areas that are 
excluded (when they should be included). The same logic applies to the out-of-the- 
money calls with strikes Kj+1, Kj+2, . . .. Thus the observable options—excluding the 
nearest-the-money option—will always underestimate the part of the integral which 
they are intended to approximate. 

It remains to consider the nearest-the-money option with strike Kj , which alone 
can lead to an overestimate. Lemma 1, below, shows that the worst case is if the strike 
of the nearest-the-money option happens to be exactly equal to the forward price Ft,T , 
as in Figure 11c.  For an upper bound on the overestimate in this case we must find 
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put 

t,T t,T 

t 

an upper bound on the sum of the approximately triangular areas (x) and (y) that are 
shown in the figure. We can do so by replacing the curved lines in the figure by the 
(dashed) tangents to putt,T (K) and callt,T (K) at K = Ft,T . The areas of the resulting 
triangles provide the desired upper bound, by convexity of putt,T (K) and callt,T (K): 

1 
( 
∆K 

\2
 1 

( 
∆K 

\2
 

area (x) + area (y) ≤ 2 2 
/ 
t,T (K) − 2 2 call / t,T (K). 

But, by put-call parity, put/ (K) − call/ 
 

(K) = 1/Rf,t. Thus, the overestimate due 
to the at-the-money option is at most 

1 
( 
∆K 

\2 1 
. 

2 2 Rf,t 

Since the contributions from out-of-the-money and missing options led to underesti- 
mates, the overall overestimate is at most this amount. Finally, since the definition 
scales the integral by 2/((T − t)Rf,tS2), the result follows. 

 

The maximal overestimate provided by this result is extremely small : for the S&P 
500 index, the interval between strikes near-the-money is ∆Kj = 5. If, say, the forward 
price of the S&P 500 index is Ft,T = 1000 and we are considering a monthly horizon, 

T − t = 1/12, then the discretization leads to an overestimate of SVIX2  that is at 
most 7.5 × 10−5 < 0.0001. By comparison, the average level of SVIX2 is on the order 
of 0.05, as shown in Table 1. Since the non-observability of deep-out-of-the-money 
options causes underestimation, there is therefore a very strong presumption that the 
sum underestimates the integral. 

It only remains to establish the following lemma, which is used in the proof of Result 
7. The goal is to consider the largest possible overestimate that the option whose strike 
is nearest to the forward price, Ft,T , can contribute. Figure 11d illustrates. The dotted 
rectangle in the figure is the contribution if the strike happens to be equal to Ft,T ; I will 
call this Case 1. The dashed rectangle is the contribution if the strike equals Ft,T − ε, 
for some ε > 0 (for concreteness—the case ε < 0 is essentially identical); I will call this 
Case 2. 

 
Lemma 1. The option with strike closest to the forward overestimates most in the case 
in which its strike is equal to the forward. 

 

Proof. The overestimate in Case 1 is greater than that in Case 2 if 
 

area (b) + area (c) + area (e) + area (f) ≥ area (a) + area (b) + area (f) − area (d) 
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in Figure 11d, or equivalently, 
 

area (c) + area (d) + area (e) ≥ area (a). (45) 

But, by convexity of putt,T (K), area (b) + area (c) ≥ area (a) + area (b), from which 

(45) follows. An almost identical argument applies if ε < 0. 
 

 
 

C Supplementary tables and figures 
 

 
Table 5 reproduces the results in Table 2, but excludes the period August 1, 2008–July 
31, 2009. 

 

horizon α   s.e. β  s.e. R2 

1 mo 
 

2 mo 
 

3 mo 
 

6 mo 
 

1 yr 

−0.095 

−0.081 

−0.076 

−0.043 
 

0.045 

[0.061] 
 

[0.062] 
 

[0.067] 
 

[0.072] 
 

[0.088] 

3.705 
 

3.279 
 

3.147 
 

2.319 
 

0.473 

[1.258] 
 

[1.181] 
 

[1.258] 
 

[1.276] 
 

[1.731] 

3.36% 
 

4.83% 
 

5.98% 
 

4.94% 
 

0.27% 
 

Table 5: Coefficient estimates for the regression (16), excluding the crisis period August 
1, 2008–July 31, 2009 from the sample. 

 
 

horizon α   s.e. β1 s.e. β2 s.e. R2 

1 mo 
 

2 mo 
 

3 mo 
 

6 mo 
 

1 yr 

−0.086 

−0.113 

−0.086 

−0.051 

−0.073 

[0.063] 
 

[0.061] 
 

[0.071] 
 

[0.076] 
 

[0.078] 

2.048 
 

2.634 
 

2.273 
 

1.992 
 

2.278 

[1.273] 
 

[1.007] 
 

[1.407] 
 

[1.132] 
 

[0.909] 

3.908 
 

3.884 
 

2.749 
−0.525 

−0.694 

[1.053] 
 

[0.761] 
 

[0.346] 
 

[1.259] 
 

[0.680] 

4.96% 
 

8.54% 
 

6.79% 
 

6.56% 
 

10.34% 
 

Table 6: Coefficient estimates for the regression (46). 
 
 

Table 6 reports results for regressions 
 

RT − Rf,t = α + β1 × Rf,t · SVIX2 +β2 × V RPt + εT (46) 
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horizon α   s.e. β1 s.e. β2 s.e. R2 

1 mo 
 

2 mo 
 

3 mo 
 

6 mo 
 

1 yr 

−0.103 

−0.097 

−0.083 
 

0.016 
 

0.008 

[0.061] 
 

[0.063] 
 

[0.068] 
 

[0.071] 
 

[0.061] 

3.333 
 

3.137 
 

2.902 
 

0.797 
 

0.331 

[1.292] 
 

[1.353] 
 

[1.451] 
 

[1.560] 
 

[2.274] 

1.548 
 

1.532 
 

1.133 
 

0.360 
 

1.761 

[1.125] 
 

[1.801] 
 

[1.855] 
 

[2.095] 
 

[3.760] 

3.61% 
 

6.04% 
 

6.34% 
 

0.74% 
 

3.10% 
 

Table 7: Coefficient estimates for the regression (46), excluding the crisis period August 
1, 2008 to July 31, 2009. 

 

 

of realized returns onto risk-neutral variance and a measure of the variance risk pre- 
mium, V RPt ≡ Rf,t · SVIX2 − SVARt. Realized daily return variance, SVARt, is 
computed at time t by looking backwards over the same horizon-length, T − t, as 
the corresponding forward-looking realized return (so,  for example, I use 1-month 
backward-looking realized variances to predict 1-month forward-looking realized re- 
turns). If realized variance is a good proxy for forward-looking real-world variance, 
this is a measure of the ‘variance risk premium.’ 

Consistent with the empirical findings of Bollerslev, Tauchen and Zhou (2009) and 
Drechsler and Yaron (2011), the coefficient on V RPt is positive and strongly significant 
at predictive horizons out to 3 months.25 This predictive success reflects the fact that 
implied and realized volatility, SVIXt and SVARt, rose sharply as the S&P 500 dropped 
in late 2008; implied volatility then fell relatively quickly, while SVARt declined more 
sluggishly. V RPt therefore turned dramatically negative in late 2008, as shown in 
Figure 12 below. Since the market then continued to fall, this sluggish response of 
V RPt helps fit the data. At the 6-month and 1-year horizons, however, V RPt responds 
too sluggishly—it remains strongly negative even as the market starts to rally in March, 
2009—so there is a sign-flip, with negative estimates of the coefficient on V RPt at the 
6-month and 1-year horizons. The empirical facts are therefore hard to interpret: the 
sign-flip raises the concern that the apparent success of V RPt as a predictor variable 
may be an artefact of this particular sample period.  Table 7 therefore repeats the 

 

25My approach follows that of Bollerslev, Tauchen and Zhou (2009) rather than that of Drechsler 
and Yaron (2011), who use predictive regressions to forecast the evolution of variance itself. I follow 
the former approach to avoid in-sample/out-of-sample issues. 

53  



t 

regression (46), but excludes the period from August 1, 2008 to July 31, 2009. Once 
this crisis period is excluded, V RPt  does not enter significantly at any horizon. 

From a theoretical point of view, it is hard to rationalize a negative equity pre- 
mium forecast within any equilibrium model. It is also implausible that the correctly- 
measured variance risk premium should ever be negative. More specifically, Bollerslev, 
Tauchen and Zhou (2009) show that within their own preferred equilibrium model, the 
variance risk premium would always be positive. 
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Figure 12: The variance risk premium, calculated as Rf,t · SVIX2 − SVARt. 
 
 
 
 
 

1.5 x 106 
 
 

1.0 x 106 

 
 

1.5 X 107 
 
 

1.0 X 107 
 

500 000  
5.1 X 106 

 
0 

2000 2005 2010 
 

(a) Volume 

 
2000 2005 2010 

 

(b) Open interest 
 
Figure 13:  Volume and open interest in S&P 500 index options.  The figures show 
10-day moving averages. 
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Figure 14:  The lower bound on the annualized equity premium at different horizons 
(10-day moving averages, in %). Mid prices on left; bid prices on right. 
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Figure 15:  The VXO index, which exploded on Black Monday, October 19, 1987. 
10-day moving average. 
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Figure 16:  The calculations of R2 in Table 2 depend on the rolling mean historical 
equity premium (shown here on an annualized basis). The rolling mean is computed 
using the data series used by Campbell and Thompson (2008), which itself is based 
on S&P 500 total returns from February 1871, with the data prior to January 1927 
obtained from Robert Shiller’s website. 
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D VIX, SVIX, and equilibrium models 
 

Proof of Result 4. I write τ = T − t to make the notation easier to handle. Let RT  = 

eµR,tτ +σt
√

τ ZR−σ2τ /2 and M = e−rf,tτ +σM,t   τ ZM −σM,tτ /2, where ZR and ZM  are Normal 
random variables with mean zero, variance one, and correlation ρt, and rf,t = log Rf,t. 
Since Et MT RT = 1, we must have µR,t − rf,t = −ρtσM,tσt. 

2rf,tτ From (13), SVIX2 
= e− [E∗(R2 ) (E∗ R )2] = 1 (e−rf,tτ E M R2 1).  Now, 

t τ t T  − t T τ t T T − 
using the fact that µR,t − rf,t = −ρtσM,tσt, we have 

√ 1  2 √ 2 

Et MT R2 =  E e−rf,tτ +σM,t 
 

=  erf,tτ +σ2τ . 
τ ZM − 2 σM,tτ +2µR,tτ +2σt τ ZR−σt τ 

 
Thus, SVIX2 = 1 (eσ2

 
 1) as required. 

t τ 
The calculation for VIX is slightly more complicated. Using (27), VIX2 = 2 L∗ RT  = 

2 ∗ ∗  2 rf,tτ t τ t 

τ [log Et RT − Et log RT ] = τ [rf,tτ − e 
1 

  
 

Et MT log RT ]. Now, 
1 √ 2 

l 
Et [MT log RT ]  =  Et (µR,tτ + σt

√
τ ZR − σ2τ )e−rf,tτ +σM,t 

2 
τ ZM −σM,tτ /2 

1  2 −rf,tτ √ −rf,tτ −σ2 τ /2 
r
 σM,t

√
τ ZM 

l
 

=   (µR,t − 2 σt )τ · e + σt τ e M,t Et   ZRe . 

We can write ZR = ρtZM + 
/
1 − ρ2Z, where Z is uncorrelated with ZM (conditional 

on time-t information) and hence, since they are both Normal, independent of ZM . 
The expectation in the above expression then becomes 

Et 

r
ZReσM,t 

τ ZM 

l 
=  Et 

r
(ρtZM + 

/
1 − ρ2Z)eσM,t 

√
τ ZM 

l
 

=  ρt Et 

r
ZM eσM,t 

√
τ ZM 

l 
. 

 

By Stein’s lemma,  
 

Et 

r
ZM eσM,t 

 

τ ZM 

l 
= Et 

r
σM,t
√

τ eσM,t 

=  σM,t
√

τ eσM,tτ /2. 

 
 

√
τ ZM 

l
 

 

These results, together with the fact that µR,t−rf,t = −ρtσM,tσt, imply that Et MT log RT = 
(µR,t− 1 σ2+ρtσM,tσt)τ e−rf,tτ = (rf,t− 1 σ2)τ e−rf,tτ . Thus VIX2 = 2 rrf,tτ − (rf,t − 1 σ2)τ 

l 
= 

2   t 2  t 
σ2 t τ 2  t 

t , as required. 
 

Figure 17 plots log real consumption growth and the 1-year SVIX-implied equity 
premium on the same axes, with each time series scaled to have zero mean and unit 
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Figure 17:  Log quarterly consumption growth (blue) and monthly-averaged 1-year 
SVIX (red). Each series is scaled to have zero mean and unit variance. 

 
 
variance. The data series in the figure is quarterly, seasonally-adjusted Personal Con- 
sumption Expenditures, taken from the Bureau of Economic Analysis. 

The top panel of Table 4 reports a variety of summary statistics for VIX, SVIX, 
and VIX minus SVIX in the data, at the 1-month horizon. (For comparison with the 
models, which are simulated at monthly frequency, I generate a monthly series from 
the daily series of VIX and SVIX by taking the 1st, 22nd, 43rd, 64th, . . . , elements 
and compute the mean, median, etc. Then I repeat using the 2nd, 23rd, . . . elements; 
the 3rd, 24th, . . . ; and so on, up to the 21st, 42nd, . . . . Finally, I average each statistic 
over the 21 choices of initial element.) The panels below report corresponding statistics 
computed within six equilibrium models, namely the Campbell–Cochrane (CC, 1999) 
habit formation model, the Bansal–Yaron (BY, 2004) long-run risk model in its original 
calibration with stochastic volatility, the updated calibration of the long-run risk model 
studied in Bansal, Kiku and Yaron (BKY, 2012), Wachter’s (W, 2013) model with a 
time-varying disaster arrival rate, and two models that explicitly address the properties 
of option prices: Bollerslev, Tauchen and Zhou (BTZ, 2009), and Drechsler and Yaron 
(DY, 2011). 

Within each model, I simulate 1,000,000 16-year-long sample paths of VIX, SVIX, 
and VIX minus SVIX. Each sample path is generated by initializing state variables at 
their long-run averages, then computing a 32-year sample realization. I discard the first 
16-year “burn-in” period and use the second 16 years (for comparability with the 16 
years of data). I compute VIX and SVIX at the 1-month horizon for all models apart 
from Wachter’s (2013) continuous-time model, for which I compute an instantaneous 
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measure, i.e. I report the limiting case in which the time horizon T − t approaches 
zero, rather than one month.26 Along each sample path, I compute the mean, stan- 
dard deviation, median, minimum, maximum, skewness, excess kurtosis, and monthly 
autocorrelation for VIX, SVIX, and VIX minus SVIX. The numbers reported in Ta- 
ble 4 are the averages, across 1,000,000 sample paths in each model, of each of these 
quantities. Asterisks in Table 4 indicate statistics for which a given model struggles 
to match the data. The models find it so difficult to match the data that I use fewer 
asterisks than is conventional to indicate significance levels: one asterisk denotes a 
p-value of 0.05 (fewer than 5% of the 1,000,000 trials gave statistics as extreme as are 
observed in the data), two asterisks a p-value of 0.01, three asterisks a p-value of 0.000 
to three decimal places. Boldface font indicates that the observed statistic in the data 
lies completely outside the support of the 1,000,000 model-generated statistics (i.e., an 
empirical p-value of zero). It goes without saying that a successful model should not 
have any boldface statistics; unfortunately, there are multiple such examples for all six 
models. 

26I do so for tractability, because this quantity can be computed in closed form. Since the Wachter 
model generates too little skewness and kurtosis in VIX and SVIX, and too much persistence, it is 
likely that using the 1-month measure would make the results even worse. It is also possible to solve 
for VIX and SVIX in closed form within Barro’s (2006) model; in this case, the term structures of 
VIX and SVIX are flat, so there is no distinction between the instantaneous and 1-month measures. 
Following Martin (2013) by defining κ(θ) ≡ log Et 

r
(Ct+1/Ct) 

θ 
l
, it can be shown that within Barro’s 

model—or indeed within any consumption-based model with an Epstein–Zin representative agent and 
i.i.d. consumption growth—we have 

 

VIX2 =  2 [κ(1 − γ) − κ(−γ) − κ1(−γ)] 

log 
(
1 + SVIX2)   

=   κ(2 − γ) − 2κ(1 − γ) + κ(−γ), 
 
where γ is relative risk aversion. Using Barro’s (2006) calibrated parameters and empirical distribution 
of disaster sizes, one finds that VIX = 23.8% and SVIX = 18.4%, and that the difference between 
the two is 5.4%, well above the value observed in the data. (VIX and SVIX are constant in Barro’s 
model.) These calculations assume that there is no default on index options, and model ‘equity’ 
as an unlevered claim to consumption. Allowing for default would move the numbers in the right 
direction—the gap between VIX and SVIX would decline—since VIX loads more heavily on the deep 
out-of-the-money puts that would be most vulnerable to default. Allowing for leverage would move 
the numbers in the wrong direction, expanding the gap between VIX and SVIX. 

59  



∆ 

− + 

E Simple variance swaps 
 

 
This section provides the details of how to hedge a simple variance swap, and collects 
together some robustness results regarding simple variance swaps. 

 
 
E.1 Hedging a simple variance swap 

 

The proof of Result 6 implicitly supplies the dynamic trading strategy that replicates 
the payoff on a simple variance swap. Tables 8 and 9 describe the strategy in detail. 
Each row of Table 8 indicates a sequence of dollar cashflows that is attainable by 
investing in the asset indicated in the leftmost column. Negative quantities indicated 
that money must be invested; positive quantities indicate cash inflows. Thus, for 
example, the first row indicates a time-0 investment of $e−rT in the riskless bond 
maturing at time T , which generates a time-T payoff of $1. The second and third rows 
indicate a short position in the underlying asset, held from 0 to ∆ with continuous 
reinvestment of dividends, and subsequently rolled into a short bond position. The 
fourth row represents a position in a portfolio of call options of all strikes expiring at 
time ∆, as in equation (37); this portfolio has simple return S2 /Π(∆) from time 0 to 
time ∆. The fifth, sixth, and seventh rows indicate how the proceeds of this option 
portfolio are used after time ∆. One part of the proceeds is immediately invested 
in the bond until time T ; another part is invested from ∆ to 2∆ in the underlying 
asset, and subsequently from 2∆ to T in the bond.  The replicating portfolio requires 
similar positions in options expiring at times 2∆, 3∆, . . . , T − 2∆. These are omitted 
from Table 8, but the general such position is indicated in Table 9, together with the 
subsequent investment in bonds and underlying that each position requires. 

The self-financing nature of the replicating strategy is reflected in the fact that the 
total of each of the intermediate columns from time ∆ to time T − ∆ is zero. The last 
column of Table 8 adds up to the desired payoff, 

 

( 
S∆ −S0 

\2
 

F0,0 

( 
S2∆  −S∆ 

\2
 

F0,∆ 

 

+ · · · + 
( 

ST —ST ∆ 
\2

 

F0,T −∆ 

 

— V. 

 

Therefore, the first column must add up to the cost of entering the simple variance 
swap. Equating this cost to zero, we find the value of V  provided in equation (36). 

The replicating strategy simplifies nicely in the ∆ → 0 limit. The dollar investment 
in each of the option portfolios expiring at times ∆, 2∆, . . . , T − ∆ goes to zero at 
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j∆ e /F 

0,j∆ 

0,t 

0,t  = 2e 

T     2 

rate O(∆2).  We must account, however, for the dynamically adjusted position in the 
underlying,  indicated in rows beginning with a U. As shown in Table 9, this calls 
for a short position  in the underlying  asset of 2e−r(T −(j+1)∆)S2 −δ∆ 2 

0,j∆ in dollar 
terms at time j∆, that is, a short position of 2e−r(T −(j+1)∆)Sj∆e−δ∆/F 2 units of the 

underlying. In the limit as ∆ → 0, holding j∆ = t constant, this equates to a short 
position of 2e−r(T −t)St/F 2 units of the underlying asset at time t. 

The static position in options expiring at time T , shown in the penultimate line 
of Table 8, does not disappear in the ∆ → 0 limit. We can think of the option 
portfolio as a collection of calls of all strikes, as in (37). It is more natural, though, to 
use put-call parity to think of the position as a collection of calls with strikes above 
F0,T and puts with strikes below F0,T , together with a long position in 2e−δ(T −t)/F0,T 

units of the underlying asset—after continuous reinvestment of dividends—and a bond 
position. Combining this static long position in the underlying with the previously 
discussed dynamic position,  the overall position at time t is long 2e−δ(T −t)/F0,T  − 

2e−r(T −t)St/F 2 −δ(T −t) (1 − St/F0,t)/F0,T   units of the asset and long out-of-the- 
money-forward calls and puts, all financed by borrowing. 

 
 
E.2 Pricing and hedging with ∆ > 0 

 

The hedging strategy provided in Tables 8 and 9 perfectly replicates the desired payoff 
when ∆ > 0, but requires positions in options at all expiry dates ∆, . . . , T − ∆. 
Discretizing the continuous-time strategy provided in the statement of Result 6 (which 
is exactly valid in the limit as ∆ → 0) is equivalent to ignoring all such positions in 
options with intermediate expiry dates. The cashflows in these rows contribute a term 
of size O(∆) at time 0, and terms of size O(∆2) at dates between 1 and T −∆. Thus the 
overall replication error is of size O(∆), so the limiting strike is a good approximation 
to the truth for sampling intervals ∆ > 0. The next result makes this formal. 

 
Result 8. For ∆ > 0, the exact simple variance swap strike V (∆), given by equation 
(36), is very well approximated by V , given in equation (34): 

|V (∆) − V | ≤ ∆ 
(
e 

 
(r−δ)∆ − 1

)
 

 
(1 + V ) + e 

 
2(r−δ)∆ 

 

− 1 V . (47) 

If T = 1, r − δ = 0.02, V = 0.05, then the right-hand side of (47) is less than 0.00001 
with daily sampling (∆ = 1/252), less than 0.00005 with weekly sampling (∆ = 1/52), 
and less than 0.0002 with monthly sampling (∆ = 1/12). 
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Table 8: Replicating the simple variance swap. In the left column, B indicates dollar positions in the bond, U indicates 
dollar positions in the underlying with dividends continuously reinvested, and j∆, for j = 1, 2, . . . , T /∆, indicates a position 
in the portfolio of options expiring at time j∆ that replicates the payoff S2 , whose price at time 0 is Πj∆. 
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Table 9: Replicating the simple variance swap. The generic position in options of 
intermediate maturity, together with the associated trades required after expiry. In the 
left column, B indicates a position in the bond, U indicates a position in the underlying 
with dividends continuously reinvested, and j∆ indicates a position in options expiring 
at j∆. 

 
 
Proof. Result 6 implies that for j < T /∆,  
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Combining this observation with (39), we find that 
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Now, by definition of V , we have |erT P (T )/F 2 − V | =  e2(r−δ)∆ − 1 V .  Since 
 

|V (∆) − V | ≤ |V (∆) − erT P (T )/F 2 
0,T −∆ 

| + |erT P (T )/F 2 

  
— V |,  by  the  triangle 

inequality, the result follows. 
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E.3 Pricing and hedging when deep-out-of-the-money strikes 
are not tradable 

Options that are sufficiently deep-out-of-the-money have prices so close to zero that 
they are not traded. Thus the idealized replicating portfolio, which comprises options of 
all strikes, is not attainable in practice. This issue affects both conventional variance 
swaps and simple variance swaps. Fortunately there is a practical solution to this 
problem. Suppose that, at time 0, options with strikes between A and B are tradable; 
the idealized scenario in which all strikes are tradable corresponds to A = 0, B = ∞. 
Then we can define the modified payoff 

( 
S∆ −S0 

\2 

F0,0 

( 
S2∆ −S∆ 

\2 

F0,∆ 

 

+ · · · + 
( 

ST —ST ∆ 
\2 

F0,T −∆ 

 

− φ(ST ), (48) 

 

where the correction term φ(ST ) is zero unless the underlying asset’s price happens to 
end up outside the original strike range (A, B): 

  ( 
A−ST  

\
 
2  

F0,T −∆  
 

 

if ST < A. 

φ(ST ) = 0 if A ≤ ST  ≤ B.   
 

2
 

 
T

 

−B  F0,T −∆ 

if ST > B. 

 

The modified payoff  (48) can  be replicated without needing to trade options with 
strikes outside the range (A, B), by holding 

 

(i) a static position in 2/F 2 
 
dK puts expiring at time T with strike K, for each 

A < K ≤ F0,T , 
 

(ii) a static position in 2/F 2 

 
 
 
dK calls expiring at time T with strike K, for each 

F0,T ≤ K < B, and 

(iii) a dynamic position in 2e−δ(T −t)(1 − St/F0,t)/F0,T  units of the underlying asset at 

time t, 
 
financed by borrowing. To see this, simply note that the payoff φ(ST ) is precisely the 
payoff on the “missing” options with strikes less than A and greater than B that are 
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not included in the above position. 
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S 

In the limit as ∆ → 0, the fair strike that should be exchanged for the payoff (48) 
at time T is 

 

V   ≡ 2erT 
(r F0,T 

F 2 

r B 

put0,T (K) dK + 

 
 
call0,T (K) dK . 

0,T A F0,T 
 

To explore how large the adjustment term φ(ST ) is in practice in the case of the 
S&P 500 index, I looked at every day in the sample on which OptionMetrics had data 
for options expiring in 30 days. On each such day, I recorded the lowest tradable strike 
 the strike of the most deep-out-of-the-money put option) and the highest tradable 
strike (i.e. the strike of the most deep-out-of-the-money call option), together with the 
subsequently realized level of the market at expiry time T . 
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Figure 18: Left: Upper and lower strike boundaries, A and B (dotted lines) and 
subsequent realized level of the market at expiry, ST (solid line).  Right:  The distance 
at expiry from the edge of the strike range, expressed as a percentage of the terminal 
level ST . 

 

 
The results are shown in Figure 18. Over the sample period, the underlying asset’s 

price never ended up outside the range of tradable strikes. In other words, the cor- 
rection term φ(ST ) was zero in every case: in Figure 18a, the value of ST at expiry 
is within the range of strikes that were tradable at initiation on every day in sample. 
Figure 18b shows how far the underlying ended from the closer of the two boundaries, 
expressing the result as a percentage of ST ; the graph is always positive, reflecting the 
fact that the strike boundary was never crossed over the sample period. The spike in 
the figure occurred on 21 November, 2008, when the S&P 500 happened to close near 
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F F 

the middle of the strike range that had prevailed 30 days previously; moreover, this 
occurred at a time when implied volatilities were very high, so that an extremely wide 
range of strikes had been traded. The low point in the figure occurred at the very 
beginning of the sample, on January 18, 1996, when the S&P 500 closed at 608.24. 
On that day, the highest strike tradable on options expiring in 30 days—on Saturday, 
February 17, 1996—was 650; in the event, the S&P 500 closed just two points lower, 
at 647.98, on Friday, February 16. 

As is apparent from Figure 18a, the width of the range of tradable strikes has tended 
to increase over time. The mean value of the percentage distance to the edge of the 
strike range, as illustrated in Figure 18b, is 12.9%; the median value is 11.9%. In other 
words, on the median day in sample, the S&P 500 would have had to move a further 
11.9% in the appropriate direction in order to exit the relevant range of tradable strikes. 

 
 
E.4 Pricing and hedging under different assumptions on div- 

idends 
 

This section shows what happens to pricing and hedging of simple variance swaps under 
various different assumptions about dividend payout policies. 

 
 
E.4.1 The case of completely unanticipated dividend payouts 

 
Result 6 continues to hold if the asset makes unanticipated dividend payouts. Consider 
an extreme case in which the simple variance swap is priced and hedged, at time zero, 
as though δ = 0; but immediately after inception of the trade, at time t = ∆, the 
underlying asset is suddenly liquidated via an extraordinary dividend, causing its (ex- 
dividend) price to equal 0 from time ∆ onwards. The payout that must be made by the 
counterparty who is short variance is given by equation (33): in this extreme example, 
it will equal 1. Meanwhile, the hedge portfolio given in the above result will generate a 
positive payoff due to the put options going in-the-money. (The dynamic position will 
have zero payoff: it was neither long nor short at time 0, and subsequently the asset’s 
price never moved from zero.) Since ST = 0, the total payoff will be 

 

2 
2 
0,T 

r F0,T 

 
0 

 
 2 max {0, K − ST } dK = 2 

0,T 

r F0,T 

 
0 

 
K dK = 1. 
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In other words, the strategy perfectly replicates the desired payoff. This applies more 
generally: once the strike V is set and the replicating portfolio is in place, it does not 
matter why the price path moves around subsequently, whether due to the payment of 
unanticipated dividends or not. 

 
 
E.4.2 The case of perfectly anticipated dividends 

 
For simplicity, consider the case in which the asset pays a single dividend Dk∆ at time 
k∆ for some k, and no dividends at any other time up to and including the expiry 
date, T . The price of a portfolio whose payoff is S2 at time i continues to equal Π(i), 
given by equation (37). 

In this section, it will be important to distinguish between F0,t, the forward price of 
the dividend-paying asset to time t, and F-0,t ≡ S0ert, the appropriate normalization for 
the definition of a simple variance swap in this case. A standard no-arbitrage argument 
implies that the forward price is F0,t  = S0ert  if t < k∆, and F0,t  = S0ert − Dk∆er(t−k∆) 

if t ≥ k∆, so F0,t and F-0,t coincide for times t before the payment of the dividend, but 
differ thereafter. It turns out that F-0,t is the appropriate normalization so that the 
intermediate option positions are negligibly small, as was the case in the main text. 

The definition of the payoff on the simple variance swap must be modified to allow 
for the presence of the dividend. At time T , the counterparties to the simple variance 
swap now exchange V for 
I 

S∆ −S0 

\ 

F-0,0 

 
+ · · · + 

I 
S(k 

 

−1)∆ − S(k 

F-0,(k−2)∆ 

\2 

−2)∆ 

I 
Sk∆ + Dk∆ − S(k 

F-0,(k−1)∆ 
2 

\2 

−1)∆ + 
 2 I 

S(k+1)∆ − Sk∆ 

\
 

F-0,k∆ 
+ · · · + 

I 
ST −ST ∆ 

\
 

F-0,T −∆ 

 
. (49) 

 

If the stock price happens to track the forward price at all points in time, then the 
payoff (49) will be zero in the ∆ → 0 limit, as is the case with variance swaps and 

simple variance swaps in the absence of dividends. 
The starting point of the replicating strategy will be to carry out precisely the trades 

listed in Tables 8 and 9 with δ set equal to zero (and replacing F0,t with F-0,t wherever it 
occurs in the tables). This replicating strategy generates the payoff (49) minus V , plus 

an extra payoff of (Dk∆/F-0,(k−1)∆) — 2Dk∆(Sk∆ + Dk∆)/F-0,(k−1)∆. To offset this extra 
payoff, two new positions are required: (i) a short position of e−rT (Dk∆/F-0,(k 1)∆)2
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0,(k−1)∆ 

F- 

0,
 

0,
 

(measured in dollars) in bonds, and (ii) a long position of 2Dk∆e−r(T −k∆)/F-2 

units of the underlying held until time k∆, then rolled into bonds. 
After some algebra (and up to terms of order ∆, as usual) this implies that the 

simple variance swap strike is given by 

2erT 
(r F0,T 

V = 
r ∞ 

put0,T (K) dK + 

 
 
call0,T (K) dK , 

2 
0,T 0 F0,T 

 

and that the replicating portfolio is equivalent to holding 
 

(i) a static position of 2/F-2 puts expiring at time T  with strike K, for each 

K ≤ F0,T , 
 

(ii) a static position of 2/F-2 

 
 
 
calls expiring at time T  with strike K, for each 

K ≥ F0,T , and 
 

(iii) a dynamic position of 2(F0,t − St)/(F-0,tF-0,T ) units of the underlying asset at 

time t, 
 
financed by borrowing. 

 
 
E.4.3 The case of imperfectly anticipated dividends 

 

The fully general case in which dividends are potentially anticipated but of unknown 
size and timing is, of course, the most challenging (and to the best of my knowledge, 
it is ignored in the variance swap literature). Even so, there is an elegant solution 
in this case too if total return options can be traded: these are options on a claim 
to the underlying asset with dividends reinvested. Such options have recently started 
to trade over-the-counter. I will call the underlying with dividends reinvested the 
dividend-adjusted underlying. Then we can price and hedge a simple variance swap on 
the dividend-adjusted underlying directly from Result 6 simply by reinterpreting the 
inputs. The price St corresponds to the price of the dividend-adjusted underlying (so 
S0 is the spot price of the underlying asset); the instantaneous dividend yield δ = 0; 
F0,t is the forward price of the dividend-adjusted underlying, which equals S0ert for 
all t by a static no-arbitrage argument; and put0,T (K) and call0,T (K) are the prices of 
total return options expiring at time T . 
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