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Abstract

What determines the cross-section of betas with respect to a risk factor? The act of
arbitrage plays an important role. If the capital of arbitrageurs loads on a systematic
factor, the assets traded by the arbitrageurs gain different sensitivities to that factor,
depending on the asset positions taken by the arbitrageurs. I develop predictions about
such “arbitrage-driven” betas in a model of constrained arbitrage and test them in the
cross-section of equity anomalies. The arbitrage channel accounts for a substantial
part of the cross-sectional variation in equity anomalies’ betas in intermediary-based
and multifactor asset pricing models.

∗Department of Finance, London School of Economics and Political Science, Houghton Street, London, UK.
Email: t.cho@lse.ac.uk. An earlier version of this paper was titled “Turning Alphas into Betas: Arbitrage and Endoge-
nous Risk.” I thank John Campbell, Jeremy Stein, Samuel Hanson, and Adi Sunderam for their guidance and support,
and Andrei Shleifer for many discussions. I also thank Tobias Adrian, Vikas Agarwal, Lauren Cohen, William Dia-
mond, Erkko Etula, Wayne Ferson, Robin Greenwood, Valentin Haddad, Byoung-Hyoun Hwang, Christian Julliard,
Yosub Jung, Bryan Kelly, Dong Lou, Chris Malloy, Ian Martin, David McLean (discussant), Tyler Muir (discus-
sant), David Ng, Christopher Polk, Valery Polkovnichenko (discussant), Emil Siriwardane, Argyris Tsiaras, Dimitry
Vayanos, Yao Zeng, and seminar participants at Boston College, Columbia Business School, Cornell University, Dart-
mouth College, Harvard Business School, ITAM, London School of Economics, Rutgers Business School, University
of British Columbia, University of Southern California, Hanyang University, Korea University, Seoul National Uni-
versity, Adam Smith Asset Pricing Workshop, EFA, Kentucky Finance Conference, and University of Washington
Summer Finance Conference for helpful discussions and comments. This paper received the Best Paper Award at
the University of Washington 4th Summer Finance Conference. I thank Robert Novy-Marx and Mihail Velikov, who
generously shared their data on anomalies. Jonathan Tan, Karamfil Todorov, and Yue Yuan provided superb research
assistance.

mailto:t.cho@lse.ac.uk


1 Introduction

What generates the cross-section of betas, the sensitivities of asset returns to systematic risk fac-

tors? Since betas measure the risk of a financial asset, what determines the cross-section of betas

is a central question in finance.1 The traditional explanation relies on the fundamental cash-flow

channel: a stock has a high beta if the company’s expected cash flow covaries strongly with the

risk factor.2 But what is an important non-fundamental channel for the cross-section of betas?

The channel for the cross-section of betas I explore is the act of arbitrage by institutional ar-

bitrageurs. Growing evidence suggests that shocks to institutional arbitrageurs’ capital propagate

to the assets they trade (e.g., Coval and Stafford, 2007; Mitchell, Pedersen, and Pulvino, 2007;

Krishnamurthy, 2010; Gârleanu and Pedersen, 2011; Greenwood and Vayanos, 2014; Du, Tepper,

and Verdelhan, 2018). Hence, if arbitrageurs’ capital is exposed to systematic factors, the assets

traded by the arbitrageurs could inherit these factor exposures.

To see this, consider assets A and B with positive and negative abnormal returns, respectively,

but no prior factor exposure. Hence, arbitrageurs go long on A and short on B, but their capital

is limited and—for whatever reason—loads positively on systematic factor F . Then, a positive-F

shock that enables the arbitrageurs to increase their long/short positions on A and B would raise

PA (price of A) and lower PB (price of B). On the other hand, a negative-F shock that causes

the arbitrageurs to unwind their positions would lower PA back down and raise PB back up. In

this way, through the act of arbitrage, assets A and B with no prior factor exposure can covary

positively and negatively with F , respectively.

Several questions arise. To what kinds of systematic factors does the arbitrage channel for betas

apply? What is an important right-hand variable that explains the cross-sectional variation in betas

generated by the act of arbitrage? What distinct patterns do these betas feature?

To answer these questions, this paper develops a model in which the cross-section of betas of

1Cochrane (2011).
2E.g., Fama and French (1992, 1993) attribute “value” betas of high book-to-market firms to their common distress

risk. Theoretical explanations of cross-sectional anomalies, such as the value premium, tend to model firms with
different (conditional) cash-flow betas with a systematic factor (e.g., Chan and Chen, 1991; Gomes, Kogan, Zhang,
2003; Carlson, Fisher, and Giammarino, 2004; Bansal, Dittmar, and Lundblad, 2005; Zhang, 2005; Cooper, 2006;
Ozdagli, 2012; Choi, 2013; Kogan and Papanikolaou, 2013, 2014).
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assets arises through the act of arbitrage. Testing the model’s predictions using equity anomaly

portfolios (“anomalies”), I show empirically that the arbitrage channel explains a substantial part

of the cross-sectional variation in the factor betas of anomalies.

My three-period model features a continuum of assets with i.i.d. dividends and hence no aggre-

gate cash-flow risk. Behavioral investors form a downward-sloping demand curve for each asset

and also create negative distortions in asset demands. Crucially, the magnitude of this distortion is

constant over time but differs across assets, generating a cross-section of different “pre-arbitrage”

alphas. A representative arbitrageur trades these assets using capital that loads on a systematic

factor and may be constrained.

In this model, the act of arbitrage causes asset prices to covary with factors that arbitrage capital

loads on, generating “arbitrage-driven” betas. Importantly, in the cross-section of assets, the mag-

nitude of the demand distortion in the asset determines the magnitude of the arbitrage-driven beta.

A larger demand distortion means that the arbitrageur plays a larger price-correcting role in that as-

set in equilibrium. This also means, however, that the asset’s price is more sensitive to the variation

in the arbitrage capital and therefore to factors that the capital loads on. It follows that an asset’s

arbitrage-driven beta depends positively on the arbitrage position on the asset as a fraction of its

market capitalization (measuring the arbitrageur’s equilibrium price-correcting role) and more in-

trinsically on the asset’s pre-arbitrage alpha (measuring its demand distortion) (Propositions 1 and

2).

Additional predictions arise. Since arbitrage capital is the sum of arbitrageur wealth and ex-

ternal funding, arbitrage-driven betas arise with factors that either arbitrageur funding shocks

(e.g., funding liquidity) or wealth shocks (e.g., common factors in the arbitraged assets) load

on (Lemma 4). Arbitrage-driven betas arise when the arbitrageur is capital constrained but dis-

appear when the arbitrageur has a “deep pocket” (Proposition 3). Arbitrage-driven betas are

“discount-rate” betas arising from the asset’s market valuation—as opposed to expected cash

flow—covarying with the factor, so a high arbitrage-driven beta means more discount-rate shocks

and greater return predictability of the asset in the time series (Proposition 4). Finally, asset return

response to a sharp decline in arbitrage capital reveals the cross-section of arbitrage-driven betas

(Proposition 5).

Testing these predictions in a cross-section of 40 equity anomalies, I show that their betas with
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Figure 1: Explaining the Cross-Section of Funding-Liquidity Betas
The first figure shows that the funding-liquidity betas of anomalies in the pre-1993 period (1974-1993) cluster around
zero, irrespective of their CAPM alphas. The next two figures show that the funding-liquidity betas of anomalies in
the post-1993 period (1994-2016) are explained by their pre-arbitrage alphas (pre-1993 CAPM alpha) and post-1993
arbitrage position (abnormal short interest ratio). Long-side and short-side anomalies are denoted in gray and blue,
respectively.

respect to systematic factors feature patterns consistent with the model. I show this in the context

of the intermediary-based model of Adrian, Etula, and Muir (2014), interpreting their aggregate

funding-liquidity factor as a factor that arbitrage capital loads on. This interpretation is plausible

since anomaly arbitrageurs, such as quantitative long/short equity hedge funds, are levered and rely

on funding liquidity provided by their prime brokers. I measure the arbitrage position based on

abnormally high or low shorting on the anomaly, and I measure the pre-arbitrage alpha using the

anomaly’s factor alpha (e.g., CAPM alpha) in the pre-1993 period (1974–1993) when institutional

arbitrageurs (e.g., quantitative long/short equity hedge funds) were small. I look for evidence of

arbitrage-driven betas primarily in the post-1993 period (1994–2016) with more arbitrage on the

anomalies.3

I find strong evidence that the funding-liquidity (“funding”) betas of anomalies are arbitrage-

driven betas. In the pre-1993 period with less arbitrage on the anomalies, funding betas cluster

around zero for both the anomalies with positive CAPM alpha and the anomalies with negative

CAPM alpha (Figure 1a). In the post-1993 period with more arbitrage, however, the anomalies

attain either positive or negative funding betas depending on whether their pre-1993 alphas were

positive or negative (Figure 1b), consistent with the model’s prediction (Proposition 2). Further-

more, actual arbitrage position explains the magnitude and the direction of the post-1993 funding

betas (Figure 1c), consistent with Proposition 1. I find similar patterns using panel regressions that

allow the funding betas to vary more freely over time: funding beta increases with arbitrage posi-

3See Schwert (2003), Chordia, Roll, and Subrahmanyam (2008, 2011), and Chordia, Subrahmanyam, and Tong
(2014) for evidence of increased arbitrage activity on anomalies following early 1990s.
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tion, with the academic publication of the anomaly, and with the post-1993 dummy. In contrast, the

anomalies’ fundamental characteristics (e.g., size or book-to-market ratio) are not strongly related

to funding betas.

The funding betas of anomalies display additional patterns expected from arbitrage-driven be-

tas. Funding betas strengthen in periods when arbitrageurs are likely to be constrained and weaken

when arbitrageurs are likely to be unconstrained, consistent with Proposition 3. This evidence ad-

dresses the concern that the funding factor proxies for an arbitrageur wealth portfolio rather than

for aggregate funding shocks, in which case anomalies’ betas with the factor should remain, if not

strengthen, during unconstrained periods when arbitrageurs hold more anomalies. Furthermore,

in the cross-section of different anomalies, the time-series return predictability increases in the

funding beta in the post-1993 period but not in the pre-1993 period. This is consistent with post-

1993 funding betas measuring discount-rate shocks generated by the act of arbitrage as opposed to

fundamental cash-flow shocks that happen to covary with funding-liquidity shocks (Proposition 4).

Next, I argue—more aggressively—that arbitrage-driven betas are pervasive, arising in conven-

tional multifactor models. Factors in these models are long-short portfolios with positive mean

returns, so arbitrageurs who seek positive market-adjusted returns would load positively on these

factors. Hence, these factors generate shocks to arbitrageur wealth that can propagate to other

assets traded by the arbitrageurs, thus generating arbitrage-driven betas with respect to the fac-

tors: a large negative (positive) factor shock increases (decreases) the wealth of arbitrageurs and

leads them to unwind (increase) their position on all anomalies, causing anomalies with no prior

exposure to the factor to attain arbitrage-driven betas with the factor.

I use the five-factor model of Fama-French (FF) (2015) to support this claim. I find that, among

the cross-sectional factors, profitability (RMW ) and investment (CMA) are the factors that the

capital of anomaly arbitrageurs loads strongly on. Since long-side (short-side) anomalies con-

sistently load positively (negatively) on RMW and CMA, long/short arbitrageurs who trade the

anomalies trade RMW and CMA, deliberately or inadvertently. Indeed, my proxy for a quantita-

tive long/short equity hedge fund portfolio loads strongly on RMW and CMA but not on SMB

and HML—the other cross-sectional factors—once I control for RMW /CMA. Consistent with

this observation, in the post-1993 period, an arbitrage-related variable (i.e., the arbitrage position or

the pre-arbitrage alpha) explains around 30% of the cross-sectional variation in the RMW /CMA
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betas of anomalies but does not explain the cross-section of SMB/HML betas. I find consistent

evidence in panel regressions and in my tests of other predictions of the model.

Finally, I use the “quant” crisis of August 2007 to test the cross-sectional relationship between

arbitrage-driven betas and their determinants without relying on a factor model. Over the three-

day period of the crisis, seemingly distinct equity anomalies commonly underperformed, while

hedge fund strategies in other asset classes remained unaffected. Khandani and Lo (2007, 2011)

and Pedersen (2009) attribute this unusual covariance event to a rapid decline in the capital of

quantitative long/short equity hedge funds that trade these anomalies.

My model predicts the cross-section of anomaly returns during the quant crisis. Since anomaly

returns during a crash of arbitrage capital reveal their sensitivity to arbitrage-capital shocks, an

anomaly’s quant-crisis return should decrease in its arbitrage position and pre-arbitrage alpha,

which determine the cross-section of arbitrage-driven betas (Proposition 5). Evidence strongly

supports the prediction: anomalies with a greater arbitrage position or pre-arbitrage alpha expe-

rienced a sharper crash over the three-day crash period (August 7–9, 2007). These anomalies

in turn experienced a sharper recovery following the crash (August 10–14), consistent with the

quant-crisis returns being discount-rate movements generated by a decline in arbitrage capital.

Taken together, my results suggest that arbitrage-driven betas predicted by the model arise in

equity anomalies and help determine the cross-section of their factor betas. Although alternative

explanations may exist for each individual result, the arbitrage channel in my model offers a uni-

fying explanation for the joint occurrence of my empirical results.

To my knowledge, this paper is the first to study the arbitrage channel for the cross-section of

factor betas. Previous work on betas studies whether firm characteristics determine the stocks’ mar-

ket betas (e.g., Rosenberg, McKibben, and March, 1973; Lev, 1974; Thompson, 1976; Thurnbull,

1977; Bowman, 1979) and whether factor betas are driven by the discount-rate or cash-flow part

of factor returns (Campbell and Mei, 1993; Campbell, Polk, and Vuolteenaho, 2009). Others have

shown that institutional arbitrageur trading affects the second moments of the arbitraged assets as

a whole (e.g., Shleifer and Vishny, 1997; Barberis and Shleifer, 2003; Barberis, Shleifer, and Wur-

gler, 2005; Anton and Polk, 2010; Greenwood and Thesmar, 2011; Lou and Polk, 2013; Liu, Lu,

Sun, and Yan, 2015; McLean and Pontiff, 2016; Huang, Lou, and Polk, 2018). My contribution is

to show how this insight can be applied to understand the cross-section of risk.
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In a simple framework, my model shows that future research can use arbitrage position or

pre-arbitrage alpha as the cross-sectional determinant of arbitrage-driven risk. Retrospectively,

the empirical work of Brunnermeier, Nagel, and Pedersen (2009) uses both arbitrage position

and “alpha” (interest rate differential) to explain the cross-section of crash risks in currency carry

trades. My model provides a theoretical ground for their approach and shows that the alpha in

this type of study should ideally be measured in periods with little arbitrage. My model shares

similarities to both Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2017), but I focus

on differences in the assets’ demand distortion rather than fundamental volatility and provide new

predictions about arbitrage-driven betas. Kozak, Nagel, and Santosh (2018) show that, in the

presence of arbitrageurs, asset returns in a “behavioral” model with mispricings feature a factor

structure and therefore are not easily distinguishable from those in a fully rational model. My

work suggests that factor models that arise in this manner are distinguishable, as factor betas in

such models feature patterns expected from arbitrage-driven betas.

This paper offers an explanation as to why, despite arbitrage, anomaly returns persist.4 They

persist because of the very fact that many arbitrageurs are attempting to exploit them, which gener-

ates arbitrage-driven betas in the anomalies. This allows the initial abnormal returns of anomalies

to persist in the form of risk premia associated with the arbitrage-driven betas.5 Hence, my paper

relates to Drechsler and Drechsler (2016), who find that anomaly arbitrageurs face risk concen-

trated in negative-alpha stocks and require a return premium for bearing this risk. I find that the

role of arbitrageurs extends beyond recognizing such risk, as they propagate this type of risk to

other assets that they trade.

Finally, this paper contributes to the growing intermediary-based asset pricing literature. This

literature has shown that financial intermediaries generate asset price movements in the short-to-

medium horizon (see the references in Paragraph 2) and help determine assets’ expected returns

over a longer horizon (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2012, 2013, 2018;

Adrian, Etula, and Muir, 2014; Brunnermeier and Sannikov, 2014; He, Kelly, and Manela, 2017;

Avdjiev, Du, Koch, and Shin, 2017; Haddad and Muir, 2017). Arbitrageurs in my model can be in-

terpreted more broadly as financial intermediaries with preferences that differ from the preferences

4McLean and Pontiff (2016) document a 32% decline in the returns of 97 anomalies after their publication. Chor-
dia, Subrahmanyam, and Tong (2014) also find that anomaly returns have not completely disappeared.

5This argument can also be attributed to the “adaptive market hypothesis” of Lo (2004), who first coined the term
“alphas becoming betas.”
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of households. Hence, my results suggest that financial intermediaries also shape the cross-section

of factor betas and that betas used in intermediary asset pricing may be generated by the financial

intermediaries themselves.

The rest of the paper is organized as follows. Section 2 lays out the theory, Section 3 describes

the data and methodology, Section 4 tests Propositions 1-4 on funding-liquidity betas, Section 5

tests the propositions on Fama-French (2015) betas, Section 6 tests Proposition 5 on the quant

crisis, and Section 7 concludes. Appendix A contains a detailed derivation of the model and all

proofs, and an online appendix to this paper provides additional results and robustness checks.

2 A Model of Assets with Arbitrage-Driven Betas

The economy has three periods (t = 1, 2, 3) and two types of security: a risk-free bond and a

continuum of anomaly assets i ∈ [0, 1]. The risk-free bond is supplied elastically at a zero interest

rate; hence an asset’s excess return equals its return. An anomaly asset (“asset”) is a claim to a

stream of cash flows {δi,2, v + δi,3} over t ∈ {2, 3} and has a zero net supply. The dividends

{δi,t} are conditionally i.i.d. across assets, and v > 0 is a constant; hence there is zero aggregate

cash-flow risk. I assume for convenience that the dividends have a zero conditional mean.

There are two types of investors: behavioral investors and a representative arbitrageur. Behav-

ioral investors generate negative distortions in asset demands that push asset prices downward.6

Importantly, these distortions are constant over time but increasing in magnitude in i. I model this

as a distortion −φi in the aggregate behavioral investor demand for asset i (in units of wealth) at

time t ∈ {1, 2}:
Bi,t = Et

[
rei,t+1

]
− φi, (1)

with Et
[
rei,t+1

]
denoting the objective conditional expected (excess) return and φ > 0. Besides the

distortion, the demand function has three additional features:

• Demand falls as price rises (since price is inversely related to expected return).

6The direction of the distortions is chosen for convenience and does not affect the model’s predictions. Further-
more, I do not specify the reason for this distortion, which can be behavioral (e.g., sentiment) or rational (e.g., local
risk to behavioral investors that arbitrageurs are willing to share).
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• “Narrow framing” in that covariances do not matter (Barberis, Huang, and Thaler, 2006).

This feature simplifies the model solution.

• Equal “size” or “liquidity” of all assets. That is, a marginal increase in the arbitrage position

lowers the equilibrium expected return by an amount that is constant across all assets.7

A representative, risk-neutral arbitrageur with mass µ trades to maximize the expected wealth

at time 3 but faces a capital constraint. Specifically, the arbitrageur is not short-sale constrained

but faces a margin rate of one in all positions, which prevents the arbitrageur from raising cash

by shorting an asset.8 The arbitrageur can borrow up to an exogenous stochastic funding con-

straint ft ∈ [0,∞) and additionally faces exogenous shocks to its wealth wt, both of which are

independent of dividends {δi,t} and generate shocks to the level of deployable capital of the unit

arbitrageur (“arbitrage capital”):9

kt = wt + ft. (2)

The presence of these shocks and the possibility of a binding capital constraint make the risk-

neutral arbitrageur behave in a risk-averse manner through the intertemporal speculative motive

(Merton, 1973). Finally, the arbitrageur faces a non-negativity constraint: a negative realized

wealth forces the arbitrageur to exit the market immediately and pay an interest cost c ≥ φ on the

negative wealth in all future periods.10

To summarize, the arbitrageur’s objective at time t is to choose asset positions xt to maximize

Et [w3] s.t.

wt+1 =

 wt +
∫ 1

0
ri,t+1xi,tdi+ w̃t+1

(1 + c)wt

if wt > 0

if wt ≤ 0∫ 1

0
|xi,t| di ≤ 1 (wt > 0) kt

kt = wt + 1 (wt > 0) ft,

(3)

where xt is the unit arbitrageur’s sequence of dollar positions on all assets over all remaining
7Suppose µxi,t is the aggregate arbitrageur demand for asset i at time t. Since market clearing implies µxi,t =

−Bi,t, ∂Et
[
rei,t+1

]
/∂ (µxi,t) = −∂Et

[
rei,t+1

]
/∂Bi,t = −1 for all assets.

8This is analogous to how actual arbitrageurs, such as hedge funds, are not short-sale constrained but face a
nonzero margin requirement. However, I hold the margin rate fixed rather than make it a function of asset volatility,
as in Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2017), to emphasize that arbitrage-driven betas can
arise without differences in fundamental volatility.

9As the reader will see, the funding channel and the wealth channel play an identical role in the model, but I keep
both channels for a tighter link to my empirical results.

10This allows me to obtain the arbitrageur’s marginal value of wealth in the negative-wealth region.
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trading periods, w̃t is the wealth shock, ri,t is the asset return, and 1 (·) is an indicator function.

I look for a competitive equilibrium in which (i) the aggregate behavioral investor demand

{Bi,1} and {Bi,2} satisfy eq. (1) given prices, (ii) the arbitrageur’s chosen positions {xi,1} and

{xi,2} solve problem (3) given prices, and (iii) all asset markets clear s.t. µxi,t +Bi,t = 0 ∀i, t.

I analyze the three-period equilibrium under two different assumptions about the arbitrageur’s

mass µ: the trivial “pre-arbitrage” equilibrium with µ = 0 and the more interesting “post-arbitrage”

equilibrium with µ = 1
2
φ. These two equilibria respectively capture sample periods before and

after the growth of arbitrage on the assets.

2.1 The pre-arbitrage equilibrium

In the “pre-arbitrage” economy with a negligible mass of arbitrageurs (µ = 0), the assets have

different alphas but no systematic risk. (All proofs and derivations are in Appendix A.)

Lemma 1. (Asset returns in the pre-arbitrage economy). If µ = 0, excess return on asset i is

rei,t = φi+ εi,t (4)

∀t where εi,t is a mean-zero idiosyncratic return and the “pre-arbitrage alpha,”

αprei ≡ φi, (5)

increases monotonically from asset i = 0 to asset i = 1.

Hence the unobserved demand distortion φi is revealed in the abnormal return or “alpha” in the

pre-arbitrage economy, αprei , which continues to proxy for demand distortions latent in the post-

arbitrage economy. This identification of the post-arbitrage-economy demand distortion using

the pre-arbitrage alpha is valid up to the cross-sectional ordering if the relative ordering of the

distortion is invariant over the two economies.11

11I maintain this assumption in my empirical tests using pre-arbitrage alphas. This is likely to be true despite the
growth of institutional capital in the stock market if mutual fund managers exhibit behavioral patterns similar to those
of retail investors (Frazzini, 2006; Frazzini and Lamont, 2008).
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2.2 The post-arbitrage equilibrium

Next, consider the “post-arbitrage” economy in which the arbitrageur has a non-negligible mass of

µ = 1
2
φ. If the arbitrageur is always unconstrained with sufficient capital (k1, k2 ≥ 1), all alphas

are arbitraged away and no endogenous arbitrage-driven risk arises.

Lemma 2. (Asset returns with unconstrained arbitrageurs). Suppose µ = 1
2
φ and k1, k2 ≥ 1

with certainty so that the arbitrageur is always unconstrained. Then, excess return on asset i is

rei,t = εi,t (6)

∀i, t where εi,t is a mean-zero idiosyncratic return.

Hence, with the frictionless “textbook” arbitrage, assets subject to different degrees of demand

distortion become effectively identical riskless assets. Comparing eq. (6) with eq. (4), the pre-

arbitrage alpha has disappeared completely with no emergence of endogenous risk.

However, the more realistic case is if, during the arbitrage, the level of arbitrage capital may

fall below the value required to counteract all demand distortions, an assumption I maintain from

hereon:12

Assumption 1. µ = 1
2
φ so that the arbitrageur is large and k2 is in [0, 1] with positive (conditional)

conditional probability so that the arbitrageur may be constrained during arbitrage.

In this case, asset returns from time 1 to time 2 follow a factor structure with endogenous “arbitrage-

driven” betas with respect to k2:13

Lemma 3. (Asset returns with constrained arbitrageurs). Under Assumption 1, the expected

excess return on asset i from time 1 to time 2 approximately follows

E1r
e
i,2 = αi,2 + λkβi,k, (7)

12The case in which k1 may be below 1 but k2 ≥ 1 is not considered explicitly, since this case is analogous to the
“perfect arbitrage” case except for a positive return from time 1 to time 2.

13Since the level of arbitrage capital k is the state variable in the model, the stochastic discount factor in this
economy is a nonlinear function of k. I therefore state an approximate factor model with respect to k rather than the
exact model with respect to the stochastic discount factor for better intuition. An analogous result for the exact factor
model is available in Appendix A.
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where βi,k is an “arbitrage-driven” beta with respect to k2, βi,k > 0 ∀i ∈ (0, 1], λk > 0, and

αi,2 ≥ 0. Since mispricing disappears at time 3 with certainty, the expected excess return on asset

i from time 2 to time 3 is

E2r
e
i,3 = αi,3, (8)

with αi,3 ≥ 0 and no arbitrage-driven beta.

Lemma 3 is intuitive. Equation (7) essentially restates the classic “limits of arbitrage” result

of Shleifer and Vishny (1997) within a beta pricing framework. Arbitrage that requires capital is

endogenously risky since the price of the arbitraged asset comoves with the level of arbitrage cap-

ital during arbitrage; i.e., since βi,k is positive for the arbitraged assets.14 Although the arbitrageur

has a risk-neutral preference, the arbitrageur perceives this beta as risk due to the intertemporal

speculative motive: asset return tends to drop precisely when arbitrage capital drops and invest-

ment opportunity improves. However, this result does not depend on the risk preference, since a

low-k state remains a high-marginal-value-of-wealth state under other risk preferences, as I explain

further at the end of the section.

Comparing Lemma 3 with Lemma 2 shows that the entire cross-section of betas in Lemma 3

arises from frictions in the arbitrage, justifying the name “arbitrage-driven” betas. Furthermore,

equation (8) shows that no arbitrage-driven beta arises when demand distortion is about to disap-

pear and asset prices are about to converge to the fundamental value, since the return on the asset

would not comove with arbitrage capital in the next period. That is, arbitrage-driven betas do not

arise in assets or portfolios with a short mispricing horizon (Gromb and Vayanos, 2017).

In both equations (7) and (8), the abnormal return αi,t can differ across assets when the arbi-

trageur is constrained, violating the law of one price (e.g., Gârleanu and Pedersen, 2011; Geanako-

plos and Zame, 2014). A positive margin rate means that when the capital constraint binds, the

arbitrageur would not equalize all abnormal returns if doing so through a long-short trade makes

less money than other trades the arbitrageur currently engages in. For example, if the arbitrageur’s

shadow cost of capital is 3% and the margin rate is 50%, the arbitrageur would not engage in a

long-short trade on two portfolios with 1% and −1% abnormal returns and identical factor expo-

sures to earn a 2% return.

14Also see Gromb and Vayanos (2017) and Kondor and Vayanos (2017).
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Since wealth w and funding conditions f determine the level of arbitrage capital, the beta pric-

ing model in equation (7) can be restated in terms of wealth and funding betas:

Lemma 4. (Decomposing the arbitrage-capital beta). Eq. (7) in Lemma 3 can be restated as

E1r
e
i,2 = αi,0 + λwβi,w + λfβi,f (9)

where βi,w and βi,f are betas with respect to w2 = w1 +
∫ 1

0
ri,2xi,2di+ w̃2 and f2, respectively.

Hence, arbitrage-driven betas can arise with respect to two kinds of systematic factors. First,

they arise with systematic shocks to the arbitrageur’s wealth w2 coming from the assets being

arbitraged (
∫ 1

0
ri,2xi,2di) and from more exogenous shocks such as fund flows to institutional arbi-

trageurs (w̃2). Hence an arbitraged asset with no prior factor exposure can attain betas with factors

that other arbitraged assets are exposed to. Second, they arise with systematic funding shocks f2.

An arbitraged asset with no prior factor exposure can attain betas with factors that determine arbi-

trageur funding conditions. Restrictions on βi,k derived below apply analogously to both βi,w and

βi,f , but not necessarily to other systematic factors in the market.

2.3 The cross-section of arbitrage-driven betas

Previous results show that arbitraged assets obtain endogenous betas with respect to arbitrage-

capital shocks (dubbed “arbitrage-driven” betas), but which asset obtains a larger arbitrage-driven

beta? The first proposition shows that arbitrage-driven beta increases in the arbitrageur’s total

position on the asset:

Proposition 1. (Arbitrage position determines the cross-section of arbitrage-driven betas). Arbitrage-

driven beta increases in the expected arbitrage position on the asset: ∂βi,k
∂(E1[µxi,2])

> 0.

Proposition 1 is intuitive. If a larger fraction of the market capitalization of the asset is owned

by the arbitrageur, the price of the asset is more sensitive to the variation in the aggregate arbitrage

capital. Hence, such an asset has a higher arbitrage-driven beta than other assets.

Although intuitive, Proposition 1 is not completely satisfactory since arbitrage position—the

right-hand variable determining the level of arbitrage-driven beta—is itself an endogenous quantity
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determined in equilibrium. The next proposition shows that it is ultimately the asset’s demand dis-

tortion that determines its arbitrage-driven beta. A larger demand distortion from the arbitrageur’s

perspective means that the arbitrageur plays a larger price-correcting role in the asset in equilibrium

through a larger arbitrage position, which results in a higher arbitrage-driven beta. This demand

distortion may be unobserved by the econometrician but is revealed by the pre-arbitrage alpha. The

next proposition restates Proposition 1 using this “instrument” for the arbitrage position.

Proposition 2. (Pre-arbitrage alpha predicts the cross-section of arbitrage-driven betas). Arbitrage-

driven beta increases in the magnitude of the demand distortion in the asset proxied by the pre-

arbitrage alpha: ∂βi,k
∂αprei

> 0. That is, “alphas turn into betas.”

I illustrate Proposition 2 using an example. Consider assets A and B, which are claims to some

deterministic payoff of $10 in present value. Suppose also that, absent arbitrage capital, demand

distortions in behavioral investors drive down the prices of the assets to PA = $5 and PB = $8,

creating “pre-arbitrage” alphas of αA = 100% and αB = 25%. Now suppose that arbitrageurs

begin trading these assets but their capital loads positively on some factor k. Then in “normal”

arbitrage times, the arbitrageurs would drive up PA and PB to nearly $10. However, if during the

arbitrage, a large negative-k shock depletes the arbitrage capital completely, PA and PB would drop

50% ($10 to $5) and 20% ($10 to $8) respectively, assuming that the behavioral investors’ demand

distortion stays. Hence, precisely because A has a larger pre-arbitrage alpha and arbitrageurs play

a larger price-correcting role in the asset in normal times, A has a larger endogenous sensitivity to

(i.e., higher beta with) factor k than B.15

Figure 2 illustrates Lemma 1 as well as propositions 1 and 2 to show that the model generates

patterns observed in the data (Figure 1). In the pre-arbitrage economy, the assets have zero betas

with respect to k2 irrespective of their pre-arbitrage alphas, since arbitrageurs are too small to

generate price pressure on the assets. However, in the post-arbitrage economy, the assets obtain

a cross-section of different betas with k2 that line up with their pre-arbitrage alpha or expected

arbitrage position.

Next, a useful restriction on arbitrage-driven betas is that the cross-section of different arbitrage-

driven betas comes from the constrained states of time 2. Put differently, an arbitrageur does not

15And this endogenous risk means that PA and PB would actually be lower than $10 even with sufficiently large
arbitrage capital, except in the period immediately before the deterministic payoff.
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Figure 2: “Turning Alphas into Betas” in the Model
The first figure shows that assets’ betas with respect to arbitrage capital in the pre-arbitrage economy cluster around
zero. The next two figures show that the assets’ arbitrage-capital betas in the post-arbitrage economy are explained by
their pre-arbitrage alpha and expected arbitrage position. Parameter values used: φ = 0.2, µ = φ/2, k2 ∼ U [−10, 10],
k1 ≥ 1, c = 0.5, and δi,t/v ∼ N (0, 0.1).

generate endogenous βs in the assets when he has a “deep pocket,” which was the case in Lemma 2:

Proposition 3. (Arbitrage-driven betas arise when the arbitrageur is constrained). Arbitrage-

driven betas arise only when the arbitrageur is constrained. That is,

βi,k| (k2 ≥ 1) = 0

βi,k| (k2 < 1) > 0
(10)

for all i ∈ (0, 1]. For this reason, if kt follows a process such that k1, k2 ≥ 1 almost surely, then

neither beta nor abnormal return arises:

βi,k = 0 and E1 [ri,2] = 0 for all i ∈ [0, 1] . (11)

Although intuitive, the exact statement of Proposition 3 relies on the assumption that the arbi-

trageur is risk-neutral and dividends are i.i.d. However, a weaker version of the proposition would

hold under risk aversion and undiversifiable dividends (in which case arbitrageurs would not cor-

rect asset prices completely despite high k2): the arbitrage-driven beta is lower if k2 is expected

to be higher. Intuitively, the arbitrageur’s optimization implies that pi,2, a non-decreasing function

of k2, is capped at v. Hence ∂pi,2/∂k2 should approach zero as k2 increases, which implies a

decreasing price sensitivity to k2 for higher values of k2.

Testing Proposition 3 requires empirically identifying constrained vs. unconstrained periods.
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In this model of time-varying arbitrage capacity, abnormal returns (αi,2 in Lemma 3) emerge only

when the arbitrageur is constrained, providing one approach to identifying constrained periods for

the arbitrageur.

Next, arbitrage-driven betas are “discount-rate” betas. They arise because a positive arbitrage-

capital shock increases the valuation—as opposed to expected cash flows—of an underpriced asset

while a negative arbitrage-capital shock lowers it. It follows that return predictability in the post-

arbitrage economy increases in the magnitude of βi,k and its determinants.

Proposition 4. (Cross-section of time-series return predictability). Arbitrage-driven betas are

discount-rate betas. Hence return predictability measured by the R2 increases in the absolute

value of the arbitrage-driven beta:
∂R2

i

∂ |βi,k|
> 0,

where R2
i = V ar1

(
E2r

e
i,3

)
/V ar1

(
rei,3
)
. Hence it also increases in the absolute value of the

arbitrage position or the pre-arbitrage alpha.

Intuitively, an asset with a larger arbitrage-driven beta has larger discount-rate variation gener-

ated by arbitrage capital. Hence, if return volatility unassociated with arbitrage activity is constant

or similar across the assets—which is the case in this model—the explained part of the asset return

increases in arbitrage-driven beta. It is important to note that the R2 increases in the absolute value

of the arbitrage-driven beta or its determinants. In a return predictive regression, the conditioning

information can be either the level of arbitrage capital k2 or past return ri,2. I use the latter in my

empirical tests.

Except for one part of Proposition 4 that relates predictability to the arbitrage position and

the pre-arbitrage alpha, testing the previous propositions requires computing betas with respect to

factors that arbitrage capital loads on. This means having to take a stance on which factor generates

systematic shocks to arbitrage capital. However, one can circumvent this problem by observing

asset returns during a severe crash of arbitrage capital, which reveals the assets’ betas with respect

to arbitrage capital shocks. Therefore, if arbitrage-capital beta increases in the asset’s demand

distortion (Propositions 1 and 2), the asset return response to the crash should also line up cross-

sectionally with the arbitrage position and the pre-arbitrage alpha that proxy the distortion. The

next proposition formalizes this idea, focusing on the case in which the arbitrageur is unconstrained
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at time 1 to state an analytical result.16

Proposition 5. (Cross-section of asset returns during a crash in arbitrage capital). Asset return

during a crash of arbitrage capital decreases in the asset’s demand distortion. Specifically, if k1 is

sufficiently large, a crash in k2 that leads to a complete unwinding of arbitrage positions on assets

[0, i∗2] generates negative returns on these assets that increase in magnitude in φi:

rei,2 < 0 and
∂rei,2
∂ (φi)

< 0 ∀i ∈ [0, i∗2] .

Furthermore, since these asset returns are discount-rate shocks, asset returns going forward dis-

play the opposite pattern:
∂E2

[
rei,3
]

∂ (φi)
> 0 ∀i ∈ [0, i∗2] .

Proposition 5 implies that a large enough crash in arbitrage capital generates negative returns

in almost all arbitraged assets and that the magnitude of the return response is greater in assets

with larger demand distortions since the arbitrageur plays a larger price-correcting role in the

assets. This allows me to test the predicted relationship between measures of demand distortion

and arbitrage-capital beta without having to identify an arbitrage-capital factor.

The online appendix states an additional prediction that in the presence of arbitrage-driven

betas, asset pricing tests can produce biased price of risk estimates if the econometrician does

not distinguish between pre- and post-arbitrage economies. Simply put, the bias arises because

the arbitrage channel causes factor betas to be cross-sectionally correlated with the alphas, the

disturbance term in a cross-sectional asset pricing regression.

2.4 Discussions

Although the model makes a few simplifying assumptions to deliver a simple framework, these

assumptions are relatively innocuous in that the predictions I draw from the model are likely to

survive various model extensions.

First, as in Shleifer and Vishny (1997), Brunneremeir and Pedersen (2009), and Brunnermeier

16See Lemma 7 in Appendix A for the exact condition.
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and Sannikov (2014), the arbitrageur in my model is risk-neutral but perceives the arbitraged as-

sets to be endogenously risky since shocks to arbitrage capital at time 2 makes the arbitrageur’s

marginal value of wealth (MVW) stochastic at time 2 and covary negatively with returns on the

arbitraged assets. Adding risk aversion would not change the endogenous negative relationship

between the MVW and returns on the arbitraged assets that generates the arbitrage-driven betas. In

the presence of a margin constraint, a large negative arbitrage-capital shock during arbitrage would

still force the arbitrageur to unwind its positions in the assets, generating negative asset returns.

And low capital would still mean high marginal value of wealth.

Second, the cross-sectional relationship between demand distortion and arbitrage-driven beta

would also remain with risk aversion, even if I reduce the number of assets to be finite so that the

arbitrageur cannot disregard idiosyncratic risks. Despite idiosyncratic risk, the arbitrageur would

take a larger position on the higher-distortion asset in equilibrium, since equal arbitrage position

on two assets that have different demand distortions means that the arbitrageur should marginally

increase his position on the higher-distortion asset. Then, the same example as above implies that

the price of the higher-distortion asset with a larger arbitrage position would drop more in response

to the arbitrage-capital shock.

Finally, arbitrageur wealth shocks in my model are “exogenous” in that they do not come from

cash-flow shocks to the arbitraged assets, which are assumed i.i.d. to deliver analytical results. In

reality, arbitrage-driven betas can arise with respect to “endogenous” wealth shocks coming from

cash-flow shocks to arbitraged assets. Introducing cash-flow shocks (i.e., correlated dividends) to

the model would not change the analytical result, since dividends are part of the arbitrageur port-

folio return that determines arbitrageur wealth, and Lemma 4 already shows that arbitrage-driven

betas arise with respect to arbitrageur wealth shocks. However, in the pre-arbitrage economy, cor-

related dividend shocks combined with arbitrageur risk aversion would mean that the pre-arbitrage

alpha from the arbitrageur’s perspective would need to be computed with respect to the common

cash-flow factor.
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3 Application to Equity Anomalies: Data and Methodology

I test the model’s predictions in the cross-section of betas of equity “anomalies,” trading strategies

known to generate abnormal returns. Quantitative long/short equity hedge funds—the primary

arbitrageurs of anomalies—dedicate around $300-400 billion to trading these anomalies (as of

2007), suggesting that their trading may expose anomalies to factors that their capital is exposed

to and generate arbitrage-driven betas.17

Although my predictions apply to other trading strategies, I use equity anomalies as a labo-

ratory for my tests for three reasons. First, they are a subject of a large body of research, being

increasingly used as test assets in the cross-sectional asset pricing literature, so understanding

how their factor exposures arise seems particularly important. Second, they offer a reasonably rich

cross-section (Green, Hand, and Zhang, 2016), allowing me to test the model’s cross-sectional pre-

dictions. Third, previous research documents approximately when institutional arbitrageurs began

trading the anomalies: around early 1990s (1993 in particular) due to improved market liquidity

and increased hedge fund capital (Schwert, 2003; Chordia, Roll, and Subrahmanyam, 2008, 2011;

Stein, 2009; Chordia, Subrahmanyam, and Tong, 2014) and around academic publication due to in-

creased publicity (McLean and Pontiff, 2016). This allows me to look for signs of arbitrage-driven

betas in a disciplined manner.

3.1 The anomalies

I use 40 equity anomalies that are “long” and “short” portfolios (top and bottom deciles) of 20

anomaly characteristics (see the list in Table 1).18 I compute each anomaly’s monthly value-

weighted returns over 1974m1–2016m12 based on all domestic common stocks from the three

major exchanges (NYSE, AMEX, and NASDAQ) that belong to the extreme decile portfolios

17These numbers are from Pedersen (2009).
18This list of 20 characteristics represents a standard set of low-turnover anomaly characteristics. One can arrive

at this set by taking the 32 characteristics surveyed by Novy-Marx and Velikov (2016) and excluding the 5 redun-
dant (e.g., “high-frequency combo”) and 7 highest-turnover (e.g., short-term reversal) characteristics. I exclude the
high-turnover anomalies since arbitrage-driven beta should not arise in anomalies with a short mispricing horizon, as
discussed in section 2. I use long and short portfolios as separate test assets rather than forming long-short portfolios
for two reasons: (i) actual arbitrageurs typically do not form a long-short portfolio based on single anomaly charac-
teristic but consider multiple anomaly characteristics of stocks; (ii) it ensures a large cross-sectional variation in the
right-hand variable (e.g., arbitrage position and pre-arbitrage alpha), which increases the power of the test.

18



formed at the end of the previous month.19 I use cumulative quarterly returns over 1974q1–2016q4

for analysis using quarterly factors. To construct standard errors, I use bootstrapping to account

for cross-anomaly covariances.20

3.2 Factor models of anomalies

I study the anomalies’ betas in the contexts of two factor models that summarize the cross-section

of risk of anomalies reasonably well: the intermediary-based model of Adrian, Etula, and Muir

(2014) and the five-factor model of Fama and French (FF) (2015). I do this in the separate context

of each model rather than combine the two models in an arbitrary manner. Within each factor

model, the model predictions apply to factors that anomaly-arbitrageur capital loads on, a point I

come back to.

The intermediary-based model of Adrian et al. studies the cross-section of asset risk from the

perspective of levered financial intermediaries such as banks and hedge funds. To do so, it proposes

shocks to the book leverage of security broker-dealers as a factor capturing aggregate funding-

liquidity shocks.21 Adrian et al. find that the funding factor explains both value and momen-

tum anomalies; i.e., value and momentum stocks have high betas with aggregate funding-liquidity

shocks, making them risky from the perspective of levered financial intermediaries. Furthermore,

I find that the factor helps explain anomalies beyond value and momentum—the cross-section of

40 anomaly returns tends to line up with their funding-liquidity exposures (Figure 3a).

Since anomaly arbitrageurs such as quantitative long/short equity hedge funds rely on leverage

and hence funding liquidity, I treat the funding-liquidity factor as a factor that arbitrage capital

19My data are from CRSP and Compustat. Similarly to Novy-Marx and Velikov (2016), I do not use data from
before the early 1970s because of the poor quality of quarterly accounting data. See the online appendix to this paper
as well as Novy-Marx and Velikov (2016) for more information on the anomaly construction.

20See online appendix for the bootstrapping procedure. My bootstrapped standard errors tend to reduce my t-
statistics by 50-70%. However, these bootstrapped standard errors likely overstate the estimated coefficient’s standard
deviation since part of the cross-anomaly covariances would come from arbitrage-capital shocks that my factors do
not account for.

21Specifically, ft = ln
(
leverageBDt

)
− ln

(
leverageBDt−1

)
, where leverage is the aggregate leverage of the entire

broker-dealer sector obtained from the Federal Reserve Board’s flow of funds data. The book leverage is adjusted for
seasonality before taking the growth rate. Adrian et al. refer to the factor as a “leverage” factor, but I follow a related
paper by Asl and Etula (2012) in calling it a funding factor. Another intermediary-based factor is the “capital ratio”
factor of He, Kelly, and Manela (2017). However, this factor is aimed at explaining the cross-section of expected re-
turns in multiple asset classes rather than different anomalies within equity and does not explain the equity momentum
anomaly. Hence for my analysis on equity anomalies, I use the funding factor of Adrian et al.
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loads on.22 This seems plausible given how the factor is defined since security broker-dealers pro-

vide funding to hedge funds as their prime brokers. Therefore, I test to what extent the anomalies’

funding-liquidity betas are arbitrage-driven betas. To do so, I extend the quarterly funding factor

to 2016q4 and standardize it over my sample period 1974q1-2016q4.23 I compute funding betas of

anomalies in a two-factor model that includes the market factor, which Adrian et al. show is more

robust to subsample analysis.24

I also study betas in the context of the five-factor model of FF, which augments the three-factor

model comprising the market, size, and value factors (labeled MKT , SMB, and HML) with

the new profitability and investment factors (labeled RMW and CMA) to summarize the cross-

sectional covariances of stocks.25 FF (2016) find that the various equity anomalies’ “abnormal

returns” are explained by their large loadings on RMW and CMA. Consistent with this claim,

Figure 3b shows that the five-factor model captures almost 80% of the cross-section variation in 40

anomalies’ returns over 1974m1-2016m12. For my analysis in section 5, I use multivariate betas

estimated in monthly time-series regressions using all five factors, which I download from Kenneth

French’s data library. Unlike the intermediary-based model, it is less obvious which Fama-French

factors are shocks to anomaly arbitrageurs. I show in section 5 that RMW and CMA are the

likely candidates.

3.3 Arbitrage position

My model shows that total arbitrage position in an anomaly is a key cross-sectional determinant

of arbitrage-driven betas. Following previous studies (Ben-David, Frazoni, and Moussawi, 2012;

Boehmer, Jones, and Zhang, 2013; Hanson and Sunderam, 2014; Hwang, Liu, and Xu, 2018), I

infer arbitrage positions on anomalies from an abnormal level of shorting (short interest).26 Since

22Brunnermeier and Pedersen (2009), Aragon and Strahan (2012), and Mitchell and Pulvino (2012) are selective
works that document funding-liquidity exposures of hedge funds.

23See Adrian et al. and the online appendix to this paper for detailed instructions on constructing the series.
24The market factor is downloaded from Kenneth French’s data library.
25RMW stands for “robust minus weak” profitability and CMA stands for “conservative minus aggressive” in-

vestment. The logic behind the two new factors is that the profitability and investment of a company are natural
predictors of future returns: between two companies with the same market and book values and future growth in book
equity, the one with a higher growth in earnings (i.e., more profitable) has a higher expected return; similarly, between
two companies with the same market and book values and future growth in earnings, the one with a higher expected
growth in equity (e.g., more investment) has a lower expected return (FF 2015).

26Ben-David, Frazoni, and Moussawi (2012) and Boehmer, Jones, and Zhang (2013) use short interest to infer
hedge fund positions in stocks. My approach of inferring both short and long positions of hedge funds based on short
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most short positions are held by hedge funds (approximately 85%, according to Goldman Sachs,

2008), abnormally high (low) short interest on an anomaly signals a net short (long) arbitrage

position taken by the arbitrageurs.

Specifically, in each month, I measure arbitrage position in each stock as the negative (−1×100

to express in %) of the abnormal short interest defined as the deviation in the short interest ratio

(shares shorted ÷ shares outstanding) from the level predicted by its size and liquidity deciles.27

Then, I compute the arbitrage position in an anomaly as the value-weighted average of the abnor-

mal short interests in the underlying stocks.

Figure 4 plots the equal-weighted average of anomaly positions on long- and short-side anoma-

lies over 1974m1–2016m12. The figure shows that the gap in the arbitrage on short vs. long

anomalies widens around the early 1990s, after which the short interest ratio is 30–50 basis points

lower (hence an arbitrage position of 0.3–0.5%) for long-side anomalies and 1–2 percentage points

(%p) higher (hence arbitrage position of −1% to −2%) for short-side anomalies.

3.4 Pre-arbitrage alpha

The model shows that the abnormal return in the absence of arbitrageurs (i.e. the pre-arbitrage

alpha) is an alternative right-hand variable that explains arbitrage-driven betas in periods with

more arbitrage activity. I use CAPM alpha in the pre-1993 period as a baseline proxy for the

pre-arbitrage alpha; however, using alternative factor alphas generates similar results. I use the

pre-1993 period as a proxy for the pre-arbitrage economy in the model, since this period features

less arbitrage on the anomalies as observed in Schwert (2003), Chordia, Roll, and Subrahmanyam

(2008, 2011), Chordia, Subrahmanyam, and Tong (2014), and Stein (2009).

Table 2 shows that pre-1993 alphas inferred from CAPM and other factor models are a strong

predictor of arbitrage activity in the post-1993 period, suggesting that pre-1993 alpha proxies

interests is closest to Hanson and Sunderam (2014) and Hwang, Liu, and Xu (2018). On the other hand, Chen, Da, and
Huang (2018) infer arbitrage positions from both short interest and 13F data. I do not use hedge fund long positions
inferred from 13F filings since the holdings data are available only at the holding company level, which makes it
difficult to identify quantitative long/short equity hedge funds that trade anomalies. Consistent with this, I find that
aggregate hedge fund holdings in the 13F do not have a strong relation to past alphas, contrary to aggregate short
interest. (I thank Chen, Da, and Huang for generously allowing me to check this using their data.) The short interest
data come from Compustat.

27I do this in a cross-sectional OLS regression using size and liquidity deciles as dummy variables, but the exact
method I use to obtain abnormal short interest does not affect my results.
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for the amount of demand distortion arbitrageurs perceive in an anomaly (see the coefficient on

αpre×Post-1993): arbitrage positions on positive-α anomalies become more positive and those on

negative-α anomalies become more negative around 1993.28 The table shows that academic pub-

lication is also important, consistent with McLean and Pontiff (2016). Interestingly, under some

specifications, academic publication triggers increased arbitrage activity only in the post-1993 pe-

riod, when hedge funds have sufficient capital to generate an observable effect on short interests in

response to an academic publication.

3.5 Post-arbitrage beta

I use the post-1993 period as a proxy for the post-arbitrage economy in the model. Hence, my

cross-sectional tests on arbitrage-driven betas use betas estimated in the time series within the

post-1993 period as the left-hand variable. However, the year 1993 does not represent a structural

break in arbitrage activity, and using alternative cutoffs in the early 1990s does not affect my

results. To further alleviate concerns about using the 1993 cutoff, I also study betas in a panel

regression and find consistent results.

3.6 Other determinants of beta

Although my model in section 2 shuts down the fundamental cash-flow channel for betas, in

practice, the cash-flow channel also explains cross-anomaly covariances (Campbell, Polk, and

Vuolteenaho, 2009; Lochstoer and Tetlock, 2016). Therefore, I use the anomalies’ size, book-to-

market ratio, profitability, and investment characteristics as the fundamental determinants of factor

betas.29 An anomaly’s characteristic is defined as the value-weighted average characteristic decile

of the underlying stocks, where the deciles are determined only by the NYSE stocks. An alterna-

tive way to control for the non-arbitrage determinants of betas is to use betas from the pre-1993

period with less arbitrage on the anomalies.
28My finding on the 1993 cutoff is somewhat at odds with the finding that no return decay is observed in the

anomalies following 1993 (McLean and Pontiff, 2016). The main reason for this difference is that short interest
measures the arbitrage activity by a group of sophisticated arbitrageurs, whereas return decay reflects investment by
all types of investors. Another contributing factor is that I use the year in which the anomaly was first published, not
when it was first well publicized. For example, the academic publication of the value anomaly is Rosenberg, Reid, and
Lanstein (1985) in my data, but it is Fama and French (1992) in McLean and Pontiff.

29See the online appendix to this paper for more information about how I construct these characteristics for each
stock.
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3.7 Testing Proposition 5

To test Proposition 5, I use the crash of quantitative hedge fund capital during the quant crisis of

2007. See section 6 for more explanations for this choice.

4 Funding-Liquidity Betas as Arbitrage-Driven Betas

Equity anomalies display a large cross-sectional variation in their funding-liquidity betas (Fig-

ure 3). To what extent does this variation arise because levered arbitrageurs such as hedge funds

are exposed to aggregate funding-liquidity shocks in the first place and then transmit these shocks

to the anomalies they trade? Figure 1 summarizes the answer given in this section: the cross-section

of funding-liquidity betas arises almost entirely through the arbitrage channel. The analysis in this

section supplements this observation using formal tests.

4.1 Explaining the cross-section of funding betas

Applying Propositions 1 and 2, I formally test whether arbitrage position and pre-arbitrage alpha

explain the cross-section of post-1993 funding betas. Table 3 shows that anomalies with greater

arbitrage position have higher funding betas, controlling for other potential determinants of the beta

using pre-1993 funding betas or post-1993 fundamental characteristics of anomalies (columns (1)-

(2)). A 1%p rise in arbitrage position (1%p fall in the short interest ratio) raises the anomaly’s

funding beta by 1.40–1.60, which means that the anomaly return responds 1.40–1.60%p more

to a one-standard-deviation shock in funding liquidity. The R2 is close to 80%, highlighting the

economic importance of arbitrage positions in determining funding-liquidity exposures. Therefore,

consistent with Proposition 1, anomalies in which arbitrage capital plays a larger price-correcting

role respond more to the variation in arbitrage capital due to funding-liquidity shocks.

However, using arbitrage position as the right-hand variable raises reverse-causality concerns:

arbitrageurs may take larger positions on stocks with larger funding betas to an earn extra risk

premium (Jurek and Stafford, 2015).30 A remedy is to use the pre-arbitrage alpha as a right-hand

30Relatedly, Yang (2017) finds that mutual funds with lower skills increase factor exposures.
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variable, since it measures the demand distortion in the anomaly that ultimately determines the

equilibrium arbitrage position and since an alpha—when correctly measured—captures the part

of expected return unrelated to factor exposures (Proposition 2). I use pre-1993 CAPM alpha

and pre-1993 “unexplained” mean return as alternative proxies for the pre-arbitrage alpha. The

unexplained mean return is defined as the mean excess return net of market risk premium measured

by the multivariate (two-factor) market beta times the realized market premium: rei − β̂i,mrem. The

coefficient on the pre-1993 unexplained mean return can be interpreted as the coefficient on the

pre-1993 alpha net of the funding-liquidity premium when the pre-1993 funding beta is included

as an additional regressor since it absorbs part of the unexplained return due to funding-liquidity

exposure.

Columns (3)-(6) show that pre-arbitrage alpha strongly explains the cross-section of funding

betas both as an OLS regressor and as a 2SLS instrument.31 The coefficients on the two measures

of pre-arbitrage alpha are almost identical since the anomalies’ pre-1993 funding betas are close

to zero.

Controlling for the arbitrage-related regressors, fundamental characteristics do not explain the

anomalies’ funding betas in the post-1993 period. Furthermore, arbitrage position does not explain

the cross-section of funding betas in the pre-1993 period, consistent with my interpretation of the

pre-1993 period as the pre-arbitrage period in which arbitrage-driven betas do not arise. Instead,

fundamental characteristics explain around 3/4 of the cross-sectional variation in funding betas,

suggesting that anomalies’ fundamental characteristics determine their funding-liquidity exposures

in the pre-1993 period.32

4.2 Panel of funding betas

An alternative to the cross-sectional analysis is to study a panel (anomalies×time) of betas us-

ing time-varying arbitrage positions and pre-1993 alphas interacted with predictors of arbitrage

31I thank Yao Zeng for the instrumental-variable interpretation of the regression using pre-arbitrage alpha.
32In particular, firms with value characteristics (i.e., high book-to-market ratios) are associated with high funding-

liquidity exposures in the pre-1993 period, which may reflect that institutional arbitrage on value anomalies began
earlier than 1993 due to Rosenberg, Reid, and Lanstein (1985), who introduced the value anomaly to the academic lit-
erature. Not controlling for arbitrage-related regressors, both profitability and investment characteristics are positively
associated with funding betas because stocks with high pre-1993 alphas tend to be stocks with high profitability and
investment characteristics. (Here, firms with high investment characteristics are those with low investment.)
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activity (post-1993 and post-publication dummies) as the right-hand variables. On the left-hand

side, I use betas estimated in a window of 29 quarters (7 years) surrounding each quarter for each

anomaly, which allows the betas to vary slowly over time.33 For additional controls, I include (i)

anomaly fixed effects to control for unobserved mean differences among anomalies that may be

correlated with funding betas, (ii) time-varying fundamental characteristics to control for changes

in the characteristics that may affect the betas, and (iii) quadratic time trends to control for average

trends in the betas.

Table 4 shows results consistent with the cross-sectional result. A time-series increase in the

arbitrage position leads to an increase in the funding beta (column (1)). Furthermore, the increase

in arbitrage positions on high-αpre anomalies around 1993 and around academic publication have a

combined effect of increasing the funding beta by around 0.28 for each αpre of 1%p (columns (2)-

(5) and (7)-(9)). This magnitude is similar to the effect of αpre estimated in the cross-section (0.20)

but slightly larger, suggesting that exploiting both the post-1993 and the post-publication increase

in arbitrage activity may have led to a sharper identification. Comparing the R2s in columns (4)

and (6) shows that changes in arbitrage position around 1993 and academic publication explain

around 30% of the time-series variation in funding betas.34

It is interesting to relate my panel regression result to the finding that academic publication

increases the anomaly’s correlation with other published anomalies (McLean and Pontiff, 2016).

My result shows that the increased correlation arises partly from an increased exposure to the

funding factor and that the post-publication increase in the beta (correlation) has a cross-sectional

pattern consistent with my model: the increase is larger for an anomaly with a larger pre-arbitrage

alpha.

4.3 Funding betas during constrained vs. unconstrained periods

What is an alternative explanation for the previous results? Suppose that the funding factor actually

proxies for the arbitrageur wealth portfolio rather than aggregate funding-liquidity shocks. In this

33The online appendix shows that using alternative windows (5-year or 9-year) does not affect my results.
34Profitability and investment characteristics, which were not strongly associated with post-1993 betas in the cross-

sectional approach, are now more strongly associated with funding betas. This is because anomalies whose profitability
and investment characteristics increase over time would also see their CAPM alphas increase (Fama and French, 2015),
attracting more arbitrage capital and attaining higher funding-liquidity exposures. The cross-sectional approach may
not detect this effect if changes in fundamental characteristics tend to mean-revert over the post-1993 period.
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case, even if arbitrageurs were too small to affect the covariances of anomalies, an anomaly with

a larger arbitrage position or pre-arbitrage alpha would mechanically have a higher beta with the

factor since the anomaly would be a larger part of the arbitrageur wealth portfolio.35

Proposition 3 is useful in this regard. If funding betas were arbitrage-driven betas, they would

arise primarily when arbitrageurs are constrained such that shocks to their capital that relax or

tighten their constraint generate variation in arbitrage positions in the anomalies. In contrast, if

funding betas were mechanical wealth portfolio betas, they would strengthen when arbitrageurs

are unconstrained and can hold more anomalies in their portfolio.

To test the proposition, I define constrained vs. unconstrained periods in two ways. First, I

follow Nagel (2012) to proxy constrained (unconstrained) times for institutional arbitrageurs as

quarters in which the moving average of the VIX is above (below) the sample median.36 Second,

since abnormal returns are competed away during unconstrained times (Proposition 3), I use years

in which the anomalies’ alphas re-emerge (disappear) as the constrained (unconstrained) times.

Specifically, I use years in which CAPM alphas estimated from daily data have a cross-sectional

R2 with pre-1993 CAPM alphas above the median.37 Figure 5 plots the constrained vs. uncon-

strained post-1993 quarters (or years) defined by the two methods. Despite some differences, they

commonly identify the dot-com crash and the financial crisis of 2008-2009 as constrained periods.

Table 5 strongly favors the arbitrage interpretation over the wealth-portfolio interpretation of my

previous results. Funding betas are large and cross-sectionally explained by both arbitrage position

and pre-arbitrage alpha during constrained times, but they tend to disappear during unconstrained

times. Furthermore, although both correlation and volatility can affect beta, my finding is driven

by changes in the anomaly correlation with the funding factor rather than changes in anomaly

volatility. Figure 6 shows that anomaly return correlations with the funding factor feature the same

patterns as betas.

35Note that this argument differs from the claim in Lemma 4 that an arbitraged asset with no prior beta can attain
an endogenous beta with a factor that is an undiversifiable component of the wealth portfolio. In the next section, I
will interpret the RMW and CMA factors as components of the arbitrageur wealth portfolio.

36I use the exponential-weighted moving average with a smoothing factor 0.3. However, since quarterly VIX tends
to be persistent, using the original quarterly VIX series delivers similar results.

37Theoretically, the correct alpha to use here should additionally control for the risk premium associated with
arbitrage-driven beta. Yearly alphas that additionally account for exposure to the mimicking portfolio of the funding
factor does not change leads to similar classification of constrained times, so I prefer using yearly CAPM alphas for
simplicity.
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4.4 Funding betas as discount-rate betas: Cross-section of time-series return
predictability

Next, since arbitrage-driven betas are discount-rate betas, high funding-beta anomalies should

feature greater booms and busts induced by arbitrage capital, which implies greater return pre-

dictability in the time series.38 I test this in a two-stage regression. The first stage is a time-series

predictive regression by anomaly. I predict each anomaly’s 1-, 2-, and 3-year future returns using

its own long-run past returns in overlapping monthly data, obtaining the R2 as the measure of how

predictable the anomaly return is in the time series:39

rei,t→t+s = θ0 + θ1r
e
i,t−L→t + εi,t→t+s. (12)

The second stage is a cross-sectional regression that explains first-stage R2s using the absolute

values of the funding betas, arbitrage positions, and the pre-arbitrage alphas of anomalies.40 I do

this for the post-1993 period, where I expect to find predictability lining up with the absolute value

of the funding beta and its cross-sectional determinants, as well as for the pre-1993 period, which

should not feature the same pattern unless return predictability, for whatever reason, is intrinsically

correlated with the absolute value of funding beta and its determinants.

I use the anomaly’s past 3- or 5-year cumulative excess return as the predictor of future return

in the 1st stage (DeBondt and Thaler, 1985; Moskowitz, Ooi, and Pedersen, 2012). Past return

predicts future return in my model since high (low) past return means that arbitrageurs have driven

up (down) the price of the anomaly at the expense of a lower (higher) expected return going for-

ward.41 Empirically, long-run returns can proxy for valuation ratios such as the book-to-market

ratio, often used in return predictability studies, when accounting data are unavailable or subject

to seasonality issues, as is the case in my predictability regressions with monthly data (Fama and

38An alternative way to check that a factor beta is a discount-rate beta is to decompose stock returns into discount-
rate vs. cash-flow shocks using VAR, as in Campbell and Vuolteenaho (2004) and Campbell, Polk, and Vuolteenaho
(2009) (CPV). However, as explained in CPV, this approach works most naturally for decomposing yearly returns and
is not suitable for my paper with a relatively short sample period.

39Past and future returns I use as the left-hand and right-hand variables in the 1st-stage regression are based on the
same stocks that belong to the anomaly portfolio as of t. Using past and future returns on rebalanced portfolios would
be an incorrect approach.

40I take an absolute value since predictability increases in the magnitude of the discount-rate beta, regardless of its
sign.

41In contrast, valuation ratios are not well-defined in my model with mean-zero dividends.
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French, 1996; Gerakos and Linnainmaa, 2012; Asness, Moskowitz, and Pedersen, 2013).42

Figure 7 summarizes my finding on the cross-section of time-series predictability. Return pre-

dictability increases in the absolute value of the anomaly’s funding beta in the post-1993 period

but not in the pre-1993 period, consistent with post-1993 funding betas being discount-rate betas

arising from arbitrage trades. Table 6 shows that this cross-sectional pattern holds with respect to

the absolute value of the arbitrage position and the pre-arbitrage alpha as well as the funding beta

(columns (1)-(3)). That is, an anomaly with a larger demand distortion attracts greater arbitrage

position and suffers greater booms and busts due to variation in aggregate arbitrage capital.

The economic magnitude is large. In the baseline case, an increase in the absolute value of

the funding beta by 1 (pre-arbitrage alpha by 1%p) increases the 1st-stage R2 of the predictability

regression by 0.04–0.06 (0.01–0.02), depending on the return horizon. The large R2 of the 2nd-

stage cross-sectional regression reported in the brackets shows that the arbitrage variables explain

as much as 56% of the cross-sectional variation in predictability. The pre-1993 period does not

display a cross-sectional relationship between predictability and funding beta, suggesting that the

large discount-rate variation in high-funding-beta anomalies is unique to the post-1993 period with

increased arbitrage activity.

By showing that the cross-section of different return predictabilities of anomalies is an equilib-

rium outcome of arbitrage trades, my results shed new light on the growing literature on time-series

predictability of anomaly returns. My finding is consistent with Lou and Polk (2013), Frazzini and

Pedersen (2014), and Huang, Lou, and Polk (2018), who find that the act of arbitrage generates

predictable time-series patterns in momentum and low-beta stocks. My finding also suggests that

the strong predictability of anomalies found in Haddad, Kozak, and Santosh (2018) may be unique

to the recent post-1993 sample period with greater arbitrage-driven discount-rate shocks to the

anomalies.

42In my data, −1 times the cumulative 3-year excess return and the book-to-market ratio taken in each June have
a median annual time-series correlation of 0.66 (with 0.29 and 0.83 being the bottom and top 5% values) among the
40 anomalies. In the appendix, I show that return predictability using the book-to-market ratio also lines up with the
absolute value of funding beta, albeit with a lower R2.
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4.5 Discussions

The results in this section suggest that the cross-section of funding-liquidity betas of anomalies

arise endogenously through the act of arbitrage on the anomalies. Recall from Section 3 that the

intermediary-based asset pricing model of Adrian, Etula, and Muir (2014) prices the cross-section

of anomaly returns using these betas as the right-hand variable. In this sense, my results suggest

that intermediary-based asset pricing may be a cross-sectional manifestation of limits to arbitrage.

Asset portfolios that are mispriced from intermediaries’ perspective get traded by them and obtain

a cross-section of endogenous sensitivities to factors that the intermediaries are exposed to. If

intermediaries recognize this endogenous risk, the equilibrium expected returns on those portfolios

should line up cross-sectionally with the betas that intermediaries themselves generate, which leads

to the “intermediary-based asset pricing” result.

Next, my results provide one explanation for what equity anomalies are. They are, at least

from arbitrageurs’ point of view, mispricings turned into endogenous risks. This explanation is

consistent with both the extensive trading of anomalies by institutional arbitrageurs and the partial

persistence in anomaly returns.

However, the interpretation of my results does not depend heavily on whether equity anomalies

actually represent hidden risk, mispricing, or measurement error. What matters is that institutional

arbitrageurs trade anomalies, regardless of the debate. In fact, even if anomalies represent rational

compensation for risk, arbitrage-driven betas would arise through risk sharing. Intuitively, anoma-

lies with larger arbitrageur positions rely more heavily on the risk-sharing role of arbitrageurs and

hence become more sensitive to factors that arbitrage capital load on. Also, even if some anoma-

lies were measurement errors, a high past alpha that occurs by chance would still attract arbitrage

capital and give rise to arbitrage-driven beta. In this case, however, arbitrage-driven beta would

eventually disappear after arbitrageurs realize that an anomaly was a measurement error and stop

trading it.

Relatedly, one may suggest that once arbitrage has driven down the anomaly alphas, arbitrage-

driven betas should no longer arise. This is not the case. If the original source of the demand

distortion remains, alphas can remain low only in the presence of arbitrage trades that generate the

arbitrage-driven betas. In other words, in the presence of systematic shocks to arbitrage capital,
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low alphas and nonzero arbitrage-driven betas should coexist in equilibrium.

4.6 Robustness checks

My findings are robust to alternative choices I could have made in my empirical analysis.43 First,

I use the sample cutoff of 1993 in some of my analysis, but my results are robust to using years

1991, 1992, 1994, and 1995 as the end of the pre-arbitrage period. To illustrate, I repeat the main

cross-sectional regression in Table 3 using the alternative cutoffs and find similar results.

Second, controlling for additional market characteristics of the anomalies, such as volatility

and market liquidity, does not affect the ability of the arbitrage position and the pre-arbitrage alpha

to explain the cross-section of funding betas. Although not statistically significant and somewhat

sensitive to specification, assets with a larger pre-1993 volatility (which may proxy its fundamental

volatility) tend to feature a greater funding-liquidity exposure in the post-1993 period, consistent

with the predictions of Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2017). The

low statistical significance suggests that liquidity spirals may be less pronounced in the stock mar-

ket than in other markets.

Third, the funding-liquidity beta I estimate is a multivariate beta from a two-factor model that

includes the market factor. How does including additional pricing factors change my result? This

exercise is useful since it helps address the concern that the cross-sectional relationship between

funding beta and arbitrage variable in the post-1993 period is a spurious result that arises from the

funding factor—for whatever reason—becoming increasingly more correlated with a factor that

has always featured the cross-sectional relationship. On the other hand, if the additional factors

are portfolio factors that summarize the cross-section of returns well, including additional factors

may eventually drive out the part of the funding-liquidity beta that is priced since the part of the

stochastic discount factor that matters is the projection to the return space. Regardless, I study how

the core cross-sectional result changes as I add an increasing number of return-based factors to the

model, including the market liquidity factor that may have become more correlated with funding

liquidity in recent years. Interestingly, the relationship stays relatively intact. Still, the result in this

section does rely on the funding factor representing arbitrage-capital shock. Section 6 alleviates

this concern by providing evidence that does not rely on a factor model.

43See the online appendix for relevant tables and additional robustness checks.
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The online appendix also considers alternative specifications of time-varying betas used in the

panel regressions and reports robustness checks on results in the next section.

5 Arbitrage-Driven Betas in the Fama-French 5-Factor Model

Next, I argue that arbitrage-driven betas arise in conventional multifactor models. Since factors

in these models are long-short portfolios with positive mean returns, arbitrageurs that seek pos-

itive market-adjusted returns would load positively on these factors. Since portfolio shock is a

component of arbitrage capital shock, arbitraged assets with no prior exposures to these factors

would attain arbitrage-driven betas with respect to the factors (Lemma 4). Furthermore, even the

anomalies with pre-arbitrage exposures to the factors would see their betas rise or fall depending

on the direction of the arbitrageur’s position in the anomaly; i.e., controlling for the anomaly’s

pre-arbitrage beta or fundamental characteristic, an anomaly with a larger arbitrage position or a

higher pre-arbitrage alpha should have a higher beta with these factors.

In particular, I present evidence of arbitrage-driven betas in the five-factor model of Fama and

French (FF) (2015). The first task is to infer which of the five factors the portfolio of anomaly

arbitrageurs loads on. Columns (1)-(2) of Table 7 show that the equal-weighted long-short portfolio

of 40 anomalies has economically large exposures toRMW and CMA, implying that arbitrageurs

trading these anomalies would find it difficult to neutralize their RMW and CMA exposures.

Consistent with this, columns (3)-(8) show that the actual portfolio of anomaly arbitrageurs proxied

by quantitative long/short equity hedge funds have relatively large positive loadings on RMW and

CMA.44 Hence, I examine if anomalies’ post-1993 RMW and CMA betas are partly arbitrage-

driven betas.

5.1 Explaining the cross-section of Fama-French betas

Table 8 explains the cross-section of post-1993 Fama-French betas using both the arbitrage and

non-arbitrage determinants of betas as right-hand variables. Staring with SMB andHML, the two
44The finding that the quant equity hedge funds do not extensively trade MKT and SMB may not be surprising,

but it may surprise the reader that they do trade HML. In the context of the original three-factor model of Fama
and French (1993), these hedge funds do trade HML. However, since the new RMW and CMA factors meant to
subsume HML, these hedge funds load on RMW and CMA but not to the residual HML.
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traditional factors of Fama and French, I find that anomalies’ SMB and HML betas are largely

explained by the anomalies’ fundamental characteristics (Panel A). The size (value) characteristic

alone explains 79% (51%) of the cross-sectional variation in SMB (HML) betas, and adding

arbitrage-related regressors does not seem to matter either statistically or economically.

On the other hand, both arbitrage position and two different proxies for the pre-arbitrage al-

pha (CAPM α and FF5 α) account for a substantial part of the cross-sectional variation in RMW

and CMA betas (a marginal increase in the R2 of around 30%), consistent with Proposition 2

(Panel B). In terms of magnitude, a 1%p rise in arbitrage position (1%p fall in the short interest

ratio) raises the anomaly’s RMW beta by 0.35–0.41 and CMA beta by 0.18–0.23. The statisti-

cal significance of the coefficients is stronger for RMW betas than CMA betas, perhaps due to

anomaly-arbitrageur portfolios having a larger exposure to RMW than to CMA (Table 7). Fun-

damental characteristics do continue to matter. The profitability and investment characteristics

are both highly significant and economically important in determining RMW and CMA betas,

respectively.

5.2 Additional tests on RMW and CMA betas

Panel A of Table 9 presents similar findings in the panel of RMW and CMA betas. An increase

in the arbitrage position over time increases the anomaly’s RMW and CMA betas. Furthermore,

the betas show different projectiles from 1993 depending on their pre-arbitrage alphas proxied by

the FF five-factor alpha.45 Controlling for the post-1993 effect, however, anomalies’ RMW and

CMA do not change predictably around their academic publication, contrary to funding-liquidity

betas. Next, RMW and CMA betas during unconstrained times exhibit reduced cross-sectional

predictability based on arbitrage variables than those during constrained times, although the con-

trast is less pronounced for RMW (Panel B). Finally, the predictabilities of anomaly returns in the

post-1993 period tend to line up with the absolute value of RMW and CMA betas as they do with

funding betas, consistent with post-1993 RMW /CMA betas being discount-rate betas (Panel C).

45The result is similar using CAPM alphas, but I use the five-factor alphas to be consistent with the multivariate
nature of the betas. Although the five factors were not discovered until recently, to the extent that they represent
principal components of anomalies, sophisticated arbitrageurs may have inadvertently accounted for exposures to
RMW and CMA when making investment decisions.
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This is true for all return horizons (1-3 years) for RMW and for the 1-year horizon for CMA.46

6 A Test Without A Factor Model: The Quant Crisis of 2007

Tests of Propositions 1-4 in the last two sections required choosing systematic factors that generate

arbitrage-capital shocks. This section tests Proposition 5, which instead focuses on the single event

of a severe arbitrage-capital shock and predicts that the cross-section of returns during the event

line up with the determinants of arbitrage-driven betas. To do this, I use the crash of quantitative

long/short equity hedge fund capital in August 2007, which I describe briefly before proceeding to

my tests.

6.1 Description of the crisis

Over a three-day period of August 7–9, 2007, seemingly distinct equity anomalies commonly un-

derperformed. Figure 9a shows that long-side anomalies that arbitrageurs go long on commonly

posted losses (in 17 out of 20 cases) and short-side anomalies that arbitrageurs go short on com-

monly posted gains (in 19 out of 20 cases). Naturally, hedge funds that took long-short positions

on these anomalies also suffered severe losses. Figure 9b shows that these arbitrageurs suffered

a cumulative loss of almost 6% over August 7–9, after which the return rebounded back over the

following three days (August 10–14). Remarkably, the crash and the recovery were exclusive to

equity anomalies; other arbitrage strategies remained unaffected.

The primary explanation for this unusual covariance event in the anomalies is a systematic drop

in arbitrage capital. It is speculated that following a portfolio underperformance since early July

2007, one or more arbitrageurs rapidly unwound their arbitrage position on anomalies, possibly

due to margin calls (Khandani and Lo 2007, 2011; Pedersen, 2009; Stein, 2009). This led to losses

by other arbitrageurs that in turn triggered more margin calls until anomaly arbitrageurs commonly

suffered capital losses.

46Consistent with arbitrage-driven betas being endogenous, the relationship between predictability and the absolute
value of the RMW/CMA beta in the pre-1993 period features lower R2s.

33



6.2 The cross-section of anomaly returns during the crisis

Treating the three-day crash period of the crisis as the period in which the level of arbitrage capital

dropped severely, I ask whether returns on different anomalies during the crash can be cross-

sectionally explained by the differences in their arbitrage position or pre-arbitrage alpha (Propo-

sition 5), analogous to my analysis on betas. Furthermore, since this drop in the asset price is a

discount-rate (valuation) shock rather than cash-flow shock, I also ask whether the anomaly return

during the three-day recovery period following the crisis can be cross-sectionally explained.

Figure 10 summarizes my finding. Cumulative raw and abnormal returns on anomalies during

the crisis are cross-sectionally and strongly explained by their pre-1993 CAPM alphas. This is

consistent with the key mechanism of the model that generates a cross-section of arbitrage-driven

betas: an asset with a more positive (negative) pre-arbitrage alpha and hence positive (negative) ar-

bitrage position drops (gains) more in response to a sharp decline in arbitrage capital. An opposite

pattern holds during recovery, consistent with anomalies’ quant-crisis returns being discount-rate

movements.47 Table 10 shows that this result is robust to using alternative measures of the arbitrage

position and the pre-arbitrage alpha.

7 Conclusion

This paper uses a simple model to develop a set of predictions that help identify arbitrage-driven

betas in a cross-section of asset portfolios. Testing these predictions on equity anomalies, I show

that arbitrage-driven betas arise in the data and are an important part of the cross-section of betas

that equity anomalies have with respect to funding-liquidity shocks as well as conventional cross-

sectional factors.

Some qualifications are in order. First, my intention is not to claim that the arbitrage channel is

the only possible explanation for the patterns I find in the betas of equity anomalies. Instead, my

contribution is to show that the arbitrage channel in my model offers a unifying explanation for the

joint occurrence of my empirical findings. Relatedly, my intention is to develop and test predictions

47The cross-sectional pattern of long anomalies earning positive returns and short anomalies earning negative
returns during the recovery is clearer in abnormal returns than in raw returns.
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that use price and aggregate holdings data, which allows for a wide range of applications. Micro

evidence based on detailed holdings data could complement my tests to provide further evidence

for the arbitrage channel in the cross-section of betas, but I leave this to future work.

The framework in this paper can apply to other settings. My results suggest that the cross-

section of asset betas in other asset classes may also be affected by the extent of arbitrage on the

assets and that the predictions in my model can help detect such arbitrage-driven betas. My model

may also shed light on the cross-sectional variation in the return correlations between the U.S.

stock market and other equity markets. From a U.S. investor’s perspective, the stock market of one

country may appear riskier than another country’s markets precisely because U.S. investors hold a

larger fraction of the stock market, which causes the market to covary more with shocks to U.S.

investor wealth.
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Tables and Figures

Table 1: List of 40 Anomalies

This table describes the 40 anomalies used in this paper’s empirical sections. αpre is the CAPM alpha over the pre-1993 period of
1974m1–1993m12. (Boldface denotes coefficient estimates greater than 1.96 times the standard error in absolute value.) Mktcap
Share is the time-series average (over 1974-2016) of the anomaly’s total market capitalization normalized by the total market
capitalization of all domestic common U.S. stocks listed on the NYSE, AMEX, and NASDAQ.

Academic Publication Long (Top Decile) Short (Bottom Decile)

Type Year Sample No Label αpre Mktcap Share No Label αpre Mktcap Share

Beta arbitrage 1973 1926-1968 1 beta(L) 3.9 0.09 21 beta(S) -5.3 0.09
Return on market equity 1977 1956-1971 2 rome(L) 9.6 0.05 22 rome(S) -8.6 0.03
Ohlson’s O-score 1980 1970-1976 3 ohlson(L) -0.4 0.29 23 ohlson(S) -4.8 0.01
Size 1981 1926-1975 4 size(L) 2.8 0.02 24 size(S) -1.1 0.58
Long-run reversals 1985 1926-1982 5 rev60m(L) 3.7 0.03 25 rev60m(S) -3.3 0.13
Value 1985 1980-1990 6 value(L) 6.8 0.04 26 value(S) -4.4 0.20
Momentum 1990 1964-1987 7 mom12m(L) 6.0 0.10 27 mom12m(S) -12.1 0.04
Net issuance 1995 1980-1990 8 netissue(L) 4.6 0.11 28 netissue(S) -3.8 0.08
Net issuance monthly 1995 1980-1990 9 netissue_m(L) 4.4 0.11 29 netissue_m(S) -1.7 0.09
Accruals 1996 1962-1991 10 acc(L) 1.0 0.06 30 acc(S) -4.6 0.05
Return on assets 1996 1979-1993 11 roa(L) -0.0 0.17 31 roa(S) -7.4 0.03
Return on book equity 1996 1979-1993 12 roe(L) 1.1 0.14 32 roe(S) -6.7 0.04
Failure probability 1998 1981-1996 13 failprob(L) 0.5 0.16 33 failprob(S) -11.6 0.02
Piotroski’s f-score 2000 1976-1997 14 piotroski(L) 0.6 0.21 34 piotroski(S) -3.2 0.09
Investment 2004 1973-1996 15 invest(L) 4.7 0.03 35 invest(S) -4.6 0.07
Idiosyncratic volatility 2006 1986-2000 16 idiovol(L) 1.4 0.25 36 idiovol(S) -11.7 0.04
Asset growth 2008 1968-2003 17 atgrowth(L) 3.3 0.03 37 atgrowth(S) -4.2 0.10
Asset turnover 2008 1984-2002 18 ato(L) 3.4 0.05 38 ato(S) 0.9 0.09
Gross margins 2008 1984-2002 19 gm(L) -1.8 0.20 39 gm(S) 0.5 0.04
Gross profitability 2010 1976-2005 20 profit(L) 0.4 0.10 40 profit(S) -0.8 0.07
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Table 2: Determinants of Arbitrage Position on Anomalies

Baseline: ArbPositioni,t = b0 + b1α
pre
i × 1 (t > 1993m12) + b3α

pre
i + b41 (t > 1993m12) + b5t+ b6t

2 + ui + εi,t

This table shows that pre-1993 alpha predicts post-1993 and post-publication arbitrage position in a panel regression (40 anomalies× 1974q1–2016q4). The dependent
variable measures arbitrage position on anomaly i in quarter t using the negative (× − 100) of the “abnormal” short interest on the anomaly over the three months
in the quarter. Abnormal short interest is defined as the value-weighted average of the residual short interest in a cross-sectional regression with 10 size deciles and
10 liquidity (Amihud) deciles as dummy variables, where the average is taken over all stocks that belong to the anomaly portfolio. I use short interests reported in
mid-month and shares outstanding on the same day (if available) or the previous trading day. The post-1993 dummy is 0 for the pre-1993 period (1974q1–1993q4) and
1 for the post-1993 period (1994q1–2016q4). An anomaly’s “pre-arbitrage” alpha, denoted αpre, is measured by its pre-1993 alpha with respect to the factor model
specified in the column heads. For failure probability, αpre is computed from 1981 onward to account for its sensitivity to sample period emphasized in Dichev (1998).
Post-Publication, Post-Sample, Post-1993, and Post-1993×Post-Pub (whenever appropriate) as well as quadratic time trends (t and t2) and a constant are included
in the regression but not reported in the table. In the parentheses are t-statistics based on standard errors with clustering by anomaly and quarter. Boldface denotes
coefficient estimates greater than 1.96 times the standard error in absolute value.

αpre = CAPM Alpha αpre = FF3 Alpha αpre = FF5 Alpha Long vs. Short

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

αpre × Post-1993 0.087 0.068 0.060 0.061 0.069 0.066 0.054 0.078 0.073 0.061
(5.60) (5.17) (4.02) (6.57) (7.04) (5.30) (6.52) (6.92) (5.44) (5.97)

αpre × Post-Publication 0.086 0.034 0.020 0.028 0.035 0.030 0.010 0.046 0.037 0.021
(4.90) (2.13) (1.62) (1.48) (2.72) (2.27) (0.70) (3.06) (2.47) (1.26)

αpre × Post-Sample 0.026 0.010 0.016
(1.56) (0.80) (1.16)

αpre × Post-1993× Post-Pub 0.012 0.040 0.040
(0.65) (2.50) (2.27)

Long× Post-1993 0.743 0.633 0.610
(4.75) (4.84) (3.91)

Long× Post-Publication 0.674 0.197 0.160
(3.72) (1.32) (1.17)

Long× Post-Sample 0.071
(0.42)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880 6,880
R2 0.22 0.18 0.23 0.24 0.23 0.31 0.31 0.31 0.30 0.31 0.31 0.18 0.14 0.19 0.19
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Table 3: Explaining the Cross-Section of Funding-liquidity Betas

Baseline: βposti = b0 + b1ArbPosition
post
i + b2β

pre
i + ui

This table shows that the post-1993 funding-liquidity betas of 40 anomalies can be cross-sectionally explained by
arbitrage position and the pre-arbitrage alpha, consistent with Proposition 1 and Proposition 2. Arbitrage position is
inferred from abnormal short interest ratio as explained in Section 3. The pre-arbitrage alpha is proxied by the pre-1993
CAPM alpha. Funding-liquidity betas are betas with the funding-liquidity factor of Adrian, Etula, and Muir (2014)
estimated in a two-factor model that includes the market factor. Characteristic ranks are the value-weighted decile rank
of the underlying stocks’ characteristics. Pre-1993 and post-1993 periods are 1974q1–1993q4 and 1994q1–2016q4,
respectively. In the parentheses are t-statistics based on standard errors that account for cross-anomaly covariances
through bootstrapping. Boldface denotes coefficient estimates greater than 1.96 times the standard error in absolute
value.

LHS: Post-1993 Funding Beta Pre-93 Funding Beta

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Post-1993 Arb Position 1.40 1.60 1.69 1.69
(2.51) (2.66) (2.73) (2.73)

Pre-1993 CAPM Alpha 0.20
(2.58)

Pre-1993 Unexplained Return† 0.19
(2.57)

Pre-1993 Arb Position 0.57
(0.31)

Pre-1993 Funding Beta 0.28 -0.09 -0.11 0.30 0.30 0.16
(1.46) (-0.43) (-0.49) (1.61) (1.61) (0.56)

Size Rank 0.10 -0.41 -0.02 0.02
(0.83) (-1.47) (-0.17) (0.10)

Value Rank 0.09 0.37 0.46 0.48
(0.47) (1.86) (1.73) (2.17)

Profitability Rank -0.07 0.19 0.07 0.09
(-0.48) (1.08) (0.42) (0.58)

Investment Rank -0.04 0.16 -0.07 -0.09
(-0.32) (1.15) (-0.66) (-0.97)

Constant -0.15 -0.13 -0.33 -0.32 -0.07 -0.07 -0.56 -2.71 -2.74 -2.89
(-0.83) (-0.07) (-1.36) (-1.32) (-0.36) (-0.37) (-1.70) (-1.22) (-1.17) (-1.44)

Observations 40 40 40 40 40 40 40 40 40 40
R2 0.77 0.78 0.68 0.67 0.01 0.36 0.74 0.74
OLS/2SLS OLS OLS OLS OLS 2SLS 2SLS OLS OLS OLS OLS
Instrumental variables
Pre-93 CAPM Alpha
Pre-1993 Unexplained Return†

†The pre-1993 unexplained return is defined as rei
pre − β̂prei,m · rem, where βi,m is a multivariate beta from a two-factor

model with rem and the funding liquidity factor.
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Table 4: Explaining the Panel of Funding-liquidity Betas

Baseline: βi,t = b0 + b1ArbPositioni,t + b3t+ b4t
2 + ui + εi,t

This table uses a panel regression to show that arbitrage position and pre-arbitrage alpha explain the panel of
funding-liquidity betas of anomalies (40 anomalies × 1974q1–2016q4). Quarterly funding-liquidity betas
are estimated in a window of 29 quarters (7 years) surrounding each quarter for each anomaly. αpre is the
anomaly’s pre-1993 CAPM alpha. αpre interacted with Post-1993 and Post-Publication dummies are used
as proxies or instruments for arbitrage position. Post-1993 and Post-Publication (whenever appropriate) as
well as quadratic time trends (t and t2) and a constant are included in the regression but not reported in the
table. In the parentheses are t-statistics based on standard errors that account for cross-anomaly covariances
through clustering by quarter and serial correlation through Newey-West with a lag of 29 quarters. Boldface
denotes coefficient estimates greater than 1.96 times the standard error in absolute value.

OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Arb Position 0.75 2.79 3.50 2.94
(3.52) (4.99) (4.24) (4.95)

αpre × Post-1993 0.21 0.12 0.13
(3.72) (2.54) (2.67)

αpre × Post-Publication 0.25 0.16 0.16
(5.30) (4.48) (4.24)

Size Rank -0.02 -0.10 -0.12 -0.11 -0.12 0.25 0.35 0.27
(-0.18) (-0.90) (-1.25) (-1.09) (-0.83) (1.31) (1.66) (1.39)

Value Rank 0.15 0.14 0.11 0.14 0.14 0.18 0.19 0.18
(1.27) (1.54) (1.62) (1.83) (1.06) (1.83) (1.82) (1.84)

Profitability Rank 0.19 0.20 0.17 0.19 0.21 0.14 0.12 0.13
(1.60) (2.08) (1.94) (2.21) (1.68) (1.00) (0.81) (0.96)

Investment Rank 0.21 0.15 0.23 0.17 0.23 0.16 0.14 0.15
(2.96) (2.84) (3.48) (3.53) (2.22) (2.23) (1.21) (1.94)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760
R2 0.18 0.34 0.35 0.39 0.38 0.10
Instrumental variables
αpre × Post-1993
αpre × Post-Pub
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Table 5: Funding-liquidity Betas Arise During Constrained Times

Baseline: βpost, constrainedi = b0 + b1ArbPosition
post
i + b2β

pre
i + ui

This table shows that post-1993 funding-liquidity betas of anomalies strengthen in periods when arbi-
trageurs are likely to be constrained and weaken when they are likely to be unconstrained, consistent with
Proposition 3. I define constrained (unconstrained) times for institutional arbitrageurs as (1) quarters in
which the moving average of the VIX is above (below) the sample median (“VIX”) and as (2) years in
which the CAPM alphas estimated from daily data have a cross-sectional R2 with pre-1993 CAPM alphas
above the median among the years in the post-1993 period (“Alphas”). In the parentheses are t-statistics
based on standard errors that account for cross-anomaly covariances through bootstrapping. Boldface de-
notes coefficient estimates greater than 1.96 times the standard error in absolute value.

LHS: Post-1993 Constrained-time Funding Beta Post-1993 Unconstrained-time Funding Beta

(1) (2) (3) (4) (5) (6) (7) (8)

Post-1993 Arb Position 1.97 2.18 0.22 0.26
(2.41) (2.81) (0.43) (0.33)

Pre-1993 CAPM Alpha 0.29 0.30 0.03 0.05
(2.56) (2.85) (0.49) (0.47)

Pre-1993 Funding Beta 0.39 -0.14 0.27 -0.29 0.21 0.15 0.27 0.19
(1.19) (-0.48) (0.97) (-1.01) (0.98) (0.55) (1.05) (0.50)

Constant -0.11 -0.35 -0.24 -0.52 -0.15 -0.18 -0.02 -0.04
(-0.36) (-0.88) (-0.82) (-1.35) (-0.83) (-0.79) (-0.09) (-0.14)

Constrained indicator VIX Alphas VIX Alphas
Observations 40 40 40 40 40 40 40 40
R2 0.77 0.74 0.84 0.74 0.27 0.27 0.25 0.30
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Table 6: Funding-liquidity Betas as Discount-Rate Betas: Evidence from Return Predictabil-
ity

1st Stage: rei,t→t+s = θ0 + θ1r
e
i,t−L→t + εi,t→t+s (t = 1, ..., T )

2nd Stage: R2
1st stage,i = b0 + b1 |βfunding,i|+ ui (i = 1, ..., n)

This table shows that high-funding-beta anomalies feature greater return predictability than other anomalies in the
post-1993 period but not in the pre-1993 period, consistent with post-1993 funding betas being discount-rate betas
arising from the act of arbitrage (Proposition 4). The regression has 2 stages. The 1st stage is a time-series return
predictive regression by anomaly: I regress an anomaly’s cumulative future excess returns (+1, +2, and +3 year returns
denoted ret→t+s) on its past 3- or 5-year cumulative excess return (denoted ret−L→t). The 2nd stage is a single-variable
cross-sectional regression in which I explain the predictabilities of 40 anomalies measured by the R-squared of the
1st-stage regression (R2

1st stage) using the absolute value of its funding beta, arbitrage position, or pre-arbitrage alpha
(|βf |, |Arb Position|, or |αpre|) that measures the the magnitude of discount-rate shocks in the anomaly generated by
the act of arbitrage. The pre-arbitrage alpha is measured by pre-1993 CAPM alpha. In the parentheses are t-statistics
based on standard errors that account for cross-anomaly covariances through bootstrapping. In the brackets are the
R2s of the 2nd-stage cross-sectional regressions. Boldface denotes coefficient estimates greater than 1.96 times the
standard error in absolute value.

LHS: R2 from 1st-stage Predictive Regressions

1st-stage Forecast Horizon: +1 Year +2 Years +3 Years

1st-stage Predictor Variable: -3yr Return -5yr Return -3yr Return -5yr Return -3yr Return -5yr Return

(1) (2) (3) (4) (5) (6)
RHS Variable

Panel A. Post-1993 period return predictability increases in |βfunding |, |Arb Position|, and |αpre|

|βfunding | 0.06 0.05 0.06 0.06 0.04 0.04
(3.39) (3.31) (3.57) (3.49) (2.52) (2.51)
[0.55] [0.55] [0.48] [0.51] [0.19] [0.21]

|Arb Position| 0.10 0.10 0.11 0.10 0.08 0.07
(3.37) (3.18) (3.47) (3.25) (2.58) (2.45)
[0.56] [0.54] [0.49] [0.49] [0.20] [0.21]

|αpre| 0.02 0.02 0.02 0.02 0.01 0.01
(2.89) (2.89) (2.77) (2.78) (2.13) (2.18)
[0.47] [0.49] [0.39] [0.42] [0.17] [0.20]

Panel B. Pre-1993 period return predictability does not increase in |βfunding |, |Arb Position|, and |αpre|

|βfunding | 0.03 0.04 0.05 0.05 0.06 0.06
(1.23) (1.46) (1.61) (1.67) (1.95) (2.06)
[0.04] [0.06] [0.08] [0.10] [0.11] [0.13]

|Arb Position| -0.05 -0.03 -0.00 0.01 0.10 0.13
(-0.49) (-0.32) (-0.03) (0.11) (1.04) (1.32)
[0.01] [0.00] [0.00] [0.00] [0.02] [0.03]

|αpre| 0.00 0.00 0.01 0.01 0.01 0.01
(0.37) (0.67) (1.05) (1.36) (1.89) (2.24)
[0.01] [0.02] [0.04] [0.06] [0.10] [0.14]
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Table 7: RMW and CMA Factors as Shocks to Long-Short Arbitrageurs of Anomalies

Baseline: rLSt = αLS + βmr
e
m,t + βSMBSMBt + βHMLHMLt + βRMWRMWt + βCMACMAt + εt

This table regresses the time-series of equal-weighted (EW) long-short anomaly returns and proxies for quantitative
long/short equity hedge fund returns on the five factors of Fama and French (2015) to show that arbitrageurs of equity
anomalies are likely to be exposed to RMW and CMA. The EW long-short anomaly portfolio is the portfolio that
gives equal positive weights to the 20 long-side portfolios and equal negative weights to the 20 short-side portfolios.
The quantitative long/short equity hedge fund portfolio is proxied by a mix of the equity-market-neutral hedge fund
index and the short-bias hedge fund index from the Hedge Fund Research (HFR). For instance, “90/10” means a
combined portfolio that places 90% weight on equity market neutral hedge funds and 10% weight on equity short-bias
hedge funds. I display results for 100/0 through 75/25 only since equity market-neutral hedge funds are about six times
larger than equity short-bias hedge funds (TASS hedge fund data). The hedge fund returns are examined only in the
post-1993 period. In the parentheses are t-statistics based on heteroskedasticity-robust OLS standard errors. Boldface
indicates coefficient estimates greater than 1.96 standard errors in absolute value.

EW Long-Short Anomaly Portfolio Quantitative Long/Short Equity Hedge Fund Portfolio

Pre-1993 Period Post-1993 Period 100/0 95/5 90/10 85/15 80/20 75/25

(1) (2) (3) (4) (5) (6) (7) (8)

MKT -0.03 -0.10 0.08 0.05 0.01 -0.03 -0.07 -0.11
(-3.26) (-5.71) (5.42) (3.04) (0.49) (-2.02) (-4.35) (-6.36)

SMB -0.06 -0.03 0.04 0.02 0.00 -0.01 -0.03 -0.05
(-4.00) (-1.45) (2.35) (1.37) (0.28) (-0.85) (-1.91) (-2.84)

HML 0.00 -0.05 -0.02 -0.01 0.01 0.02 0.04 0.05
(0.25) (-1.81) (-0.85) (-0.27) (0.33) (0.91) (1.44) (1.91)

RMW 0.17 0.22 0.07 0.08 0.09 0.10 0.11 0.11
(7.13) (6.42) (2.48) (3.09) (3.72) (4.29) (4.69) (4.89)

CMA 0.12 0.20 0.06 0.07 0.08 0.08 0.09 0.10
(4.01) (5.44) (1.61) (1.99) (2.38) (2.74) (3.04) (3.24)

αLS 2.61 1.82 0.15 0.14 0.14 0.13 0.13 0.12
(6.31) (2.83) (2.90) (2.95) (2.93) (2.82) (2.64) (2.41)

Observations 240 276 276 276 276 276 276 276
R2 0.53 0.71 0.23 0.17 0.23 0.36 0.49 0.59
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Table 8: Explaining the Cross-Section of Fama-French Betas

Baseline: βposti = b0 + b1ArbPosition
post
i + b2β

pre
i + ui

This table shows that anomalies’ SMB and HML betas are largely explained by the fundamental characteristics of
anomalies (Panel A), whereas both the arbitrage position and the two different proxies for pre-arbitrage alpha (CAPM α

and FF5 α) account for a substantial part of the cross-sectional variation in anomalies’ RMW and CMA betas (Panel B).
Each beta is a multivariate beta estimated in the time series regression over the post-1993 period (1994m1–2016m12). In
the parentheses are t-statistics based on standard errors that account for cross-anomaly covariances through bootstrapping.
Boldface denotes coefficient estimates greater than 1.96 times the standard error in absolute value.

Panel A. Betas with SMB and HML

Post-1993 SMB Beta Post-1993 HML Beta

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Post-1993 Arb Position 0.01 -0.04 -0.09 -0.08
(0.13) (-0.71) (-1.12) (-1.00)

Pre-1993 CAPM Alpha 0.00 -0.01
(0.50) (-1.14)

Pre-1993 FF5 Alpha 0.01 -0.01
(0.57) (-0.91)

Pre-1993 Beta 0.60 0.60 0.63 0.58 0.64 0.70 0.62 0.66
(4.31) (6.81) (6.37) (5.80) (6.98) (5.72) (7.52) (6.40)

Size Rank 0.13 0.14
(9.36) (7.29)

Value Rank 0.12 0.12
(8.64) (7.65)

Constant 0.00 -0.24 0.00 -0.00 0.00 -0.27 -0.01 -0.51 0.01 -0.00 0.02 -0.51
(0.08) (-5.47) (0.14) (-0.01) (0.15) (-5.06) (-0.28) (-8.66) (0.14) (-0.07) (0.39) (-7.98)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R2 0.75 0.80 0.76 0.76 0.75 0.79 0.61 0.55 0.61 0.60 0.56 0.51

Panel B. Betas with RMW and CMA

Post-1993 RMW Beta Post-1993 CMA Beta

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Post-1993 Arb Position 0.35 0.41 0.23 0.18
(4.34) (5.19) (2.58) (1.96)

Pre-1993 CAPM Alpha 0.03 0.04
(2.76) (2.87)

Pre-1993 FF5 Alpha 0.05 0.03
(4.82) (2.04)

Pre-1993 Beta 0.51 0.72 0.58 0.98 0.60 0.46 0.68 0.63
(4.52) (3.84) (5.06) (4.04) (5.04) (4.03) (4.91) (4.04)

Profitability Rank 0.06 0.11
(3.53) (3.75)

Investment Rank 0.15 0.18
(4.93) (5.29)

Constant 0.02 -0.36 -0.03 0.01 -0.05 -0.76 -0.02 -0.81 -0.04 -0.04 -0.09 -0.99
(0.50) (-3.49) (-0.75) (0.36) (-1.04) (-3.70) (-0.35) (-4.64) (-0.94) (-0.75) (-1.54) (-5.09)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R2 0.81 0.78 0.65 0.87 0.49 0.25 0.66 0.71 0.67 0.58 0.37 0.54
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Table 9: Additional Tests on RMW and CMA Betas

This table provides additional evidence that the post-1993 RMW and CMA betas of anomalies are partly arbitrage-
driven betas. Panel A shows that an increase in the arbitrage position over time increases an anomaly’s RMW and
CMA betas, where the time-varying betas are estimated in an 85-month window (7 years) surrounding each month.
Panel B shows that RMW and CMA betas shrink in unconstrained times and expand in constrained times. I use
the VIX-implied constrained quarters as the constrained periods. Panel C shows that the post-1993 time-series return
predictabilities of anomalies line up with the RMW and CMA betas, consistent with the post-1993 RMW/CMA

betas being arbitrage-driven discount-rate betas. It employs the two-stage procedure as in Table 6. In the parentheses
are t-statistics, and in the brackets in panel C are the R2s of the 2nd-stage cross-sectional regressions. Boldface
denotes coefficient estimates greater than 1.96 times the standard error in absolute value.

Panel A. Panel of RMW and CMA betas explained by arbitrage variables
RMW CMA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Arb Position 0.059 0.339 0.255 0.319 0.107 0.384 0.323 0.366
(2.77) (4.03) (3.70) (4.10) (4.17) (4.58) (3.76) (4.40)

αpre × Post-1993 0.029 0.030 0.034 0.033
(3.94) (3.78) (3.30) (2.42)

αpre × Post-Pub 0.022 -0.001 0.028 0.002
(3.19) (-0.15) (3.79) (0.28)

Profitability Rank 0.039 0.040 0.041 0.040 0.020 0.026 0.022
(3.03) (3.41) (3.18) (3.44) (1.12) (1.68) (1.24)

Investment Rank 0.051 0.047 0.052 0.047 0.048 0.049 0.048
(3.05) (3.14) (3.03) (3.21) (3.21) (3.46) (3.30)

Anomaly FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280 17280
R2 0.07 0.16 0.09 0.16 0.12 0.19 0.12 0.19
OLS/2SLS OLS OLS OLS OLS 2SLS 2SLS 2SLS OLS OLS OLS OLS 2SLS 2SLS 2SLS
Instrumental variables

αpre × Post-1993

αpre × Post-Pub

Panel B. Post-1993 RMW and CMA betas during constrained vs. unconstrained times
Post-1993 RMW Beta Post-1993 CMA Beta

Constrained Times Unconstrained Times Constrained Times Unconstrained Times

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Post-1993 Arb Position 0.368 0.244 0.261 0.097
(2.96) (2.43) (2.03) (0.95)

Pre-1993 CAPM Alpha 0.038 0.017 0.042 0.011
(2.17) (1.22) (2.37) (0.68)

Pre-1993 FF5 Alpha 0.057 0.036 0.037 -0.001
(3.25) (2.42) (1.91) (-0.03)

Pre-1993 Beta 0.518 0.716 0.582 0.436 0.628 0.488 0.620 0.464 0.718 0.472 0.436 0.485
(3.23) (3.21) (3.67) (2.88) (3.00) (3.28) (4.98) (3.91) (5.00) (2.02) (1.95) (1.98)

Constant -0.008 -0.060 -0.014 -0.001 -0.039 -0.006 -0.023 -0.051 -0.038 -0.025 -0.041 -0.055
(-0.18) (-1.04) (-0.31) (-0.03) (-0.82) (-0.15) (-0.45) (-0.91) (-0.71) (-0.41) (-0.61) (-0.81)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R2 0.84 0.71 0.89 0.65 0.51 0.67 0.68 0.71 0.66 0.20 0.18 0.16

Panel C. Post-1993 RMW and CMA betas are discount-rate betas: evidence from return predictability
LHS:R2 from 1st-stage Predictive Regressions

1st-stage Forecast Horizon: +1 Year +2 Years +3 Years

1st-stage Predictor Variable: -5yr Return -3yr Return -5yr Return -3yr Return -5yr Return -3yr Return

(1) (2) (3) (4) (5) (6)
RHS Variable

|βRMW | 0.18 0.17 0.18 0.18 0.16 0.16
(2.68) (2.60) (2.69) (2.64) (2.59) (2.60)
[0.39] [0.39] [0.34] [0.36] [0.20] [0.22]

|βCMA| 0.17 0.17 0.16 0.15 0.06 0.05
(2.18) (2.16) (1.94) (1.88) (0.67) (0.64)
[0.21] [0.21] [0.14] [0.14] [0.01] [0.01]
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Table 10: Explaining the Cross-Section of Quant-Crisis Returns

Baseline: rcrashi = b0 + b1ArbPositioni + ui

This table shows that the anomalies’ arbitrage-capital betas, as revealed by the negative of their return during the quant
crash (August 7–9, 2007), are cross-sectionally explained by the anomalies’ prior arbitrage position and pre-arbitrage
alpha, consistent with Proposition 5. Returns during the recovery from the crash (August 10–14, 2007) display an
opposite pattern, suggesting that the anomaly returns during the crash were discount-rate shocks. Cumulative abnormal
return is defined as the excess return net of market exposure (market excess return times the beta estimated over the
preceding 1 year using 3-day returns). The July 2007 arbitrageur (“arb”) position is defined as negative of (−1× 102)
the “abnormal” short interest on the anomaly in mid-July 2007. “Post-93 pre-quant-crisis” arbitrageur position is the
negative of the average abnormal short interest over the post-1993 period preceding the crisis (1994m1–2007m7). The
post-1993 arbitrageur position is computed over the entire post-1993 period. Pre-1993 variables refer to variables
measured over 1974m1–1993m12. In the parentheses are standard errors that account for cross-anomaly covariances
through bootstrapping (based on the preceding year’s data). Boldface denotes coefficient estimates greater than 1.96
times the standard error in absolute value.

Panel A. Cumulative raw return

Quant-crisis Return Quant-recovery Return

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Post-93 Pre-Quant-Crisis Arb Position -1.94 1.22
(-3.70) (2.63)

Post-1993 Arb Position -1.71 1.16
(-3.88) (2.92)

July 2007 Arb Position -1.22 0.87
(-2.99) (2.47)

Pre-1993 CAPM Alpha -0.27 0.18
(-5.04) (3.98)

Pre-1993 FF3 Alpha -0.25 0.16
(-5.35) (3.85)

Pre-1993 FF5 Alpha -0.26 0.17
(-4.45) (3.35)

Constant -0.15 -0.30 -0.25 -0.08 -0.31 -0.24 -1.93 -1.81 -1.82 -1.95 -1.81 -1.85
(-0.12) (-0.25) (-0.21) (-0.06) (-0.25) (-0.20) (-1.57) (-1.50) (-1.52) (-1.57) (-1.47) (-1.51)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R2 0.46 0.54 0.37 0.63 0.71 0.58 0.41 0.57 0.43 0.68 0.70 0.58

Panel B. Cumulative abnormal return (net of market exposure and the risk-free rate)

Quant-crisis Abnormal Return Quant-recovery Abnormal Return

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Post-93 Pre-Quant-Crisis Arb Position -2.05 1.11
(-4.23) (2.64)

Post-1993 Arb Position -1.81 1.06
(-4.53) (2.98)

July 2007 Arb Position -1.31 0.78
(-3.55) (2.49)

Pre-1993 CAPM Alpha -0.28 0.17
(-5.55) (4.08)

Pre-1993 FF3 Alpha -0.25 0.15
(-5.79) (3.89)

Pre-1993 FF5 Alpha -0.27 0.16
(-4.86) (3.37)

Constant 0.48 0.32 0.36 0.56 0.33 0.39 -1.30 -1.19 -1.21 -1.31 -1.18 -1.22
(1.84) (1.30) (1.28) (2.30) (1.42) (1.53) (-6.12) (-6.01) (-5.65) (-6.49) (-5.98) (-5.83)

Observations 40 40 40 40 40 40 40 40 40 40 40 40
R2 0.49 0.58 0.41 0.65 0.72 0.59 0.37 0.51 0.37 0.66 0.68 0.56
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Figure 3a. Explaining Anomalies with Adrian et al. Figure 3b. Explaining Anomalies with FF5
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Figure 3: Factor Models of Equity Anomalies
The first figure the ability of the Adrian, Etula, and Muir (2014) funding-liquidity beta to explain the cross-section
of mean excess returns of 40 anomalies over 1974q1–2016q4. The beta is a multivariate beta from a two-factor
model that includes the market factor. The second figure shows the ability of the five Fama-French (2015) factors
(MKT , SMB, HML, RMW , and CMA) to explain the cross-section of mean excess returns of 40 anomalies over
1974m1–2016m12. An intercept is included in both regressions.
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Figure 4: Arbitrage Position Inferred from Short Interests
The figure plots the equal-weighted (cross-sectional) average of arbitrage positions in long-side and short-side anoma-
lies over 1974m1–2016m12. The arbitrage positions are inferred from short interest ratio (see Section 3).
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Figure 5a. Constrained Quarters Implied by the VIX Figure 5b. Constrained Years Implied by Alpha
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Figure 5: Proxies for Constrained vs. Unconstrained Periods
The first figure reports constrained (unconstrained) post-1993 quarters defined as quarters in which moving average of
the VIX is above (below) the sample median. The second figure reports constrained (unconstrained) years defined as
years in which the CAPM alphas estimated from daily data are cross-sectionally explained by pre-1993 alphas with a
high R2 (above median among all year-specific cross-sectional R2s).

Figure 6a. Constrained Post-1993 Periods Figure 6b. Unconstrained Post-1993 Periods
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Figure 6: Funding-liquidity Correlations Arise During Constrained Times
The figures show that in the post-1993 period, anomalies’ return correlation with the funding-liquidity factor lines up
strongly with arbitrage position during constrained periods (left) but not during unconstrained periods (right). The
result is similar if I use pre-1993 CAPM alpha (pre-arbitrage alpha) as the x-axis. To compute the correlations, I
compute unexplained return as the realized return in excess of the risk-free rate and multivariate (2-factor) market beta
times the excess market return. I then take the time-series correlation between the unexplained returns and the funding
factor. I use constrained quarters implied by the VIX.
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Figure 7: Cross-Section of Time-Series Predictability: Post-1993 vs. Pre-1993
The figures show that the return predictabilities of anomalies line up with their funding betas in the post-1993 period
(left) but not strongly in the pre-1993 period (right). Return predictability of an anomaly is measured by the R2 of the
time-series regression that explains future 1-year cumulative excess returns using the past 3-year cumulative excess
returns.
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Figure 8a. Cross-Section of SMB Betas Figure 8b. Cross-Section of HML Betas
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Figure 8c. Cross-Section of RMW Betas Figure 8d. Cross-Section of CMA Betas
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Figure 8: Explaining the Cross-Section of Fama-French Betas
The figures show that arbitrage position in the post-1993 period explains the post-1993 change in the RMW and
CMA betas of 40 anomalies, but not the change in SMB and HML betas, consistent with RMW and CMA being
factors that generate shocks to the capital of anomaly arbitrageurs. Post-1993 arbitrage position is inferred from
short interests. Post-1993 change in beta is defined as the post-1993 beta minus the pre-1993 beta multiplied by the
approximate shrinkage factor of 0.6 implied by Table 8. The betas are multivariate betas based on the five-factor model
of Fama and French (2015) and are estimated using monthly data over 1974m1–2016m12.
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Figure 9a. Returns on Anomalies During Quant Crash Figure 9b. Arbitrageur Portfolio Return
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Figure 9: Description of the Quant Crisis of August 2007
The first figure plots the cumulative 3-day returns of long-side (first 20) and short-side (next 20) anomalies during
the quant “crash” of August 7–9, 2007. The second figure plots the cumulative daily returns on equity market-neutral
hedge funds during the entire quant crisis period, which includes both the crash (8/7–9) and recovery (8/10–14)
periods. The hedge fund return data are from Hedge Fund Research.
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Figure 10a. Cumulative Return During Quant Crash Figure 10b. Abnormal Return During Quant Crash
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Figure 10c. Cumulative Return over Recovery Figure 10d. Abnormal Return over Recovery
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Figure 10: Explaining the Cross-section of Anomaly Returns During Quant Crash and Re-
covery
The figures show that the anomalies’ pre-1993 CAPM alphas explain the cross-section of their returns during the quant
“crash” (August 7--9, 2007; top two figures) and “recovery” (August 10–14; bottom two figures). Abnormal return is
defined as the excess return net of market exposure (market excess return times the beta estimated over the preceding
1 year using 3-day returns).
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A Theory Appendix

A.1 Solving the pre-arbitrage equilibrium

Proof of Lemma 1 (Asset returns in the pre-arbitrage economy). Since the behavioral in-

vestors alone clear the market, equation (1) implies Bi,t = 0 =⇒ φi = Et
[
rei,t+1

]
.

Hence, rei,t = Et−1

[
rei,t
]

+ εi,t = φi + εi,t where εi,t is a mean-zero idiosyncratic return by

the i.i.d.-dividend assumption. Finally, αi,t = φi increases in i since φ > 0.48

A.2 Solving the post-arbitrage equilibrium

Before proving the rest of the lemmas and propositions, I first solve the post-arbitrage equilibrium,

highlighting important steps as new lemmas.

The equilibrium in the post-arbitrage economy with µ = φ
2

is solved backward from time 2,

which represents the period immediately before mispricings disappear and asset prices converge to

their fundamental value. Hence arbitrageurs at time 2 invest all available capital in the mispriced

assets without worrying about asset returns covarying with the level of arbitrage capital in the

future. Time 1 represents the earlier periods of arbitrage in which arbitrageurs do worry about

asset returns covarying endogenously with their capital before the assets realize their fundamental

value. The asset prices at time 1 therefore take this endogenous risk into account.

To find the equilibrium in each period, note first that the arbitrageur’s objective function in (3)

implies the following value function at t ∈ {1, 2}:

Vt (wt, ft) = max{xi,t} Et [Vt+1 (wt+1, ft+1)]

s.t.
∫ 1

0
|xi,t| di ≤ (wt + ft)

wt+1 = wt +
∫ 1

0

(
pi,t+1+δi,t+1

pi,t
− 1
)
xi,tdi+ w̃t+1

V3 = w3

(13)

48To solve for prices, since the riskless rate is zero, φi = Et
[
rei,t+1

]
= Et [ri,t+1] =⇒ pt =

Et

[
1

1+φi (pi,t+1 + δi,t+1)
]
. That is, price at time t is the price and dividend at time t + 1 discounted by the asset-

specific constant discount factor 1
1+φi imposed by behavioral investors.
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in the non-default state (wt > 0), and

Vt = (1 + c)3−twt (14)

in the default state (wt ≤ 0). Then, equilibrium prices at time 2 are given by the following lemma:

Lemma 5. (Time-2 equilibrium prices). The equilibrium price of asset i at time 2 is

pi,2 = mi,3v (15)

s.t. (i) mi,3 = 1
1+φi∗2

for the “exploited” assets i ∈ (i∗2, 1].

(ii) mi,3 = 1
1+φi

for the “unexploited” assets i ∈ [0, i∗2].

(iii) i∗2 is the marginal asset s.t. i∗2 = 1, 1−
√
k2, and 0 for k2 ∈ (−∞, 0], (0, 1), and [1,∞),

respectively.
(iv) For completeness, the equilibrium arbitrage position is xi,2 = i − i∗2 for i ≥ i∗2 and
xi,2 = 0 for i < i∗2.

Proof. The arbitrageur’s value function at time 2 in the non-default state (w2 > 0) is

V2 = w2 + max
{xi,2}

{∫ 1

0

E2 [ri,3]xi,2di+ ψ2

[
w2 + f2 −

∫ 1

0

|xi,2| di
]}

(16)

where ψ2 is the shadow cost of capital at time 2 such that ψ2 = 0 (ψ2 > 0) if the arbitrageur

is unconstrained (constrained). Since the arbitrageur does not take negative positions in equi-

librium (doing so would generate a negative expected return due to the behavioral investor

demand), the first order condition with respect to xi,2 within the value function implies

E2 [ri,3] ≤ ψ2,

which holds with equality if and only if xi,2 > 0. On the other hand, behavioral investor

demand in (1) implies

E2 [ri,3] = φi− φ

2
xi,2.

Hence xi,2 = 0 for i ∈
[
0, ψ2

φ

]
since E2 [ri,3] = φi ≤ ψ2; i.e., these assets’ expected returns

are already below or equal to the shadow cost of capital before arbitrageurs trade them. But

xi,3 = 2
(
i− E2[ri,3]

φ

)
= 2

(
i− ψ2

φ

)
> 0 for i ∈ (ψ2

φ
, 1]; i.e., arbitrage positions in exploited

assets ensure that the assets’ expected return equals ψ2. So there is a marginal asset i∗2 = ψ2

φ

s.t. xi,2 = 0 for i ∈ [0, i∗2] and xi,2 = 2 (i− i∗2) for i ∈ (i∗2, 1]. If the arbitrageur’s capital
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constraint binds, it must be that

k2 =

∫ 1

0

xi,1di =

∫ 1

i∗2

xi,1di = 2

∫ 1

i∗2

(i− i∗2) di = (1− i∗2)2 =⇒ i∗2 = 1−
√
k2,

which is a solution when k2 ∈ (0, 1). If k2 ∈ (−∞, 0], no asset is exploited so that i∗2 =

1 and E2 [ri,3] = φi∀i. If k2 ∈ [1,∞), all assets are fully exploited so that i∗2 = 0 and

E2 [ri,3] = 0∀i.

Intuitively, if k2 ≥ 1 and thus i∗2 = 0, the arbitrageur has enough capital to restore all asset prices

to the correct level v. If k2 ≤ 0 and i∗2 = 1, all assets are priced by the behavioral investors. If k2 ∈
(0, 1), the arbitrageur trades some assets but faces a capital constraint. In this case, the risk-neutral

arbitrageur equalizes the expected return on all exploited assets (i∗2, 1] to φi∗2, the arbitrageur’s

shadow cost of capital. The lower-i assets [0, i∗2] remain unexploited since their expected return is

lower than φi∗2 even without arbitrage.

The equilibrium time-2 prices in Lemma 5 offer a glimpse into why high-i assets become en-

dogenously riskier in this post-arbitrage equilibrium. It is because the prices of high-i assets re-

spond more to the variation in k2; as k2 ranges from 0 to 1, the price of asset i rises from v
1+φi

to

v, implying a φi-percent increase in its price. The intuition is that the an initially more-mispriced

asset relies more heavily on the price-correcting role of arbitrage capital, which makes its price

more sensitive to the variation in the level of arbitrage capital.

Next, to solve for equilibrium time-1 prices, I first show that the arbitrageur’s marginal value of

wealth at time 2 falls as k2 rises:

Lemma 6. (Time-2 marginal value of wealth). The arbitrageur’s value function at time 2 is

V2 = Λ2w2 (17)

where the marginal value of wealth in the non-default state (w2 > 0) is Λ2 = 1 + φi∗2 and that in
the default state (w2 ≤ 0) is Λ2 = 1 + c.

Proof. First, consider w2 > 0. The derivative of the value function (16) with respect to w2 gives

Λ2 = 1 + ψ2. For ψ2 , the derivative with respect to any exploited asset’s xi,2 within the

bracket implies ψ2 = E2 [ri,3] = φi∗2, where the second equality follows from equation (15).

Next, Λ2 for w2 ≤ 0 follows from equation (14). Finally, V2 = Λ2w2 since Lemma 5 implies
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that the marginal value of wealth Λ2 = 1 +ψ2 = 1 +φi∗2 is also the average return on wealth

in the non-default state and w3 = (1 + c)w2 in the non-default case.

Lemma 6 implies that a low-k2 state is a “bad” state in which the arbitrageur’s marginal value

of wealth is high: Λ2 rises from 1 to 1 + φ and to 1 + c as k2 decreases from ∞ to 0+ and to

−∞. This inverse relationship between Λ2 and k2 here is not driven by the preference for risk or

intertemporal substitution, similarly to how the decreasing marginal utility of consumption does

not rely on the curvature of the utility function. With risk-neutrality in particular, this happens

because arbitrage capital k2 falls precisely when the investment opportunity φi∗2 improves.

Given Lemma 6, the equilibrium price at time 1 depends on the extent to which the asset’s

return at time 2 covaries with the arbitrageur’s marginal value of wealth Λ2:

Lemma 7. (Time-1 equilibrium prices). The equilibrium price of asset i at time 1 is

pi,1 = E1 [mi,2 (pi,2 + δi,2)] (18)

s.t. (i) mi,2 = mA
2 ≡ Λ2

Λ1
for the exploited assets i ∈ I∗1 where I∗1 is the set of exploited assets.

(ii) mi,2 = mB
i,2 ≡ 1

1+φi
for the unexploited assets i ∈ I∗1.

(iii) Λ1 is the time-1 marginal value of wealth s.t. Λ1 = E1 [Λ2] + ψ1 where ψ1 > 0 if the
arbitrageur is constrained and ψ1 = 0 if the arbitrageur is unconstrained.
(iv) The arbitrageur is unconstrained if k1 is above some threshold k∗1 ≤ 1.

Proof. By eq. (13) and Lemma 6, the arbitrageur’s value function at time 1 is

V1 = E1 [Λ2]w1 + max
{xi,1}

{∫ 1

0

E1 [Λ2ri,2]xi,1di+ ψ1

[
w1 + f1 −

∫ 1

0

|xi,1| di
]}

(19)

where ψ1 is the Lagrangian multiplier on the capital constraint
∫ 1

0
|xi,1| di ≤ (w1 + f1) s.t.

ψ1 = 0 if the arbitrageur is unconstrained. First, I prove by contradiction that the arbitrageur

does not take a negative position at time 1. Suppose xi,1 < 0. Then, first order condition

within the maximization bracket implies E1 [Λ2ri,2] = −ψ1 < 0. However, market clearing

in eq. (1) implies E1 [Λ2ri,2] ≥ 0, which is a contradiction. To see why, note that eq. (1)

implies E1 [ri,2] = φ
(
i− xi,1

2

)
> φi =⇒ pi,2

pi,1
> (1 + φi)

pi,2
E1[pi,2]

≥ 1 for any possible

realization of pi,2, since pi,2 ∈ [v, (1 + φi) v] by Lemma 7. Since pi,2/pi,1 ≥ 1 and Λ2 > 0,

E1 [Λ2ri,2] ≥ 0. Next, I prove the lemma. Since xi,1 ≥ 0∀i in equilibrium, the first order
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condition w.r.t. xi,1 within the maximization bracket implies E1 [Λ2ri,2] ≤ ψ1 and hence

pi,1 ≥ E1

[
Λ2

E1 [Λ2] + ψ1

(pi,2 + δi,2)

]
,

which holds with equality if and only if xi,2 > 0 (i is exploited). To express this differently,

the first order condition of both sides w.r.t. w1 implies

Λ1 ≡
dV1

dw1

= E1 [Λ2] + ψ1,

which implies pi,1 = E1

[
Λ2

Λ1
(pi,2 + δi,2)

]
for exploited assets. The unexploited assets are

priced by the behavioral investors so that pi,1 = E1

[
(1 + φi)−1 (pi,2 + δi,2)

]
. To obtain k∗1 ,

assume that all assets are exploited and combine (1) and (18) to obtain

E1

[
Λ2

E1 [Λ2]
(pi,2 + δi,2)

]
=

E1 [pi,2 + δi,2]

1 + φ
(
i− 1

2xi,1
) ,

which gives xi,1 = 2

(
i− 1

φ

[(
1 + Cov1

(
Λ2

E1[Λ2]
,
pi,2+δi,2
E1[pi,2]

))−1

− 1

])
. Rearranging and set-

ting k∗1 =
∫ 1

0
xi,1di gives

k∗1 = 1− 2

φ

∫ 1

0

{(
1 + Cov1

(
Λ2

E1 [Λ2]
,
pi,2 + δi,2
E1 [pi,2]

))−1

− 1

}
,

which is less than or equal to 1 since Cov (Λ2, pi,2 + δi,2) = Cov (1 + φi∗2, pi,2 + δ2) ≤ 0

∀i since pi,2 = v/ (1 + φi∗1) or pi,2 = v/ (1 + φi) and i∗2 = 1 −
√
k2 where k2 = w1 +∫ 1

0
(pi,2 + δ2)xi,1di.

Lemma 8. (Asset returns using the SDF). Under Assumption 1, the expected return on asset i at

time 2 follows

E1r
e
i,2 = αi,0 + λmβi,m (20)

s.t. (i) βi,m is the negative of the beta with respect to the arbitrageur’s time-2 stochastic discount

factor (SDF), which depends negatively on k2.

(ii) αi,0 is the asset-specific zero-beta rate that is also the abnormal return by the zero-risk-

free-rate assumption.

(iii) λm > 0 and βi,m > 0 for i > 0.
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Proof. The expected return formula follows from an algebraic manipulation of Lemma 7 where

λm > 0 since k2 is in [0, 1] with positive probability. βi,m > 0 is because

Cov1

(
ri,2,m

A
2

)
= Cov1

(
pi,2 + δi,2,m

A
2

)
= Cov1

(
v

mi,2

,mA
2

)
,

where mi,2 = mA
2 when i > i∗2 and mi,2 = (1 + φi)−1 when i ≤ i∗2.

A.3 Proof of lemmas 2-4 and propositions 1-5

Next, I prove the remaining lemmas and propositions in the main body of the paper.

Proof of Lemma 2. (Equilibrium with unconstrained arbitrageurs). Since k2 ≥ 1 with cer-

tainty, item (iii) of Lemma 5 implies that Λ2 = 1 and i∗2 = 1 in all states. Hence item

(i) of Lemma 5 shows that all assets are completely exploited such that pi,2 = v and

rei,3 = ri,3 = εi,3 ≡ δi,3/v. Similarly, since k1 ≥ 1, item (iv) of Lemma 7 implies that k1

is above the threshold value k∗1 that makes the arbitrageur unconstrained. Hence Lemma 6

and Lemma 7 imply that mi,2 = 1 for all assets such that pi,1 = E1 [v + δi,2] = v and

rei,2 = ri,2 = εi,2 = δi,2/v.

Proof of Lemma 3. (Asset returns with constrained arbitrageurs). SincemA
2 =

(
1 + φ

(
1−
√
k2

))
/Λ1

at k ∈ (0, 1), a first-order approximation around k2 ≡ (1− φ (E1 [Λ2]− 1))2 is mA
2 ≈

E1

[
mA

2

]
− φ

(
2Λ1

√
k2

)−1 (
k2 − k2

)
. Thus,

E [ri,2] = αi,0 + λmβi,m ≈ αi,0 +
φV ar1 (k2)

2Λ1E1 [mA
2 ]
√
k2︸ ︷︷ ︸

≡λk

Cov1 (ri,2, k2)

V ar1 (k2)︸ ︷︷ ︸
≡βi,k

. (21)

To see that βi,k > 0 for i > 0, note that Cov1 (ri,2, k2) = p−1
i,1Cov1 (pi,2 + δi,2, k2) =

p−1
i,1Cov1

(
v

mi,2
, k2

)
, where we know ∂mi,2

∂k2
≤ 0 for i > 0. Also, for any random variable

X , we know

Cov (X, f (X)) = E [(X − E [X]) (f (X)− E [f (X)])]

= E [(X − E [X]) (f (X)− f (E [X]))]︸ ︷︷ ︸
≥0

+ E [(X − E [X]) (f (E [X])− E [f (X)])]︸ ︷︷ ︸
=0

≥ 0
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if f ′ (X) ≥ 0, which is the case when X is k2 and f (X) is mi,2 (k2).

Proof of Lemma 4. (A factor model of asset returns). Substituting k2 = w2 + f2 into eq. (21)

gives

E [ri,2] ≈ αi,0 +
φV ar1 (w2)

2Λ1E1

[
mA

2

]√
k2︸ ︷︷ ︸

≡λw

βi,w +
φV ar1 (f2)

2Λ1E1

[
mA

2

]√
k2︸ ︷︷ ︸

≡λf

βi,f .

Proof of Proposition 1. (Arbitrage position determines the cross-section of arbitrage-driven

betas). (a) First, I show that a higher expected arbitrage position on an asset means that the

level of k2 at which the arbitrageur begins trading the asset is lower. Let k2 (i) denote the

level of k2 that makes i the marginal asset. Then,E1 [µxi,2] =
∫ 1

k2(i)

(√
k2 −

√
k2 (i)

)
dF (k2)+∫∞

1

(
1−

√
k2 (i)

)
dF (k2) =

∫∞
k2(i)

[
min

{√
k2, 1

}
−
√
k2 (i)

]
·dF (k2). Hence, E1 [µxi,2] and k2 (i) are negatively related:

∂k2 (i)

∂E1 [µxi,2]
< 0.

(b) On the other hand, a lower k2 (i) means higher beta. To show this, I prove

∂Cov1 (ri,2, k2)

∂k2 (i)
< 0.

This is because ∂pi,1
∂k2(i)

=
∂pi,1
∂i︸ ︷︷ ︸
≤0

· ∂i

∂k2 (i)︸ ︷︷ ︸
<0

≥ 0 and ∂Cov1(pi,2,k2)

∂k2(i)
= −v

∫ k2(i)

−∞
k2

(1+φi)2
· ∂i
∂k2(i)

dF (k2)+

vE1 [k2]
∫ k2(i)

−∞
1

(1+φi)2
· ∂i
∂k2(i)

dF (k2) =
∂Cov1 (pi,2, k1)

∂i︸ ︷︷ ︸
>0

· ∂i

∂k2 (i)︸ ︷︷ ︸
<0

< 0. Combining (i) and (ii)

implies ∂βi,k
∂E1[µxi,2]

> 0.

Proof of Proposition 2. (Pre-arbitrage alpha predicts the cross-section of arbitrage-driven

betas). The proof has two steps: first prove that the prices of high-i assets respond more

strongly to the variation in arbitrage capital and then prove that this implies that those

assets have higher arbitrage capital betas. (a) For the first step, since Cov1 (pi,2, k2) =
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E1 [pi,2k2]− E1 [pi,2]E1 [k2],

Cov1 (pi,2, k2) = v
∫ k2(i)

−∞
k2

1+φi
dF (k2) + v

∫∞
k2(i)

k2
1+φi∗2

dF (k2)

−vE1 [k2]
(∫ k2(i)

−∞
1

1+φi
dF (k2) +

∫∞
k2(i)

1
1+φi∗2

dF (k2)
)
,

where k2 (i) denotes the value of k2 that makes i the marginal asset and F is the conditional

cumulative density function of k2. The derivative of the covariance with respect to i gives

∂Cov1 (pi,2, k2)

∂i
= −v

∫ k2(i)

−∞

k2

(1 + φi)2dF (k2) + vE1 [k2]

∫ k2(i)

−∞

1

(1 + φi)2dF (k2) ,

where the Leibniz terms cancel out by the fact that i∗2 (k2 (i)) = i. Rearranging the terms

gives
∂Cov1 (pi,2, k2)

∂i
=

v

(1 + φi)2 (E1 [k2]− E1 [k2| k2 ≤ k2 (i)])F (k2 (i)) > 0.

(b) Next, to show how this monotonicity of the price covariance implies ∂Cov1 (ri,2, k2) /∂i >

0, it suffices to show that the equilibrium time-1 prices are non-increasing in i:

∂pi,1
∂i
≤ 0.

To see this, suppose for a contradiction that A < B but pA,1 < pB,1. Suppose also that B is

priced by the arbitrageur so that pB,1 = E0

[
Λ2

Λ1
pB,2

]
. Since pA,2 ≥ pB,2 in all states of t = 2,

it must be that

pA,1 ≥ E1

[
Λ1

Λ0

pA,2

]
≥ E1

[
Λ1

Λ0

pB,2

]
,

which is a contradiction. Now suppose that B is priced by the behavioral investors so that

pB,1 = 1
1+φB

E1 [pB,2]. Again, since pA,2 ≥ pB,2 in all states of t = 2, it must be that

pA,1 ≥
1

1 + φA
E1 [pA,2] ≥ 1

1 + φB
E1 [pB,2] ,

which is also a contradiction. Hence, pi,1 is non-increasing in i. Putting these together, we

see that Cov1 (ri,2, k2) is non-decreasing in i:

∂Cov1 (ri,2, k2)

∂i
> 0.
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It follows that
∂βi,k
∂ (φi)

=
1

φV ar1 (k2)
× ∂Cov1 (ri,2, k2)

∂i
> 0.

Finally, since αprei = φi, this also implies ∂βi,k
∂αprei

> 0.

Proof of Proposition 3. (Arbitrage-driven betas arise when the arbitrageur is constrained).

This follows trivially from the analysis in Lemma 2 and from Lemma 3.

Proof of Proposition 4. (Cross-section of time-series return predictability). First, I prove the

statement that arbitrage-driven beta is a discount-rate beta:

βDRi,k ≡
Cov1 (E2 [ri,3] , k2)

V ar1 (k2)
< 0 ∀i ∈ (0, 1].

Since the expected cash flow at time 3 is fixed, E2 [ri,3] = v
pi,2
− 1 = mi,3 − 1 where mi,3 is

a non-increasing function of k2 (and equals one if i = 0). Hence βDRi,k < 0 for i > 0. Next,

to see the cross-sectional relationship between R2 and φi, note Lemma 5 implies

R2
i =

V ar1

(
E2r

e
i,3

)
V ar1

(
rei,3

) =
V ar1

(
E2r

e
i,3

)
V ar1

((
1 +

δi,3
v

)
E2rei,3

) =
V ar1

(
E2r

e
i,3

)
V ar1

(
1 +

δi,3
v

)(
V ar1

(
E2rei,3

)
+
(
E1

[
E2rei,3

])2
)

where the last equality follows from δi,e and E2r
e
i,3 being independent. Since V ar (X) +

(E [X])2 = E [X2] for any random variable X ,

R2
i =

V ar1

(
E2r

e
i,3

)
V ar1

(
1 +

δi,3
v

)
E1

[(
E2rei,3

)2
]

Since V ar1

(
1 +

δi,3
v

)
is the same for all assets by the i.i.d. assumption on δi,3 and since

V ar1

(
E2r

e
i,3

)
= E1

((
E2r

e
i,3

)2
)
−
(
E1

(
E2r

e
i,3

))2, it suffices to show that
(
E1

(
E2r

e
i,3

))2
/E1

[(
E2r

e
i,3

)2
]

is decreasing in i, which in turns determines βi,k by Proposition 2 (I put absolute value in

the proposition for empirical applications, but in the model both βi,k and i are non-negative).

Applying the formula for rei,3 from Lemma 5, this is equivalent to proving that the function

S (i) ≡ (E [min(Z, i)])2

E [min(Z, i)2]
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decreases in i ∈ (0, 1] where Z = max
(

(1−
√

max(k, 0), 0)
)

. Then, function S (i) is

differentiable outside at most countable set of points i ∈ (0, 1] and its derivative is equal to

S ′(i) =
2P (Z > i)E [min(Z, i)]

(E [min(Z, i)] 2)2

(
E [min(Z, i)] 2 − iE [min(Z, i)]

)
. (22)

As min(Z, i)2 = min(Z, i) min(Z, i) ≤ imin(Z, i) with strict inequality at some values of

i, it follows that S ′(i) < 0 outside at most countable set of points i ∈ (0, 1]. It remains to

apply a well-known result from real analysis that if a continuous function on an interval has a

negative derivative outside at most countable set of points, then it is decreasing (Dieudonné,

2006). The rest of the proof is to show (22). For a non-negative random variable ξ, the

expectation can be written as E [ξ] =
∫∞

0
P (ξ > ω)dω. It follows that

E [min(Z, i)] =

∫ i

0

P (Z > ω)dω (23)

and it is a continuous function of i (a Lipschitz function). Similarly,

E [min(Z, i)] 2 = E
[
min(Z2, i2)

]
=

∫ i2

0

P (Z2 > ω)dω

It follows that S(i) is continuous on (0, 1]. From (23) it follows that i → E [min(Z, i)] is

differentiable at all points of continuity of the function i → P (Z > i), and the derivative is

P (Z > i). But the function i→ P (Z > i) is monotone and hence possess at most countable

set of discontinuities. The same applies to the function i → P (Z2 > i). So, outside at

most countable set of points on (0, 1] the derivative of the numerator i → (E [min(Z, i)])2

is 2P (Z > i)E [min(Z, i)] and the derivative of the denominator i → E(min(Z, i))2 is

2iP (Z2 > i2) = 2iP (Z > i). Hence (22).

Proof of Proposition 5. (Cross-section of asset returns during a crash of arbitrage capital).

Suppose k2 = k2 (i∗2) for some i∗2 ∈ (0, 1) where k2 (i) denotes the level of k2 that makes i

the marginal asset. I proceed in three steps. (a) First, returns are negative for assets [0, i∗2].

Since pi,1 = E1

[
Λ2

E1[Λ2]
(pi,2 + δi,2)

]
(Lemma 7) and δi,2 and Λ2 are independent (since

E [Λ2|δi,2] = E [Λ2]), pi,1 = E1

[
Λ2

E1[Λ2]
pi,2

]
=
∫ 0

−∞
1+c
E1[Λ2]

· v
1+φi

dF (k2) +
∫ k2(i)

0

1+φ(1−
√
k2)

E1[Λ2]
·

v
1+φi

dF (k2) +
∫∞
k2(i)

1+φ(1−
√
k2)

E1[Λ2]
· v

1+φ(1−
√
k2)
dF (k2). Since pi,2 = v

1+φi
(Lemma 5), ∆pi,2 ≡
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pi,2 − pi,1 = v
1+φi

[
1− E1[Λ̃i,2]

E1[Λ2]

]
where Λ̃i,2 ≡ 1 + c, 1 + φ

(
1−
√
k2

)
, and 1 + φi for

intervals k2 ≤ 0, k2 ∈ (0, k2 (i)) , and k2 ≥ k2 (i), respectively. Under Assumption 1,

Λ̃i,2 > Λ2 =⇒ E1[Λ̃i,2]
E1[Λ2]

> 1 =⇒ ∆pi,2 < 0 =⇒ rei,2 < 0 ∀i ≤ i∗2. (b) Next, ∆pi,2

is decreasing in i ∈ [0, i∗2]. Let g (i) ≡ E1[Λ2]−E1[Λ̃2]
1+φi

=
∫∞
k2(i)

φ(i∗−i)dF (k2)

1+φi
. Then, g′ (i) =

− φ

(1+φi)2

(
E1 [Λ2]− E1

[
Λ̃i,2

])
−

φ
∫∞
k2(i)

dF (k2)

1+φi
= − φ

(1+φi)2
(E1 [Λ2]− E1

[
Λ̃i,2

]
+ (1 + φi)

Pr (k2 > k2 (i))) = − φ

(1+φi)2

(
φ
∫∞
k2(i)

i∗dF (k2) + Pr (k2 > k2 (i))
)
< 0. (c) Finally, since

pi,1 is non-increasing in i (from the proof of Proposition 1) and ∆pi,2 < 0 (first part of this

proof), rei,2 = ∆pi,2/pi,1 is decreasing in i ∀i ≤ i∗2.
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