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1 Introduction
We make two main contributions to the literature on systemic risk in financial net-
works. First, we construct a dynamic network formation model to study the strategic
interactions of banks and shadow banks.1 Equilibrium state dynamics are found by
formulating the problem of network formation as a dynamic stochastic game. From
this game we obtain the stationary Markov network formation strategies that give rise
to our equilibrium state dynamics. A key ingredient in our analysis is the Markov
supernetwork representation of the equilibrium state dynamics. In the supernetwork,
the nodes represent states and arcs pointing from one state (node) to another represent
the equilibrium Markov transition probabilities of moving from one state to another.
Viewing the supernetwork as a map of the transportation network over which the state
process travels, we are led to define systemic risk in a given state as the probability
that the state process departing the given state arrives at a failed state on or before
a given time. Using a specialized version of our game-theoretic model, we carry out
a simulation based policy study (i.e., a computational policy study) which confirms
the widely held view that regulations aimed at making the banking system safer, but
which exclude shadow banks, increase the systemic risk of the entire financial system.
Moreover, we show that our conclusions are robust with respect to variations in the
parameters used in our simulations.

Because our model allows financial institutions to be farsighted and behave strate-
gically, it provides a potential path to policy design which escapes the Lucas critique
(See Lucas (1976)). Moreover, as we demonstrate here, our model can easily be spe-
cialized (or simplified) to become a very basic model for carrying out computational
policy studies. One of our objectives here is to examine, via computational policy stud-
ies, the proposition that regulating banks without similarly regulating shadow banks
increases the systemic risk of the entire financial system. In the US, investment funds
(e.g., shadow banks), held only 3 times as many bonds as banks in 2003. Now, after
the implementation of regulations designed to make the banking system safer (exclud-
ing shadow banks), investment funds hold almost 20 times as many, according to data
pattern analyzed by The Economist (2015). Also, according to The Economist (2015),
in 2007 JPMorgan and its peers had $2.7 trillion available to make markets. Now they
just have $1.7 trillion. One question naturally arises: would this have been the case
had the new, post crisis regulations applied to shadow banks as well? Here, using a
computationally friendly version of our model we will find robust support, via numerical
simulations, for the proposition that such regulations, aimed at banks but excluding
shadow banks, incentivizes shadow banks to adopt network formation strategies (i.e.,
to adopt strategic interactions) that increases system risk throughout the financial net-
work. Another unique aspect of our model is that the type of networks we consider,
specifically heterogeneous directed networks (see Page et al. (2005)), allow for multi-
layered financial networks. Kivelä et al. (2014) give an overview of multilayed network

1Shadow banks are financial institutions outside the traditional banking regulation system. Shadow
banks are not directly regulated by central banks, and they are not included in the safety net.
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analysis. For example in our model networks can be layered by a partitioning of the
players as well as by a partitioning by the types of connections.

The study of strategic interactions between banks and shadow banks is a missing
part in theoretical works on financial networks. Several attempts have been made, using
network based models, to explain the 2008 crisis and some policies designed to make
the financial system more stable have been studied from a network perspective - with
a fixed or randomly generated network (without regard to strategic interactions). One
thread of research focuses on whether or not and how shadow banks may have triggered
the financial crisis. Gennaioli et al. (2013) argue that financial intermediaries, boosting
leverage through securitization, may have caused the financial crisis with neglected risk.
How shadow banks are interconnected and function in a financial system is explained
in detail in Pozsar et al. (2012). Various Regulatory policies related to shadow banks
are discussed by Gorton and Metrick (2012). Another thread of research focuses on
interbank lending networks and the role of central banks in these networks. For example,
Elliot et al. (2014) study features of international debt cross-holdings networks that
might trigger network failures. Farboodi (2014) builds a network formation model,
which generates an interbank network with a core-periphery structure - a structure often
observed in real-world banking networks. Gai and Kapadia (2010) develop a random
network model to explore the impact of shock-induced contagion in banking networks.
Their work suggests that financial networks exhibit a robust-yet-fragile tendency: while
the probability of contagion is low, if contagion occurs, the damage is widespread. Our
paper studies the strategic underpinnings of endogenous banking network formation
and shows that the strategic interactions between banks and shadow banks play an
important role in determining the nature and magnitude of the systemic risk.

We view our main theoretical contribution to be our definition of “systemic risk” for
financial networks. In the classical terminology of Markov chains, we define systemic
risk to be the first passage probability to some failed states from a given state. Thus, our
notion of systemic risk is one inextricably linked to the underlying equilibrium dynamics
of network formation as represented by the supernetwork. Following our approach,
rather than there being a single measure of systemic risk, there is instead a schedule of
systemic risk measures which lists the probabilities of various arrival times at various
failed states in the supernetwork, departing from any given state in the supernetwork. It
is the structure and stochastic properties of this transportation system which determine
systemic risk. Moreover, our notion of system risk is computable, and allows for different
failure time horizons as well as for different failure criteria and different levels of failure
severity. Because our notion of systemic risk is easy to calculate, policies studies aimed
at determining the impact on systemic risk of various regulatory policies can easily be
carried out - as we do here.

The rest of the paper is as follows: in section 2, we set up the model as a discounted
stochastic game and claim the equilibrium exists. In section 3, we study the equilibrium
strategies and the network properties. In section 4, we study an example and visualize
the transition of states. In section 5, we give a formal definition of systemic risk and
discuss a post-crisis regulatory policy by central banks. In section 6, we conclude the
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paper and show some possible further research topics.

2 A Discounted Stochastic Game Model of Financial
Networks

In this section we will present the primitives of our discounted stochastic game model of
interbank contracting. In our model, banks and shadow banks seek to form a network
of loan and equity arrangements so as to maximize the sum of all of their discounted
future payoffs. Here are the details.

2.1 Players

• The set of players I consists of banks and shadow banks. The set of banks is
denoted by M , with M = {1,⋯,m}. And the set of shadow banks is N , with
N = {m + 1,⋯,m + n}. I =M ∪N .

By banks we mean commercial banks overseen by a Central Bank (in the USA, the
Federal Reserve Bank - the FED), and therefore commercial banks are banks operating
within the safety net provided by the Central Bank (henceforth the CB). In our model,
banks in the CB system never default because the CB automatically covers any short
fall in their ability to cover their debt obligations (i.e., if a bank in the CB system
cannot pay back its debt, then the CB will cover the bank’s repayment obligations
at the end of each period). In return for the security offered by the CB, banks are
regulated by the CB - more on this later.

Shadow banks are different. Shadow banks are defined to be market-based financial
institutions that operate outside of the regulatory jurisdiction of the CB, as discussed
in Pozsar et al. (2012). While shadow banks face no regulatory constraints, they fall
outside the CB’s safety net. Therefore, shadow banks can default on their debt obliga-
tions. While banks are usually large institutions engaged in the full line of traditional
banking activities, shadow banks are usually smaller and more focused on specific mar-
ket based financial contracting activities such as markets for securitization vehicles,
asset-backed commercial paper (ABCP) conduits, money market mutual funds, and
repurchase agreements (repos). Shadow banks include investment banks, mortgage
companies, and hedge funds, just to name a few.

2.2 States

• Ω is a compact set representing the states of nature, with a typical element ω ∈ Ω,
ω = (C,F, s). (C,F ) specifies the state of a financial system. C = (C i)i∈I ∈ ×i∈IC

i,
and each C i is the net cash flow of player i realized at the beginning of a period.
F ⊂ I is the set of players who have defaulted. For simplicity, let C i = 0,∀i ∈ F .
s ∈ S = {s1,⋯, sk} is the state of the real economy.
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C i ∈ Ci is the net cash flow of player i, where i could be either a bank or a shadow
bank. If C i > 0, then player i has C i amount of money to invest in other banks or
in the real economy. If C i < 0, then player i has insufficient cash inflow to cover his
debt obligations and has to borrow money to cover the short fall - or default. Let
Ci ∶= [C i, C

i] be each player’s set of all possible net cash flows with 0 ∈ Ci. At the
beginning of each time period, the financial state and the state of the real economy
are realized. It is possible that the incoming cash flow of a player is less than the
player’s liability amount - leading to a negative net cash flow (i.e., C i < 0). Because
any financial institution can borrow from other financial institutions having money to
lend, the fact that C i < 0 does not necessarily imply that player i defaults - even when
player i suffers a loss and has negative net cash flow. Thus, we allow C i to be negative.
There are few empirical studies of default in financial systems. The reason for this is
that very often insolvent institutions are rescued before they collapse2. Allowing C i to
be negative will allow us to model the rescue process. Following Eisenberg and Noe
(2001), we will also assume players with insufficient cash to cover their debt obligations
pay their debt obligations proportionally3. In particular, in our model we will deduce
the vector of actually payments among players that clears the market.

The set F is an accumulated set of defaulted players in financial network - reflecting
the persistence of default. In particular, once a player defaults and becomes a member
of F , that player remains a member of F for all subsequent periods. We will assume
that there is a state, ω, of the economy where all shadow banks default and all banks
have 0 net cash flow.

The state of the real economy influences the financial system by determining the
allocation of investment returns across states at the end of each period - and these
investment returns affect the cash flow that financial institutions have available to
cover debt obligations.

In particular, we will assume that the set of states of the real economy, {s1,⋯, sk},
is ordered from good states to bad states. In particular, we will assume that if k2 > k1,
then random returns from each investment project, as well as players’ net cash flows,
generated in state sk1 stochastically dominate the random returns from each investment
project and each player’s net cash flows generated in state sk2 - in the sense that returns
in sk1 have higher mean and lower variance than returns in sk2 . We assume there are
K̄ projects in the real economy having for each state of the real economy, s, a return
vector, given by

R̃s ∶= (R̃1
s, . . . , R̃

K
s ).

Let X ∶= {1, . . . , K̄} be the index set with typical element k, and assume that k = 1
indexes the safe project.

Finally, we will assume that states (C,F, s) ∈ Ω are publicly observable at the
beginning of each period.

2See Upper (2011).
3See Eisenberg and Noe (2001).
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2.3 Network Formation

2.3.1 Basics

Each player’s action takes the form of a network proposal. Let L ⊂ Rm+n with typical
element l, be a finite set of vectors, (including l = 0⃗), where the components of each
vector represent the dollar amounts of borrowing or lending from one bank to another
(with lij > 0 indicating the bank i, which makes the proposal (action), is proposing to
lend to bank j an amount, ∣lij ∣, and lij < 0 indicating that bank i is proposing to borrow
from j an amount, ∣lij ∣). For each i ∈ I, let

ri ∶= (rij)j∈I ∈ RL ⊂ R
m+n
+

be the vector of proposed interest rates corresponding to i’s vector of proposed lending
and borrowing amounts.

Finally, let finite set Q ⊆ RK
+ be the feasible set of project investment vectors, q

(including q = 0⃗) where the kth component, qk ≥ 0, of investment vector

q = (q1, q2, . . . , qK) ∈ Q

represents the dollar amount invested in project k ∈X ∶= {1,2, . . . ,K}.
In addition to choosing a vector of investment levels (an investment portfolio), qi ∶=

(qik)k∈X ∈ Q, each player i ∈ I makes a borrowing-lending proposal, denoted

li ∶= (lij)j∈I ∈ L ⊂ R
m+n; ri ∶= (rij)j∈I ∈ RL ⊂ R

m+n.

Given investment portfolio, qi, player i′s investment return in state s of the real economy
is

⟨qi, R̃s⟩ ∶= ∑
k∈X

qikR̃k
s .

If player i’s borrowing and lending proposal (li, ri), is accepted, then player i′s net
contractually specified return is

⟨ri, li⟩ ∶= ∑
j∈I

rijlij.

We will designate project k = 1 to be the project with a riskless zero rate of return.
If a player puts money into project 1, the player gets back exactly what he puts in, with
no risk (i.e., investment in project 1 is equivalent to keeping your money). We will let
0i denote the zero network (i.e., 0i = (0i,0i,0i) or lij = rij = qik = 0,∀j ∈ I,∀k ∈ X). For
any player i in F , the only feasible action this player can propose is Gi = (li, ri, qi) = 0i.
Moreover, any player i can choose to abstain safely from connecting to any other player
by choosing

(li, ri, qi) = (0i�
li

, 0i�
ri

, (max{C i,0
�������������������������������������������

}
qi1

, 0−ik�
q−i1

))
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- a network with no borrowing or lending and all money invested in project 1 - if there
is money to invest. In other words, players with nonnegative net cash flows can always
make no connections with other players (via borrowing and leanding contracts) and
invest all their money in project 1, the safe project. The safe network for player i is
given by

Gi
0 ∶= (lij0 , r

ij
0 , q

ik
0 )j∈I,k∈X = (0i,0i, (max{C i,0},0−i1)).

Players with negative net cash flow face a different fate. If the player experiencing
negative flow is a shadow bank (i.e., if i ∈ N), then player i must either make-up the
short fall by borrowing (bringing their available loanable and/or investible funds to a
nonnegative level), or failing that, must become a life member of the set F of defaulted
players. Alternatively, if the player experiencing negative net cash flow is a bank (i.e.,
if i ∈M), then player i must either make-up the short fall by borrowing (bringing their
available loanable and/or investible funds to a nonnegative level), or failing that, be
bailed out by the Central Bank.

2.3.2 The Network Budget Constraint

Given the current state ω = (C,F, s) whose first component, C, is the profile of players’
current net cash flows, C ∶= (C i)i∈I , a network proposal, Gi ∶= (li, qi) is affordable

if for i ∈ I with C i ≥ 0,
∑j∈I l

ij +∑k∈X qik ≤ C i,
and

if for i ∈ I with C i < 0,
lij ≤ 0 (borrowing is proposed) for all j ∈ I, and qik = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Banks may face regulations restricting their investments to certain projects. Let XM ⊂
X denote the index of projects that banks can invest in, and let QM be the feasible set
of available projects to banks.

QM ∶= {q ∈ Q∣qk = 0,∀k ∉XM}.

Let Qi = QM if i ∈M , and Qi = Q otherwise. Define

B
i(ω) ∶= { {(li, ri, qi) ∈ L ×RL ×Qi∣(li, ri, qi)satisfies (1)} i ∉ F,

{(li, ri, qi) ∈ L ×RL ×Qi∣(li, ri, qi) = (0i,0i,0i)} i ∈ F.

Bi(ω) is the ith player’s state-contingent network budget constraint. For each state ω,
Bi(ω) contains those combinations of borrowing-lending networks and investments that
are affordable given the player’s net cash flow in state ω = (C,F, s). But there is one
other constraint that must be satisfied if a proposed network is to become a network:
matching. In order for a player’s proposed borrowing-lending network (henceforth,
contracting network) to be viable, it must be a match with the other players’ proposed
contracting networks.
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2.3.3 Matching Network Proposals

We say that a profile of player network proposals

(li, ri, qi)i∈I = {(li1,⋯, li(m+n), ri1,⋯, ri(m+n), qi1,⋯, qiK̄)}
i∈I

,

where li ∈ L,ri ∈ RL and qi ∈ Q,∀i ∈ I is matching if

lij + lji = 0 and rij = rji, for all i and j.

Let
M ∶= {(li, ri, qi)i∈I ∶ ljk + lkj = 0 and rjk = rjk for all j and k} .

2.3.4 The Feasible Networks: Affordable and Matching

Letting
B(ω) ∶= ×i∈IB

i(ω),
B(ω) is set of affordable network proposals in state ω = (C,F, s). Thus, the set of
affordable and matching network proposals is given by

G(ω) ∶= B(ω) ∩M ∶= {(li, ri, qi)i∈I ∈ B(ω) ∶ lij + lji = 0 and rij = rji for all j and k} .

Thus, the feasible network correspondence,

ω "→ G(ω)

is upper-semicontinous, with nonempty, and closed valued (note that G0 ∶= (Gi
0)i∈I ∈

G(ω) for all ω). The affordable network proposal correspondence is given by

ω "→ B(ω)

is also upper-semicontinous, with nonempty, and closed valued - and with

G(ω) ⊂ B(ω).

• In state ω, each player’s action choice (proposal choice) is given by,

Gi ∶= (li, ri, qi) ∶= (lij, rij, qik)j∈I,k∈X ∈ Bi(ω).

Let
G(ω) = (liω, riω, qiω)i∈I ∈ B(ω)

be the ∣I ∣-tuple of affordable player network proposals in state ω. If G(ω) is such that
the contracting part is matching, that is, if (liω, riω, qiω)i∈I ∈ M, then in state ω the new
status quo network, Ḡ(ω), resulting from proposal G(ω) = (liω, riω, qiω)i∈I , will be G(ω).
However, if (liω, riω, qiω)i∈I ∉M, then the new status quo network will be

G0 = (0i,0i, (max{C i,0},0−ik))i∈I ∈ G(ω),
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i.e. the network where no pair of players has any connection and all players invest all
their money in project 1. Given state ω, let Ḡ(ω) denote the new status quo network
given the proposed network, G(ω) = (liω, riω, qiω)i∈I , we have

Ḡ(ω) = { G(ω) = (liω, riω, qiω)i∈I if (liω, riω, qiω)i∈I ∈M,
G0(ω) = (0i,0i, (max{C i,0},0−ik))i∈I if (liω, riω, qiω)i∈I ∉M.

(2)

Thus, if the proposal G(ω) is a mis-matched, then the new status quo network will be

Ḡ(ω) = (0i,0i, (max{C i
s,0},0−ik))i∈I ,

and if G(ω) is matched, then the new status quo network will be the same as the
proposal, i.e.,

Ḡ(ω) = (liω, riω, qiω)i∈I .
Let F ∶ GrG(⋅) "→M be the matching function implied by expression (2). We have,

F (ω,G) ∶= GIG(ω)(G) +G0(ω)(1 − IG(ω)(G)).

The matching function F (⋅, ⋅) is continuous in both variables, but not necessarily joint
continuous.

2.3.5 Payoff Functions

We will assume that players are risk averse.

• Each player i ∈ I has an immediate payoff function, ui ∶ GrG(⋅) "→ R, given by

ui(ω,G) ∶= E[C ′i∣F (ω,G)] − αV ar[C ′i∣F (ω,G)] ∶= V α
i (ω,F (ω,G))

with risk aversion level, α > 0.

Thus, we will assume that both banks and shadow banks are risk averse. It is
generally the case that after the 2008 crisis, both banks and shadow banks became
more risk averse. Banks, as large financial institutions, are very careful about their
reputations - and therefore very risk averse. Shadow banks, although they behaved
aggressively before the 2008 crisis, became much more cautious and risk averse after
the crisis due to the realization, by many of the shadow banks, of the extent of the
damage caused by the crisis, as well as coming to a full appreciation of how close many
of them came to being trapped, without warning, on a path of financial instability.

• Each player i ∈ I has discount factor, β ∈ [0,1).
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2.3.6 Rules of Network Formation

We will consider our financial network formation problem from the perspective of two
different sets of rules of financial network formation. Under Rule 1, all network de-
viations are noncooperative and correspond to Nash equilibrium (NE). In particular,
under Rule 1, each network deviation is made by a single player. Under Rule 2, network
deviations are allowed to be coalitional. In particular, under Rule 2, network devia-
tions can be made by a group or coalition of players as long as the deviations do not
make any player outside the deviating group worse off. Thus, under Rule 2, preferred
coalitional deviations correspond to Pareto improvements. Networks immune to such
Pareto improving deviations are weakly Pareto efficient. We will be interested here in
weakly Pareto efficient Nash networks and Pareto efficient Nash equilibria (PENE) -
both notions are closely related to the notions of strong equilibria and strong stability
introduced by Jackson and van den Nouweland (2005). In fact, in two-player games of
network formation, the set of strong equilibria is the same as the set of weakly Pareto
efficient Nash equilibria4. We will write, G "→ G′ to denote that under the rules of
network formation (either Rule 1 or Rule 2), G can be changed to G′. We give a simple
example to explain the network formation process. The example is as follows:

Example: Let I = M = {1,2}, S = {s}, X = {1,2}, RL = {0,1}, (α,β) = (0,0),
ω = ((1,1),∅, s), di = 0,∀i ∈ I, and the distribution of two assets are given as the
following.

R′2∣s = { 0 with probability 1
4 ,

2 with probability 3
4 .

For simplicity, let r = 1 for all nonzero lending proposals. I.e., rij = 1 if lij ≠ 0, ∀i, j ∈
I. The two cases below correspond to two different action sets. Gi = (li1, li2, qi1, qi2).
Case 1: G1(ω) = {G1

1 = (0,−1,2,0),G1
2 = (0,−1,1,1),G1

3 = (0,−1,0,2),G1
4 = (0,0,1,0),G1

5 =
(0,1,0,0)}, and G2(ω) = {G2

1 = (−1,0,2,0),G2
2 = (−1,0,1,1),G2

3 = (−1,0,0,2),G2
4 =

(0,0,1,0),G2
4 = (1,0,0,0)}.

Case 2: G1(ω) = {G1
1 = (0,−1,1,1),G1

2 = (0,0,1,0),G1
3 = (0,0, 12 , 12),G1

4 = (0,0,0,1),G1
5 =

(0,1,0,0)}, and G2(ω) = {G2
1 = (−1,0,1,1),G2

2 = (0,0,1,0),G2
3 = (0,0, 12 , 12),G2

4 =
(0,0,0,1),G2

5 = (1,0,0,0)}.
Then, the payoff matrices are listed as below.
In both cases, the payoffs in blue correspond to actions that proposals are matched.

For example, in Case 1, If player 1 takes action G1
5, and player 2 chooses G2

2, then
player 1 lends to player 2 one unit of money and player 2 hold an investment portfolio of
R′1+R′2. If their actions are (G1

1, G2
1), then no lending connection is formed. Therefore,

the set of pure PENE is {(G1
3,G

2
5), (G1

5,G
2
3)}. Moreover, notice that the strategies are

also strong Nash equilibria. Similarly, in Case 2, the set of pure PENE is {(G1
4,G

2
4)}.

4See Definition 2.2 in subsection 2.6.2.
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Table 1: Payoff Matrices

G2
1 G2

2 G2
3 G2

4 G2
5

G1
1 1,1 1,1 1,1 1,1 1,1

G1
2 1,1 1,1 1,1 1,1 3

2 ,1
G1

3 1,1 1,1 1,1 1,1 2,1
G1

4 1,1 1,1 1,1 1,1 1,1
G1

5 1,1 1,32 1,2 1,1 1,1
Case 1

G2
1 G2

2 G2
3 G2

4 G2
5

G1
1 1,1 1,1 1,1 1,1 3

2 ,1
G1

2 1,1 1,1 1,54 1,32 1,1
G1

3 1,1 5
4 ,1

5
4 ,

5
4

5
4 ,

3
2 1,1

G1
4 1,1 3

2 ,1
3
2 ,

5
4

3
2 ,

3
2 1,1

G1
5 1,32 1,1 1,1 1,1 1,1

Case 2

The general model we will analyze here is an infinite time horizon, discounted
stochastic game of network formation. In our model, actions by the players not only
affect current period payoffs (by determining the prevailing network), but also beliefs
about next period’s state via the law of motion. In the next subsection, we will discuss
in more detail the law of motion how believes about future states are formed in the
presence of defaulted states.

2.4 The Law of Motion, Default, and Contract Resolution

• Let ω denote a state and G = (li, ri, qi)i∈I a profile of proposals. A controlled
Markov transition probability is a measurable mapping (ω,G) → η(⋅∣F (ω,G))
from state-proposal pairs to probability measures on states.

If at time t in state ωt player i’s cash flow is negative, that is, if C i
t < 0, then in order

for player i to avoid default - and therefore avoid becoming a permanent member of the
defaulted players club, F - player i must be able to borrow enough money to restore his
cash flow to a positive amount. If player i is a shadow bank, such borrowing must be
done in the open market (i.e., via the contracting network), and therefore, it may not be
possible for player i (a shadow bank) to borrow sufficient funds. Alternatively, if player
i is a bank, then even if player i is unable to borrow enough money in the open market
to restore his cash flow to a positive amount, player i can stay in the game because
player i’s cash flow will be restored via bail out from the Central Bank. How do we
identify defaulted players? Suppose the network formed at t is Ḡ(ωt) = (l̄iωt

, r̄iωt
, q̄iωt

)i∈I ,
and let Dωt be given by

Di
ωt
∶= 1{C i

ωt
+∑

j

l̄jiωt
< 0, or i ∈ Fωt},

Dωt ∶= ∑
i∈I

Di
ωt
.

Thus Dωt is the number of players who do not have enough money at t in state ωt. The
state of the real economy next period st+1 is a function of Dωt . Given a state ωt, and two
proposals Gωt , G′ωt

, let Dωt and D′ωt
be the number of players without enough money

11



given (ωt,Gt) and (ωt,G′t) respectively and let st+1 and s′t+1 be the corresponding states
of the real economy next period. We will assume that

Dωt <D′ωt
⇒ st+1 ≻ s′t+1 ⇒ R̃t+1∣st+1 ≻FOSC R̃t+1∣s′t+1.

If E[Rt+1∣(ωt,Gt)] = E[Rt+1∣st+1], then

st+1 ≻ s′t+1 ⇔ R̃t+1∣(ωt+1,Gt) ≻FOSC R̃t+1∣(ωt+1,G
′
t).

The state of the economy st+1, in turn, determines the distribution of deposits5,
F i
t+1(dit+1∣st+1) for player (bank) i, i ∈ I/Ft+1 (a non-defaulted bank), in the coming time

period. The state-contingent, probability distribution functions of deposits, F i
t+1(⋅∣st+1),

are continuous, non-decreasing functions with support [0, d̄], d̄ > 0, and F i
t+1(0∣st+1) = 0

and F i
t+1(d̄∣st+1) = 1 for all i. Moreover, for any two states st+1, s′t+1 with corresponding

distribution functions, F i
t+1(⋅∣st+1) and F i

t+1(⋅∣s′t+1), we have

st+1 ⪰ s′t+1 ⇒ F i
t+1(⋅∣st+1) ≻FOSD F i

t+1(⋅∣s′t+1),∀i ∈ I,

that is, st+1 ⪰ s′t+1 implies that F i
t+1(⋅∣st+1) stochastically dominates F i

t+1(⋅∣s′t+1) in the
first order sense.6 Thus, the greater the number of defaulted players, the lower is the
state of the real economy, implying via first order stochastic dominance the higher is
the the probability that deposits will be smaller. Let r denote interest rate of deposits.

The random vector, Ct+1, of player net cash flows has a probability distribution
determined by current state ωt and actions Gt. Given current state ωt and current
actions (network proposals) Gt, let Ḡt be the resulting network. For any player i, if
Di

ωt
= 1, then C i

t+1 = 0. Moreover, if i is a bank (rather than a shadow bank), it will
remain silent during the coming period starting at t but still remain in the network.
If i is a shadow bank, it will default in current period t if it hasn’t defaulted already.
For banks with Di

ωt
equal to 0, residing in a network with defaulted banks (i.e., banks

i′ with Di′
ωt

= 1), a clearing vector will have to be computed in order to determine the
actual payments at t+1. Let realizations of random variables, (R̃k

t+1)k∈X , be (Rk
t+1)k∈X .

Actual debt repayment from i to j based on the debt contract agreed upon at time
t will be denoted by p̃ijt+1, p̃

ij
t+1 ≥ 0. And let p̃it+1 ∶= ∑j∈I p̃

ij
t+1. Since debt clears before

deposits come in, the incoming cash flow to player i is given by

∑
k∈X

q̄ikωt
Rk

t+1 +∑
j∈I

p̃jit+1.

5Shadow banks in general do not take deposits. However, a large amount of funding for shadow
banks comes from money market mutual funds. For simplicity, we use the same terminology “deposits”
to represent deposits for banks and funding from money market mutual funds for shadow banks.

6F i
t+1(⋅∣st+1) ≻FOSD F i

t+1(⋅∣s
′

t+1) if and only if for all d ∈ [0, d̄],

F i
t+1(d∣s

′

t+1) ≥ F
i
t+1(d∣st+1),

with
F i
t+1(d

′∣s′t+1) > F
i
t+1(d

′∣st+1),

for some d′ ∈ [0, d̄].
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Total obligation or liability of player i is given by

L̃i
t+1 ∶= ∑

j∈I

r̄jiωt
l̄jiωt

1{l̄jiωt
> 0} + rd̃iωt

.

Let node m + n + 1 represent depositors. And let Π be a m + n + 1 by m + n + 1 matrix,
with

Πij =
⎧⎪⎪⎨⎪⎪⎩

r̄jiωt
l̄jiωt

1{l̄jiωt
>0}

L̃i
t+1

if i ∈ I,
1m+n+1(j) otherwise.

Where 1m+n+1(j) is an indicator function, with value equal to 1 when j = m + n + 1.
The matrix Π captures the nominal liability of one node to another in the network as
a proportion of the node’s total liabilities. The same as Eisenberg and Noe (2001), we
assume debt is paid proportionally if a borrower’s cash flow is less than the borrower’s
total liability, and all value is paid to creditors. Then p̃ijt+1 = Πij p̃it+1. For simplicity, let
p̃m+n+1t+1 = 0, the clearing vector p̃t+1 = (p̃it+1)i∈I∪{m+n+1} satisfies

p̃it+1 = { min{L̃i
t+1,∑k∈I q̄

ik
ωt
R̃k

t+1 +∑j∈I , p̃
ji
t+1} if i ∈ I,

0 otherwise. (3)

Let
L̃t+1 = (L̃1

t+1,⋯, L̃m+n
t+1 ,0),

and
Ẽi

t+1 = ∑
k∈X

q̄ikωt
R̃k

t+1,∀i ∈ I,and Ẽt+1 = (Ẽ1
t+1,⋯, Ẽm+n

t+1 ,0).

Then equation (3) becomes

p̃t+1 = L̃t+1 ∧ (Ẽt+1 + p̃t+1Π).

Where ∀x, y ∈ Rn,
x ∧ y ∶= (min{x1, y1},⋯,min{xn, yn}),

and
x ∨ y ∶= (max{x1, y1},⋯,max{xn, yn}).

Notice that the existence of a clearing vector p̃t+1 is a fixed point problem. Define

Φ(p̃t+1;Π, L̃t+1, Ẽt+1) ∶= L̃t+1 ∧ (Ẽt+1 + p̃t+1Π).

Since Φ(⋅;Π, L̃t+1, Ẽt+1) is a continuous function from a compact convex set ×i∈I∪{m+n+1}[0, L̄i]
into itself, where L̄m+n+1 = 0, Φ(⋅;Π, L̃t+1, Ẽt+1) has a fixed point for all Π, L̃t+1, and
Ẽt+1 by Brouwer’s fixed point theorem7. Here L̄i is player i’s maximum liability. The
following property shows the uniqueness of the clearing vector.

7Notice that the proof of existence of fixed point is different from Eisenberg and Noe (2001). Since
boundedness of the clearing vector is naturally inherited by compactness of states and finiteness of
actions, the existence result could be got from Brouwer’s fixed point theorem.
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Proposition 1: There exists a unique clearing vector p̃t+1 to clear debts. I.e., there
exists a unique p̃t+1, such that

p̃t+1 = Φ(p̃t+1;Π, L̃t+1, Ẽt+1).

Define p̃t+1(Π, L̃t+1, Ẽt+1) to be the fixed point of Φ(⋅;Π, L̃t+1, Ẽt+1). p̃(⋅) is jointly con-
tinuous.

The proof is given in Appendix A. The analysis above gives both the existence and
uniqueness of the debt clearing vector. The uniqueness of net cash flow C i

t+1 for each
player i ∈ I is derived from the uniqueness of the clearing vector.

For each player i, define

C̃ i
t+1 ∶= { ∑k∈X q̄ikωt

R̃k
t+1 +∑j∈I p̃

ji
t+1 + dit+1 − L̃i

t+1 if Di
ωt
= 0,

0 otherwise. (4)

The realized net cash flow of player i is C i
t+1. C i

t+1 ∈ Ci satisfies

∣Ci
t+1 − C̃ i

t+1∣ ≤ ∣C i − C̃ i
t+1∣,∀C i ∈ Ci, and

C i
t+1 > C i,∀C i ∈ Ci, such that ∣C i

t+1 − C̃ i
t+1∣ = ∣C i − C̃ i

t+1∣.8

From above, we know that the underlying distributions of the returns, Rt+1, of
projects in real economy determine the realization of net cash flows in the financial
system. And the distribution of Rt+1 is determined by the state of the real economy st+1.
In a better state of the real economy, players expect a higher return with lower variance.
From this assumption of transition probability between states, we know solvent banks
and shadow banks have incentives to lend to insolvent players to avoid a bad state in
the next time period.

Lastly, note that Ft+1 is the set of players who have defaulted before period t and
those who default during period t.

Ft+1 ∶= Ft ∪ {i ∈ N ∶ C i
t +∑

j∈I

l̄jiωt
< 0} = {i ∈ N ∣Di

ωt
= 1}.

Thus Ft+1 is deterministic at the end of period t. Because defaulted players never come
back into the financial system, Ft+1 tells us which players will be silent from now on.
Moreover, st+1, specifies the state of the real economy as a result of last period state
and actions. Therefore, in the financial network setup, the financial system and real

8If Ci is a continuous set, then the net cash flow will be simply as below,

Ci
t+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

C̃i
t+1 if C̃i

t+1 ∈ C
i,

C
i

if C̃i
t+1 > C

i
,

Ci otherwise.

14



economy features a two-sided interaction. Given the state of the real economy st+1, st+1
has a direct influence on financial system, and largely determines the expected payoffs
at period t+1 corresponding to any action profile chosen by the players in the financial
network. On the other hand, the actions of players in the financial network influence
the real economy in the sense that the value of st+1 is determined by the number of
players who are in trouble in the financial network.

2.5 Timing of the Stochastic Game

In our financial network formation game, assume the initial state is ω0. During each
period t, t ≥ 0, the game unfolds in several stages described as the following:

Stage 1: The current state ωt is realized, and it is publicly observable.

In other words, ωt = (Ct, Ft, st) is revealed to all players. After observing the net
cash flows, the set of defaulted players, and the state of the real economy, players move
to stage 2 to lend and borrow money, and invest in real economic projects.

Stage 2: Players propose connections and make investments.

In this stage, a network Ḡt is formed based on a proposal Gt. Therefore, the dis-
tribution of states next period is given by η(⋅∣ωt,Gt). Notice that for all t ≥ 0, the
distribution of the net cash flow Ct+1 at t + 1 is determined by the state and actions at
t (i.e., ωt and Gt). The actions, Gt, that players take at t are optimal with respect to
state ωt.

Stage 3: Some shadow banks default and the safety net takes care of banks that default.

Let Ĩt be the set of banks and shadow banks that have defaulted, or have net cash
flow less than 0 in current period, i.e.,

Ĩt = {i ∈ I ∶Di
ωt
= 1},∀t ≥ 1 and Ĩ0 = ∅.

Therefore, Ĩt ∩M is the set of insolvent banks which do not have enough money to pay
back debt. The central bank will take actions to save each insolvent bank i ∈ Ĩt ∩M .9
Without the safety net provided by the central banks, in an economic downturn, people
afraid of losing money when banks do not have enough liquidity would withdraw money
simultaneously, i.e., there would be a bank run. The safety net provided by the central
banks deters investors from losing faith in banking system and therefore makes bank

9Our assumption that the central bank provides the funds to save bank i is based on the fact that as
a result of policies put in place during the Great Depression of the 1930s Hooks and Robinson (2002),
one of the primary functions of the central bank is to do precisely that - provide liquidity to troubled
banks.
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runs less likely. On the other hand, shadow banks have no such safety net - making
runs on shadow banks much more likely during economic downturns. Therefore, it is
the set of defaulted shadow banks Ĩt∩N (those who have just defaulted as well as those
who were already defaulted), that determines Ft+1 - and in particular,

Ft+1 = Ĩt ∩N.

Those players who are permanent members of Ft+1will be regarded as silent nodes. In
particular, they can only propose the zero vector, and active players make no connec-
tions with them in a financial network. Projects returns are realized then automatically,
debt is cleared, and new deposits come in and stages 1 to 3 are repeated.

The following picture shows the timing of the stochastic game in each time period.
At time t, regard activities after stage 3 as happening during the night. The returns
of the projects are realized, so a clearing vector for debt is automatically determined.
The value of incoming deposits depends on the state of time period t + 1, which is
determined at stage 3 of time t. When the night ends, the financial system goes into
a new time period t + 1, and players get the information of the new state ωt+1. In
traditional one-period models, the timing is similar to what we have assumed here in
each time period of our discounted stochastic game. The major difference lies in the
stage where players default. In Eisenberg and Noe (2001), given a lending network,
default of banks happens before return of projects are realized. So as long as returns
are realized, banks default automatically with no actions taken by players strategically.
Similarly, in Gofman (2013), shock comes in between the stages of network formation
and default of banks. Thus, players can not take any action to save the financial system.
We model the stage of default after the stage of network formation because it is closer
to what happens in reality. Short-term interbank lending is primarily motivated by
avoiding the penalty of not having enough capital requirement before the end of the
day. Thus, before default happens, strategic interactions take place to avoid default.

Figure 1: Timing of the Stochastic Game
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2.6 Stationary Markov Strategies and Pareto Efficient Nash
Equilibria

For each state ω, let P(Gi(ω)) denote the set of all probability measures with support
contained in Gi(ω), where recall, Gi(ω) is the set of feasible and affordable contract-
ing and investment networks for player i in state ω. Because the mapping, Gi(⋅), is
measurable, with nonempty, closed, and convex valued, the mapping from states into
probability measures with supports contained in Gi(ω),

ω "→ P(Gi(ω))

is measurable, with nonempty, closed, and convex valued. Let Σi ∶= Σ(P(Gi(⋅))) denote
the collection of all (measurable) selections of P(Gi(⋅)) and let Σ ∶= Σ1×⋯×Σm+n denote
the collection of all profiles of (measurable) selections, σ ∶= (σ1, . . . , σm+n) ∈ Σ. mappings
from ω into the set of all product probability measures,

ω "→ σ(⋅∣ω) ∶= ×i∈Iσ
i(⋅∣ω) ∈ P(G(ω)) ∶= P(G1(ω) ×⋯ ×G

m+n(ω)),

where for each i, σi(⋅∣⋅) ∈ σi.10 We begin with a definition.

2.6.1 Stationary Markov Equilibria in Behavioral and Pure Strategies

Definition 1.1: A stationary Markov (behavioral) strategy for player i is a constant
sequence of selections, σi

M ∶= (σi, σi,⋯), with σi ∈ σi, such that at any time point, if
the current state is ω, then player i chooses a network proposal in Gi(ω) according to
the probability measure σi(⋅∣ω) ∈ P(Gi(ω)).

A stationary Markov (pure) strategy for player i is a constant sequence of selections,
σM ∶= (σGi , σGi ,⋯), with σGi ∈ σi, such that for some (measurable) selection Gi(⋅) ∈
Σ(Gi(⋅)),

σGi(Gi(ω)∣ω) = 1 for all ω.

Given stationary Markov strategy profile, σM ∶=
⎛
⎜
⎝
(σ1, . . . , σm+n)
����������������������������������������������������������������������������

σ

, (σ1, . . . , σm+n)
����������������������������������������������������������������������������

σ

, . . .
⎞
⎟
⎠
,

where σ ∈ Σ, σ induces a (measurable) mapping

ω "→ σ(⋅∣ω) ∶= ×i∈Iσ
i(⋅∣ω) ∈ P(G(ω)),

from the state space into the set of all product probability measures, a subset of the
set of all probability measures, P(G(ω)), on G(ω) ∶= G1(ω) × ⋯ × Gm+n(ω). Under
stationary Markov strategy profile, σM, if at any time point the state is ω, then profile
of network proposals is chosen according to the product probability measure

σ(⋅∣ω) ∶= ×i∈Iσ
i(⋅∣ω) ∈ P(G(ω)).

10σ ∈ σi if and only if
σ(⋅∣ω) ∈ P(Gi(ω)) for all ω.
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Given
σM ∶= (σi(⋅∣⋅))i∈I "→ σ ∶= σ(⋅∣⋅) ∶= ×i∈Iσ

i(⋅∣⋅) ∈ Σ,
player i’s payoff at any time point in state ω under strategy profile σM, denoted by ūi,
ūi ∶ GrP(G(⋅)) "→ R, is given by

ūi(ω,σM) = ∑
G∈G(ω)

σ(G∣ω)ui(ω,G). (5)

Therefore, given initial state ω0 and strategy σM, the (expected) period-payoff for player
i at period t is ũi

t ∶ Ω ×Σ.

ũi
t(ω0, σM) ∶= { ūi(ω0, σM) for t = 0,

∫Ω ūi(ωt, σM)ηt(ωt∣ω0, σM)dωt for t ≥ 1.
(6)

The law of motion ηt(⋅∣ω0, σM) is defined recursively by

ηt(ωt∣ω0, σM) = ∫
Ω

⎛
⎝ ∑

G∈G

η(ωt∣ωt−1,G)σ(G∣ωt−1)
⎞
⎠
ηt−1(ωt−1∣ω0, σM)dωt−1,∀t ≥ 2. (7)

Let η0(ω0∣ω0, σM) = 1 and denote the discounted expected payoff to player i, over an
infinite time horizon under Markov strategy σM, starting at state ω0 by U i(ω0, σM),
where

U i(ω0, σM) =
∞

∑
t=0

βtũi
t(ω0, σM). (8)

Definition 1.2: A stationary Markov strategy σ∗M is a stationary Markov equilibrium
of the discounted stochastic game Γ, given any initial state, ω0, if no player can benefit
by deviating from his strategy σ∗iM to any other other stationary Markov strategy, i.e.,
for each ω0,

U i(ω0, σ
∗i
M, σ∗−iM ) ≥ U i(ω0, σ

i, σ∗−iM ),∀σi ∈ σi,∀i ∈ I.
Theorem 1: The discounted stochastic network formation game Γ has a stationary
Markov equilibrium in Behavioral Strategies.

This result is implied by Theorem 1 of Federgruen (1978). Notice that mismatched
networks are also taken into consideration. Intuitively, if a network is mismatched
and payoffs are low, then players will have the incentive to deviate and form a matched
network. The intuition behind stationary Markov equilibrium is that, at any time period
and any state, no player has the incentive to propose a different network. Therefore,
if in some state, the financial network is formed and no bank or shadow bank make
another proposal to change it, the network they form is an equilibrium network based on
deviation Rule 1. Notice that there might be many equilibria because of the assumption
that mismatched proposals give no connection among players. Here, we will consider
Pareto efficient Nash equilibrium.
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2.6.2 Pareto Efficient Nash Equilibria in Pure Strategies

Rule 2 (see subsection 2.3.6), which allows coalition deviations, is related to the concept
of Pareto efficient Nash equilibrium (PENE). We generalize PENE to an infinite horizon
strategy space, consider pure strategy equilibrium only. We begin with the definition
of a stationary Markov pure strategy. A formal definition of Rule 2 in infinite-period
discounted stochastic game is introduced in Definition 2.2.

Definition 2.1: A pure stationary Markov strategy σi
P = (σi, σi,⋯) ∈ Σi for player

i is a constant sequence of state-dependent measures on Ω, such that for some function
f i(⋅) ∶ Ω → Gi with f i(ω) ∈ Gi(ω),∀ω ∈ Ω, σi(f i(ω)∣ω) = 1,∀ω ∈ Ω. Let Σp ⊂ Σ denote
the set of pure stationary Markov strategies.

Utilities are the same as equations (5)-(8) after replaying (σM, σi
M) by (σP , σi

P).
Network formation Rule 2 is defined as below.

Definition 2.2: Under Rule 2, a deviation from a pure Pareto efficient stationary
Markov strategy σP = (σi

P)i∈I ∈ Σp to another pure strategy σ′P = (σ′iP)i∈I ∈ Σp initiated
by K0 ⊂ I, where K0 = {i ∈ I ∣σi

P ≠ σ′iP}, can be carried out by a coalition K ⊂ I if one of
the following holds.

• Either ∣K0∣ ≥ 2, with K = {i ∶ V i(ω0, σP) ≠ V i(ω0, σ′P)}.

• Or ∣K0∣ = 1, K =K0.

If ∣K0∣ = 1, then only one player deviates. If original proposal is matched in any
state, then a unilateral deviation breaks the match, and in some states, there would be
no connection in the new networks. As in Jackson and Wolinsky (1996), cutting a link
only requires a unilateral move. On the other hand, if some players want to cooperate
and move together, it requires permission from all players involved in the move. Thus,
a set of players who initiate a change, and all players involved in the change form a
coalition. The deviation then goes forward provided all players in the coalition prefer
the change - not just the players who initiated the change. Under Rule 2, the definition
of a pure Pareto efficient stationary Markov equilibrium is as follows:

Definition 2.3: Given initial state ω0, a pure Pareto efficient stationary Markov strat-
egy σ∗P ∈ σp is a pure Pareto efficient stationary Markov equilibrium of the game Γ,
if no coalition K, K ⊂ I, can achieve Pareto improvement by a deviation initiated by
K0 ⊂ I from his (their) strategy (strategies) (σ∗iP )i∈K0 to any other other pure stationary
Markov strategy (strategies) σK0

P ∶= (σi
P)i∈K0 , with σi

P ∈ σi, where σi is the set of pure
stationary Markov strategies for player i, and ΣK0

p ∶= ×i∈K0σ
i
p. I.e., ∀K0 ⊂ I,

∃i ∈K,V i(ω0, σ
∗K0

P , σ
∗I/K0

P ) > V i(ω0, σ
K0

P , σ
∗I/K0

P ),∀σK0

P ∈ ΣK0
p .
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We have the following result on the existence of a pure Pareto efficient stationary
Markov equilibrium.

Theorem 2: The discounted stochastic game of financial network formation, Γ, has a
pure Pareto efficient stationary Markov equilibrium σP ∈ Σp.

Given deviation rule specified in Definition 2.2 and matching function, F (⋅, ⋅), each
pure Pareto efficient stationary Markov equilibrium is a Nash equilibrium (for a proof see
Appendix A). Thus, the existence of a stationary Markov equilibrium is an immediate
consequence of Theorem 2.

The process of forming a pure Pareto efficient stationary Markov equilibrium is
of course the result of some underlying bargaining process, which is not modeled in
this paper. But it is not necessary to explicitly model the bargaining process in order
to obtain the equilibrium dynamics. Many bargaining processes are allowed without
losing the general properties of the game. Under Rule 2 (see Definition 2.2), if players
start from one network and have no incentive to make any further move, the network
is stable and the underling strategy is an equilibrium. How an equilibrium is reached
need not be taken into consideration. For example, if banks have the bargaining power
when forming connections with shadow banks, then among the Pareto efficient choices,
efficient networks preferred by banks will be formed. Moreover, if the bargaining powers
of all players can be ordered, then starting from no connection, the final payoffs under
pure Pareto efficient stationary Markov equilibrium will be unique.

2.7 Equilibrium Dynamics

Given a pure Pareto efficient stationary Markov equilibrium G∗(⋅) ∈ σp, the equilibrium
Markov transition governing the Markov process of net cash flow, defaulted players,
and real economy states is given by

P(A∣ω) ∶= η(⋅∣ω,G∗(ω)),∀A ⊂ Ω.

3 What Does the Network Look Like?
In this section, we discuss the predictions of pure Pareto efficient stationary Markov
equilibrium with deviation Rule 2 in the discounted stochastic financial network forma-
tion game. The equilibrium is a Nash equilibrium strategy and gives Pareto efficient
payoffs. We assume the initial state ω0 = (C0, F0, s0), with C0 = (C i

0)i∈I , C i << C i
0 <<

C̄ i,∀i ∈ I, F0 = ∅, and s0 ∈ S. It is similar to other finite-period models, where banks get
deposits from investors. Moreover, we call players with C i

t < 0 to be insolvent players.
If those insolvent shadow banks could not borrow enough money from others and pay
all debt, they will default. If they are banks, they either borrow enough money from
others, or they receive help from the central bank. We make the following assumptions
first. Notice that these assumptions are only valid in section 3.
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-Assumption 1: β = 0.
-Assumption 2: E[R̃k

s] >max{r,max{r′∣r′ ∈ RL}}, ∀k ∈X, ∀s′ ∈ S.

Under Assumption 1 (A-1), the solution of the infinite time period stochastic game
can be characterized. Intuitively, if players have discounted rate 0, they only take one
period-payoff into account. Assumption 2 (A-2) implies that the expected return of
investments in real economy is always higher than the expected return of debts. More-
over, although in our model, we take the set of actions to be finite, due to compactness
this finite set of actions can be taken to be such that any action in the compact set is
within ε of some action in the finite set. As explained in section 2, the money payoffs of
contracts are rounded to the nearest penny. Thus, when the players make decisions in
each period, optimal leading and investment levels are close to the solutions of utility
maximizations with compact and continuous state and action spaces.

Recall that the set of project investment levels for each player - as well as the
number of projects in the real economy - are finite. As a consequence, if qi is the
optimal portfolio of player i, then we can identify as a project, the project with return,
∑k∈X qikR̃k. Although in the model, we do not restrict each player to invest in one
project only, it is as if each player invests in one of only finitely many project - namely
the project with return, ∑k∈X qikR̃k. Such a construction allows us to transform the
game into an equivalent game in which each player invest in one project only.

We divide states into 3 categories and study how players behave. The division is as
follows: Good States, Median States, and Bad States. We call a state a good state if
C i ≥ 0,∀i ∈ I. A state is median if C i ≥ 0,∀i ∈M , but some shadow banks have negative
net cash flows. Finally, a state is bad if there exists some banks with negative net cash
flows.

3.1 In Good States

In good states, we will analyze the form of equilibrium network, especially the links
between banks and shadow banks. Direction of funding flow is studied. We also discuss
how “core-periphery” could endogenously arise in a financial network.

3.1.1 Determinants of Funding Flow - Efficiency V.S. Stability

Funding flow is of special interest in the study of shadow banking. During good times,
shadow banks hold more assets. While in bad times, assets of shadow banks shrink
dramatically. In general, it is not rigorous to claim the exact funding flow. In general,
because the feedback between states of the economy and the structure of financial
networks move stochastically across time, it is difficult to draw any hard and fast
conclusions concerning the exact pattern of funding flows. However, our model predicts
that whether funds go from shadow banks to banks or from banks to shadow banks
the direction of these flows depend on the risk aversion characteristics of banks relative
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to shadow banks. More precisely, if lenders are more risk averse (and therefore more
concerned with financial stability), they are more likely to lend to banks since banks
invest in low risk assets in general. Thus, banks are less likely to become insolvent and
fail to meet their payment obligations. Alternatively, if lenders are less risk averse (and
therefore more concerned with efficiency), they are more likely to lend to shadow banks
if shadow banks provide higher interest rate.

Let player i ∈ I be a potential lender for the financial network (i has no lending
contract and only invest in the safe project, but i could lend). Player i is considering
whether to lend to bank j, or shadow bank j′. Assume Cj = Cj′ , and j, j′ are borrowers
and positional equivalent in the network, i.e., (ljo, rjo, qjk) = (lj′o, rj′o, qj′k), ∀o ∈ I/{i},
∀k ∈ X, and ljo ≤ 0, qik = 0. Further, assume that j can offer a loan contract to i with
(lij, rij), where lij = l > 0 and rij = rM , and invest lij in some asset in XM . Similarly,
assume that shadow bank j′ can offer a loan contract to i with (lij′ , rij′), where lij′ = l > 0
and rij

′ = rN , and invest lij
′ in an asset in X.

Without loss of generality, let XB = {1,⋯, K̄B} ⊂X. For simplicity, assume

R̃k
st = { Rk with probability pk

0 with probability 1 − pk

where Rk > Rl and pk < pl if and only if k > l. Since shadow banks have more investment
projects to choose from, they can raise the interest rate on lending contract and invest
in riskier projects. In fact, this is precisely what is observed in reality. Motivated by
above observation, assume the bank j invest in project kj and shadow bank j′ invest
in kj′ , with kj < kj′ . Furthermore, we assume interest offers satisfy rM < p

kj′

pkj
rN . The

case we have now constructed is the case where player i has to decide whether or not
to put his money into a bank or a shadow bank, given that two borrowers, j and j′ are
positionally equivalent in the lending network. The following proposition reveals how i
making the lending decision.

Proposition 2: There exists a level of risk aversion α∗, such that if α > α∗, any
potential lender i prefers to lend to a bank. Otherwise, player i prefers to lend to a
shadow bank. Moreover, if both network proposals are equilibria, and i has enough
bargaining power to determine which equilibrium network will prevail, then in equi-
librium, funding will flow to banks if lenders are risk averse and go to shadow banks
otherwise.

If we further assume that interest rate rN a bank can offer is increasing in the size
K̄B of available investment projects, then lenders’ decisions also depend on the size
K̄B. Intuitively, if banks can only offer a low interest rate, it is not profitable to lend to
banks even though banks are more likely to pay back loans. The following proposition
summarizes i’s lending behavior when varying the set of investment projects that banks
can invest in.

22



Proposition 3: If ∂rN

∂K̄B > 0, then there exists a threshold index K̄B∗ for investment
projects, such that any potential lender i prefer to lend to bank j whenever K̄B > K̄B∗.
And i prefer to lend to shadow bank j otherwise. Moreover, if both network propos-
als are equilibria, and i has enough bargaining power to determine which equilibrium
network will prevail, then in equilibrium, funding will flow to banks if lenders are risk
averse and go to shadow banks otherwise.

The above Proposition has important policy implications. After the 2008 crisis, more
regulations were imposed on the banking system so that banks faced ore regulations
when investing - thus making it more likely that shadow banks would get more fundings
and make risky investments. Such a policy outcome would make the whole financial
system more risky. Using a simulation example, based on our model, we will confirm
that this precisely what happens. In order to give a computational example, we must
know how to measure the risk of the financial system, and for this, we must have a formal
definition of systemic risk. We will provide one in section 5, and our computational
example will confirm the conclusions of Proposition 3 (i.e., our example will confirm
that regulations in the banking sector lead to higher systemic risk for the whole financial
system).

The two propositions above continue to hold even if we allow i to invest in risky
projects and we assume that the risky projects, i and j (and i and j′) invest in do not
overlap. In next subsection, we continue discussing properties of financial networks and
how they look in equilibrium.

3.1.2 Core-Periphery Structure with “α”-rule

If we make further simplifications and allow banks to share equity returns according
to the “α” -rule11, then the equilibrium financial network is similar to the network in
Farboodi (2014)12. Figure 2 shows the network structure under equity sharing. When
banks can invest and share the risks, more funding will flow to banks - a funding flow
pattern consistent with the finding13 that banks are mainly the loan originators, where
funding flow ends and asset flow begins. Banks originate loans, and funding flows
come from money market mutual funds to shadow banks and from shadow banks to
banks or other big shadow banks (for example, investment banks). In other words,
if one allows equity sharing, banks will become fully connected with each other as in
Figure 2. In reality, financial institutions do share equity returns. On the other hand,
because banks are not able to know the private information of shadow banks, banks
tend to make equity investment connections with other banks only. The “α” -rule is

11See Farboodi (2014).
12In Farboodi (2014), a set of players have net cash flow equals 1 unit of money at the beginning

of the one-shot game, while others have no endowment. And among the players who do not have
endowment, some of them have investment opportunities. Then the network will be a core-periphery
structure with funding flow from banks who have endowments to whom with investment opportunities.
And banks with investment opportunities form cores.

13See Pozsar et al. (2012)
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a simplification of the real mechanism that divides equity returns among banks. But
it captures the fact that banks do share risks. With risks being reduced, banks invest
more in the real economy and become net money borrowers in the system. Allen and
Sauders (1986) provide a similar explanation for large banks being net borrowers. They
argue that large banks may not be able to correctly judge the risk of lending to small,
rural banks. And Allen et al. (1989) empirically confirm this result.

Moreover, in reality, shadow banking systems are vertically integrated. Figure 2
shows the case where banks, as loan originators, attract funding from shadow banks -
and shadow banks get their funding from the depositors. In the second layer, players
make lending connections with each other. Between layers, lending or investing con-
nections are made. Dashed arrows are used to denote a lending contracts, with the
direction of the arrow indicating the direction of the funding flow. In fact, Figure 2 is a
simplification of the vertically integrated shadow banking system. A more detailed pic-
ture is shown in Figure 10 in Appendix B. The structure in Figure 10 strongly supports
the methodology of using layered network structures in analyzing financial networks.
Next, we study how the network looks in median and bad states of the economy.

Figure 2: Financial Networks in Good States.

(a) Without “α”-Rule (b) With “α”-Rule

3.2 In Median and Bad States

In median and bad states of the economy, some financial institutions (especially shadow
banks) will have negative net cash flows. In fact any shock to the real economy will
lead to some shadow banks having losses and insufficient money to operate. Besides
shadow banks, banks may also have negative net cash flows as a result of shocks to the
economy.
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3.2.1 Systemically Important Links

Notice that although players are myopic, the state of the real economy next period
determines current period payoffs. Thus players care about the state next period.
When a bank or a shadow bank has negative net cash flow, other banks are often
willing to come to the rescue with lending. This is especially true for shadow banks
which find themselves in trouble. Many shadow banks have commercial banks as parent
banks. From the perspective of banks, such an arrangement gives them an advantage
in competing for funds because a bank’s shadow can be a source of such funds. Thus,
when a bank’s shadow is in trouble, the bank has a built in incentive to come to the
rescue with lending - simply put, banks lend to their shadows to preserve their sources
of funding. As discussed in Kodres (2013), “real banks were caught in the shadows”,
and “some shadow banks are controlled by commercial banks and for reputation reasons
were salvaged by their stronger bank parent.”

In good states, shadow banks buy commercial paper and other short-term debt
from banks, as shown in Figure 2. These are the “direct linkages” discussed in Ghosh
et al. (2012). Thus, in good states, the funding flow is from shadow banks to banks.
However, if shadow banks lose money on their investment projects and default, these
direct linkages from shadows to banks become impaired and sometimes break. The
direction of funding flows is reversed, with some money going to the insolvent shadow
banks, thereby raising the likelihood of defaults by banks.

Finally, the proportion of total investment by shadow banks is less, in both median
and bad states, than in good states, when shadow banks have liquidity problems. This
is consistent with what happened during 2008. Consider the following charts.14 The
left chart shows a decrease in proportion of assets held by shadow banks during the
crisis both in US and in 25 financially important countries. Meanwhile, banks held a
higher proportion of total assets than before. However, absolute amount of assets held
by banks did not increase. In the right chart, both banks and shadow banks experience
stagnation in asset accumulation. Especially for shadow banks, their assets decreased
from the year 2007 to 2008. The following year (2008-2009), assets of banks had little
change in spite of the fact that the assets of banks experienced stable growth for 6 years.
The reason is two-folded. First, banks, which are inside the whole financial system, are
influenced by the shadow banking system and the state of the real economy. Second,
banks directly invest some shadow banks to back up some insolvent institutions - putting
banks in a riskier position, and as observed in the data, causing their investments in
the real economy to shrink.

14The data is got from Financial Stability Board (2014)
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Chart: Assets of banks and non-bank financial institutions.

4 A Numerical Example
In this section, we present an example of network formation game from the class of
games upon which we have based our computation and conclusions. The basic ingredi-
ents are given in section 2. We specify the state space and action space and we analyze
pure Pareto efficient stationary Markov equilibrium. The state transition matrix is
calculated and how states evolve is shown. The model is described as below:

4.1 Setups

• There are 3 players B1, SB2, SB3. I = {1,2,3}. Let M = {1} be the set of banks15,
and N = {2,3} be the set of shadow banks. I =M ∪N .

• The set of states Ω = {ω1,⋯, ωH} is a finite set. Each state has three components
- net cash flows C, the set of default players F , and the state of the real economy
s. C i ∈ Ci, where Ci = [−1,6], ∀i16. F ∈ {∅,{SB1},{SB2},{SB1,SB2}}. s ∈
{s1, s2, s3}, ordered from good to bad.

15Generalizing this setting into multiple banks is easy if one assume banks could apply “α′ - rule.
Since heterogeneity of banks would be reduced if they share investment projects. In Gennaioli et al.
(2013), banks might have no difference in terms of return in investment through holding the same
portfolio.

16All states are listed in online Appendix.

26



• X = {1,2}, and Gi ∈ Gi(ω) represent one action17 of player i, where Gi =
(lij, rij, qik)j∈I,k∈X . A proposal G = (Gi)i∈I = ((lij, rij, qik)j∈I,k∈X)i∈I specifies the
lending and investment proposals by all players. Project 1 is the safe project
with zero rate of return, while Project 2 is risky. Assume banks can determine
the prevailing equilibrium network in each state in case of multiple equilibria ex-
ist. Under these assumptions, the Pareto-Nash equilibrium strategies that prevail
in each period are those determined by the banks. Notice that Assumptions in
section 3 are automatically satisfied given the assumptions we have made here.

In reality, shadow banking networks are more vertically integrated in a sense that
investors (or depositors) buy assets from some shadow banks after securitization activ-
ities. In Figure 2, shadow banks can lend to different banks and hold different assets.
But they will pool the assets together and tranche the pool according to their credit
rating. Each tranche then becomes a portfolio and investors buy portfolios from shadow
banks. It turns out that the assets making up the investors’ portfolios were highly cor-
related, even though investors bought from different financial institutions. Even though
shadow bank assets were claimed to be safe, this hidden mechanism, discussed in Coval
et al. (2009), was was at work making investors’ portfolios more risky - one of the fac-
tors underlying the 2008 crisis. Investors buying highly correlated or even homogenous
assets does not violate our assumption that shadow banks are heterogeneous because
the shadow banks in our model are upstream from the asset flow in the shadow banking
system - and depositors do not engage in strategic interactions. Here, we will not pro-
vide an analysis of pooling and tranching processes, but such an analysis is not required
for our model and our conclusions.

• As before, let Di = 1{∑j l̄
ji + C i < 0, or i ∈ F}. D = ∑iD

i. The period-payoff
function of a player is

ui(ω, g) = { E[C ′i∣s′] − 1
2V ar[C ′i∣s′] if Di = 0,
0 otherwise.

Where C ′i is specified by equation (4).

• The state of the real economy next period s′ depends on current net cash flows
of all players C and action g.

s′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s1 if D = 0,
s2 if D = 1,
s3 otherwise.

(9)

• Return from the risky project, R2, for per dollar investment is a random variable.
Assume

R2 = { 2 with probability p(s′),
0 with probability 1 − p(s′).

17The set of actions are listed in online Appendix.
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Assume the return from a lending contract is r = 1/β one period later for each unit
of loan. Notice that after clearing debts, some realized net cash flow may not be in Ci.
We use the nearest integer C ′i in Ci to approximate. Moreover, equation (9) tells how
the state of the real economy next period is determined. The distribution of the state
in next period will be known by using the law of motion we specified in subsection 2.4.

Given any pure Pareto efficient stationary Markov strategy σ∗, the probability of
moving from one state ωx to ωy is known. Thus, we can compute that ∣Ω∣×∣Ω∣ transition
matrix Q, where ∣Ω∣ is the number of states.

4.2 Computing Equilibrium Supernetworks

(β, p) are the only parameters we need to know to simulate a supernetwork. For the
pictures below, we use (β, p(s1), p(s2), p(s3)) = (0.8,0.93,0.92,0.91). And the initial
state is ω0 = (C0, s0, F0), where C0 = (2,2,2,2,2), F0 = ∅, and the state of the real
economy is s0 = s1. For simplicity, assume dt ≡ 2.

Pure stationary strategy for each player is a function from states into actions. In
the above stochastic game with finitely many states and actions, the strategy set is
also a finite set. Let ΣPE ⊂ Σp be the set of all pure Pareto efficient stationary Markov
strategies. By Theorem 2, the set is not empty. Assume the bargaining power of banks
is much larger than shadow banks and shadow bank SB2 has much more bargaining
power than SB3. Let

V = {V ∣∃σ ∈ ΣPE, V = V (ω0, σ)}.
Then there is a unique equilibrium payoff vector satisfying the following properties.

∃!V ∈ V, such that V b ≥ V ′b,∀b ∈M,∀V ′ ∈ V,
and V 2 ≥ V ′2,∀V ′ ∈ V, such that V ′b = V b,∀b ∈M,
and V 3 ≥ V ′3,∀V ′ ∈ V, such that V ′b = V b,∀b ∈M, and V ′2 = V 2.

(10)
Let Σ∗ ⊂ ΣPE be the set of strategies that assign the unique equilibrium payoffs given
in (10). Pick the strategy σ∗ ∈ Σ∗ such that σ∗ has smaller strategy index. Then the
unique strategy has been contracted.

Assume the initial state is ω0 = ωe. Let ιe be a row vector with the eth component
to be 1, other components are zero. And let vi(ω,σ∗) be a column vector with the hth
component equals to ūi(ωh, σ∗), i.e.,

vi(ω,σ∗) = (ūi(ω1, σ∗),⋯, ūi(ω∣Ω∣, σ∗))′.

Therefore,

V i(ω0, σ
∗) =

∞

∑
t=0

βt
E[ūi(ω,σ∗)]

=ūi(ω0, σ
∗) + ιeβQvi(ω,σ∗) + ιeβ

2Q2vi(ω,σ∗) +⋯
=ιe[I − βQ]−1vi(ω,σ∗).
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Starting from ω0 = ωe, for each state ω, there is an equilibrium strategy taken
by players. Therefore, in each state, an optimal network is formed by players. The
equilibrium transition probability matrix Q is the transition matrix corresponds to
strategy σ∗. It gives the probability of moving from one state to another in one period.
Suppose Ωf ⊂ Ω is a set of failure or default states the central bank want the system to
avoid. Then one could calculate the probabilities of getting into the set of failure states
Ωf in T periods, ∀T = 1,2,⋯. We use the idea of “supernetwork”, which is introduced
by Page et al. (2005) to analyze the transition of financial states. A supernetwork is a
network of networks and shows how networks evolve over time. Our supernetwork is a
network of states and shows the transitions of all states.

Figure 3 and 4 are supernetworks. In order to reduce the dimensionality of the
computational problem, we will let each node (rather than representing a single state)
will denote a class of financial states. More precisely, each node represents a class of
3-tuple net cash flows and a set consisting of defaulted players. States in the same class
are similar so that we regard them as one state in order to show the transition more
clearly. Specifically, we make a partition for the set of possible net cash flow Ci. So
that a state with a player having 3 units of net cash flow is in the same class as another
state with that player having 4 units of net cash flow, holding everything else the same.
And a state with a player having 5 units of net cash flow is in the same class as another
state with that player having 6 units of net cash flow, holding everything else the same.
I.e., let Ci

p be a partition of Ci,

Ci
p = {{−1},{0},{1},{2},{3,4},{5,6}}.

Denote two states ω, ω′ in the same class as ω ∼ ω′. Then

ω ∼ ω′ if and only if C i = C ′i or {C i, C ′i} ∈ Ci
p,∀i ∈ I.

Moreover, we do not differentiate the nodes by the state of the real economy s. In
Figure 3, the color of a node specifies the level of total equity. The order from healthy
to unhealthy is blue (total equity > 10), green (equity in [6,10]), red (equity in [1,5]),
black(equity ≤ 0). Black nodes denote the worst financial states where players lose all
their endowment. An arc represents a positive probability of moving from one state
to another. Notice that the supernetwork itself is a weighted directed network. The
weights correspond the probability. So the thicker the arc is, the higher probability it
represents.

Similarly, for Figure 4, we use the number of defaulted players as the measurement
of healthiness of a financial state. Since banks never default, number of failed shadow
banks is the measure for healthiness of the financial system. Green nodes correspond to
states that no shadow bank has failed. Red nodes are states where there is one shadow
bank failed, while black nodes are cases where both shadow banks defaulted.

It is obvious to see in Figure 3 and Figure 4, that there are basins of attractions18

18See Page and Wooders (2009). We adopt the definition of basins of attraction from Page and
Wooders (2009). The definition of “basins of attraction” in our model will be described in the next
section.
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in the supernetwork, and as the theory predicts, most of them include black nodes.
A “basin of attraction”, is an absorbing set once a state enters a basin, it will remain
there forever. Because defaulted players stay in default, basins of attraction are the
natural residence of defaulted states. For instance, the black node {x164} is a singleton
basin of attraction, which corresponds to the state when two shadow banks default and
all banks have 0 net cash flow. As long as the financial state enters state x164, it will
remain there forever.

4.3 Predictions

One interesting feature of the supernetwork pictures is that they indicate that sudden
banking failure is possible. For example, in Figure 3, there is a link from state class x110

to x131. Thus, the equilibrium banking supernetwork indicates that there is a positive
probability of failure even though the even though the banking network is healthy.
This is consistent with many empirical findings about the fast contagion of a crisis, like
Bordo (2006), and the unpredictability of a crisis such as Canova (1994) and Kenny
and Morgan (2011).

Our computational example also predicts that it is possible for financial networks
“to freeze” even without a bank run on deposits or a run on funding from money market
mutual funds. From Gorton and Metrick (2012), money market mutual funds did not
lower their net lending level to the repo market, which is the key funding source for
shadow banks, before or during the crisis. The crisis could be interpreted as a self-
fulling systemic run or better a systemic freeze. In the computation setup, we assume
that funding flow for banks and shadow banks always stays at a constant level. But in
bad states, it is possible that no lending contract is signed among players.
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Figure 3: A Markov Supernetwork.
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Figure 4: A Markov Supernetwork.
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5 A Definition of Systemic Risks and Policy Implica-
tions

In this section, we give a formal definition of systemic risk and conduct one policy
study. It is a general definition in the sense that policy makers can define freely what
failure states are. In other words, the definition allows different thresholds of “system
fail”. With the definition given in the first subsection, one can calculate risks. The
policy we are considering is imposing capital requirement for banks and for banks only.
Other regulation policies, which restrict banks investment behavior without considering
strategic interaction of all the financial intermediaries, have similar effects. We do not
go into details of those different policies. Instead, we study the representative one
stated above. Systemic risks with policies and without policies are calculated and
compared. Our example will support the claim that regulating banks without also
similarly regulating shadow bank leads to higher systemic risk for the entire financial
system.

5.1 Systemic Risk Schedules

Much attention has been paid to systemic risk since the 2008 crisis. Here we give a
formal definition of systemic risk motivated by the Markov supernetwork representation
of the dynamics generating the the states of the financial system. Gong et al. (2015)19

give a theoretical framework for endogenous systemic risk in arbitrary network forma-
tion games. In a financial setting, in words, systemic risk is usually taken to mean the
conditional likelihood that the financial system in a particular state will fail (will enter
a failed state) if the system experiences a particular event. Usually the event is taken to
be a shock. This informal definition of systemic risk is silent on two important issues:
(1) the severity of the failure (the number of banks that will fail) as well as on (2) the
timing of the failure (when will the failure occur, immediately, in one time period, in n
time periods). Our definition is not only based on equilibrium dynamics, but also takes
into account timing and severity.

Viewing the Markov supernetwork as a map of the transportation network over
which the financial state process must travel in moving from one state to another,
we are naturally led to define systemic risk as the probability that the stochastic state
process, starting at a given state (i.e., at a given node in the supernetwork), will arrive
at a failed state (i.e., another node in the supernetwork), at or before a given time.
In classical terminology, we define systemic risk as the first passage probability to a
failed state from a given state. Under our definition, rather than there being a single
measure of systemic risk, there is instead a schedule of systemic risk measures which lists
the probabilities of various arrival times at various failed states in the supernetwork,
departing from any given state in the supernetwork.

19Gong et al. (2015) give the existence result of a stochastic game with arbitrarily states and actions,
and defines systemic risk.
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Let (Ω,Bω, P ∗ω)ω∈ω be the probability space of states together with its equilibrium
Markov transition, ω → P ∗ω ∶= q(ω,σ∗(ω)), (i.e., for E ∈ Bω, P ∗ω (E) ∶= q(ω,σ∗(ω))(E) is the
probability that, under equilibrium strategy profile, σ∗, the state process starting at
state ω will enter set E next). Here, ω is a compact set and Bω is the Borel σ-field of
events. As before, let Ωf ⊂ ω the set of all failed states and let σ∗ be the equilibrium
Markov stationary strategy. Finally, let

P ∗ω (Tωf
≤ t)

be the probability that the state process enters the set of failed states, ωf , on or before
time t ∈ T = {1,2,⋯} starting at state ω ∈ ω. When ω is finite, then P ∗ω(Tω′ ≤ t) is the
probability of arriving at state ω′ ∈ ωf from state ω within t periods. Notice that for
each ω ∈ ω, P ∗ω(Tωf

≤ 1) = P ∗ω (ωf). Given current state ω, the risk that the process
generates a failed state in exactly t periods is denoted as SRt(ω,ωf), while the risk
that the process generates a failed state within t periods is denoted as SR(0,t](ω,ωf).

Definition 3: Systemic Risk Schedule
Assume financial networks are endogenously formed, and financial institutions are far-
sighted and behave strategically. Let P ∗

(⋅)
be the equilibrium Makov kernel governing

the state process, where {P ∗ω ∈Δ(ω) ∶ ω ∈ Ω}. Systemic risks are probabilities of enter-
ing failure states Ωf ⊂ Ω within T,T ∈ T time periods conditioning on some initial state
ω ∈ Ω, I.e, systemic risks are a table of numbers - SR(ω,T )ω∈Ω,T ∈T , where

SR(ω,T ) ∶= P ∗ω(TΩf
≤ T ).

Notice that P ∗ωx(TΩf
≤ T ), T ≥ 2 could be calculated by the iteration process given

by the following.

P ∗ωx(TΩf
≤ T ) = P ∗ωx(Ωf) + ∫

Ω/Ωf

P ∗ωx(ωz) ⋅ P ∗ωz(TΩf
≤ T − 1)dωz.

Moreover, if the state set is finite, then the systemic risk will be simply as below.

SR(ω,T ) = P ∗ωx(TΩf
≤ T ) = ∑

ω′∈Ωf

P ∗ωx(Tωy ≤ T ).

And P ∗ωx(TΩf
≤ T ), T ≥ 2 could be calculated by the iteration process given by the

following, when Ω is finite.

P ∗ωx(TΩf
≤ T ) = P ∗ωx(Ωf) + ∑

ωz∉Ωf

P ∗ωx(ωz) ⋅ P ∗ωz(TΩf
≤ T − 1).

Also, we can define the hitting time for a financial system to “hits” failure states.
More formally, the hitting time τ ∶ Ω→ [0,∞] is a random variable defined by

τ(ωx) ∶= inf{T ∈ T ∣P ∗ωx(TΩf
≤ T ) > 0}.
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The question is whether it is possible to control the behavior of banks and shadow
banks so that the state process that emerges together with its equilibrium supernetwork
and its equilibrium profile of systemic risk schedules are such that the state process is
always more likely than not to avoid failed states or to be moving in the company of
good states. The answer depends on the definition of “failed states”. In our framework,
how we define a “failed state” depends on specific aspects of the financial system that
a researcher or a policy maker cares about. Figure 3 and 4 correspond to two different
notions of “failure”, and with each notion, we get a different answer to the question as
to whether or not - and to what extent - systemic risk can be controlled. For example,
state ω28 corresponds to a case where all players have 0 net cash flow. If we define
a state to be failed if there are any defaulted players, then the financial system will
never go into failure from ω28 since it will remain in that state forever. Therefore, using
the above standard the system could remain healthy forever starting from state ω28 .
However, if a state is defined to be a failed if players loose all the money they have in
the initial period, then ω28 is a failed state. Under that standard, the system always
has a positive probability of entering a set of failed states.

Next, for the finite state version of our model, we formally define the concept of
“basins of attraction”, which turns out to be useful in studying the properties of the
financial system and in analyzing the systemic risk.

Definition 4: Basins of Attraction
Give a network formation game Γ = (I,Ω, (G,→,Σ, ui, β), η), let σ∗ ∈ Σ be an equi-
librium strategy. Let ω → P ∗ω be the equilibrium Markov transition induced by the
stationary Markov equilibrium, σ∗ ∈ Σ, of Γ. A nonempty set of states A ⊂ Ω is said to
be a basin of attraction BOAσ∗ for Γ if

• ∀ω ∈ A, P ∗ω(A) = 1, and

• ∀A′ ⊂ A, if P ∗ω(A) = 1,∀ω ∈ A′, then A′ = A.

There are three reasons why basins are important to our understanding of systemic
risk. First, if all basins of attraction contains failed state, then the financial system
will experience a failure cascade with probability 1. This is essentially what we observe
from history and in our simulations. An economic upturn cannot not last forever, and
if all basins contain failed states, then failure of the financial system is unavoidable
without a central bank to bail out insolvent banks. Moreover, some failed states are
hard to identify. If we know a failed state is in a basin, we only need to keep tract
of the state process relative to this basin - if the state process enters this basin this
basin (containing a failed state), then the financial system will experience some level of
failure with probability 1.

The second reason basins are important for understanding systemic risk is due to
the fact that basins are homogeneous with respect to their failure characteristics - as
the next proposition shows. As a consequence, it is the distribution of defaulted players
across basins that that determines the severity of systemic risk. In Proposition 4 below,
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we show that all the states in the same basin have the same set of defaulted players.
Thus, the severity of a system failure depends on the failure characteristics of the basin
the state processes ends up in in the long run.

Proposition 4: Homogeneity Within Basins
Let Γ be a stochastic game with equilibrium stationary Markov strategy profile, σ∗,
and equilibrium Markov transition, ω "→ P ∗ω , having unique, finite, disjoint basins of
attractions given by

BOAσ∗ = {A∗1,⋯,A∗h}.
If basin, A∗l , contains a state, ω, having defaulted player set, F l, then all states contained
in Al have the same set of defaulted players. - i.e.,

if ω = (C,F, s) and ω′ = (C ′, F ′, s′) are contained in Al, l ∈ {1,⋯, h}, then F = F ′ = F l.

Moreover, any state, ω = (C,F, s), such that C i = 0,∀i ∈ I, F = N , and s = sk, is a sin-
gleton basin of attraction - i.e. if there is a state where all shadow banks are defaulted
and all banks have zero net cash flow, then it is a basin of attraction.

The proof is in Appendix A. Notice that the Proposition holds without specifying
Ωf , the set of failure states.

There is another reason basins of attraction are important for our understanding of
systemic risk. The unique profile of basins of attraction,

{A∗1,⋯,A∗h}

corresponding to an equilibrium Markov transition, P ∗
(⋅)

, possesses a unique set of tip-
ping points20. Tipping points (or tipping states) are the process’s early warning system
for bad basins. In particular, each tipping point is a gateway to an unavoidable se-
quence of states leading to a particular basin of attraction. If this basin is a severely
failed basin (i.e., if it is a basin containing states with many failed banks), then knowl-
edge of this tipping point is important. It opens the possibility of designing policies
to incentivize bankers to take actions which minimize the likelihood that when such a
tipping point is reached that the financial system tips onto a path that inexorably leads
to such a severely failed basin - or more precisely, tips onto a default cascade leading
into a severely failed basin.

Let
{(A∗1, F 1),⋯, (A∗h, F h)}

be the profile of basins-failed nodes pairs, (A∗l , F l), corresponding to the equilibrium
Markov transition, P ∗

(⋅)
. We say that basin A∗l is more severely failed than basin A∗l′ ,

if ∣F l∣ > ∣F l′ ∣. If ∣F l∣ = 0, the basin is default free, and if ∣F l∣ = N , then all shadow
banks are in default (recall that banks cannot default) because the unique profile of

20See Gong et al. (2015).
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basins of attraction corresponding to an equilibrium Markov transition possesses a
unique set of tipping points. Tipping points (or tipping states) are the state process’s
early warning system for bad basins. In particular, each tipping point is a gateway to
an unavoidable sequence of states leading to a particular basin of attraction. If this
basin is a severely failed basin (i.e., if it is a basin containing states with many failed
banks), then knowledge of this tipping point is important. It opens the possibility of
designing policies to incentivize bankers to take actions which minimize the likelihood
that when such a tipping point is reached that the financial system tips onto a path
that inexorably leads to such a severely failed basin - or more precisely, tips onto a
default cascade leading into a severely failed basin.

Because it allows central banks to have know the tipping point when the system is
heading to a dangerous position. A basin consists of a failure state is likely to contain
other failure states. Moreover, as long as the system goes into a basin that consists
of a failure state, it will never come out of the basin and will hit the failure states
infinitely many times. Thus, an early warning mechanism that helps to avoid going
into a bad basin is of significant importance. The construction of set of tipping points
are described as follows.

Let Ωf ⊂ Ω be the set of failure states. Proposition 4 gives the existence and
uniqueness of the collection of basins of attractions, and it gives a partition of the set
of states Ω. I.e.,

Ω = S ∪A1 ∪⋯∪Ah,

where S is the set of transient states. Define

Ω̃f ∶= Ωf ∪ ( ∪l∶Ωf∩Al≠∅ Al).

Notice that τ(ω) < ∞, ∀ω ∈ Ω̃f , and Ωf ⊂ Ω̃f . In other words, as long as the system
goes into Ω̃f , the system will fail with probability 1. Thus, the actual set of states that
deserves attention from central bank is actually larger than Ωf . Let TΩ̃f

⊂ Ω be the set
of tipping points of entering the set of states Ω̃f . I.e.,

TΩ̃f
∶= {ω ∶ P ∗ω(Ω̃f) > 0}.

The set of tipping points TΩ̃f
is an early warning for central banks. As long as the

system is in a state which is a tipping point, it has positive probability of ending up in
a failure state in Ωf .

As a conclusion, we would like to discuss the some previous attempts to analytically
or numerically capture systemic risk and study its dependence on network structures.
A pioneering study by Allen and Gale (2000) shows that complete structure is more
robust than incomplete structure. Although they did not use network terminologies and
methodologies, the dependency of financial stability and network structure is pointed
out. Duffie et al. (2014) discuss an insightful network-based approach to calculating
systemic financial risk. Acemoglu et al. (2015) claim the systemic risk does not only
depends on the network structure, it also relies on the magnitude of shocks. Specifically,
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policy makers are concern about the interconnectedness of financial institutions. Federal
Reserve Bank Chairman Ben Bernanke told the Financial Crisis Inquiry Commission of
Congress: “If the crisis has a single lesson, it is that the too-big-to-fail problem must be
solved.” 21 Paul Volcker, former Chairman of the Federal Reserve, argued in 2011 that
“[T]he risk of failure of large, interconnected firms must be reduced, whether by reduc-
ing their size, curtailing their interconnections, or limiting their activities.” 22 What we
claim in our model it that the dependency of systemic risk and financial network struc-
ture has too much to do with the environment or primitives. Number and characters
of players, action sets, rate of returns from real economy could all come into the model
and play a role. Thus, it might not always the case that high interconnectedness brings
higher risk, or vice versa. As argued in section 3, links between financial institutions
could play an important role in maintaining financial stableness sometimes. In next
subsection, we calculate systemic risks using computational example in section 4 and
illustrate the nonlinear relationship of systemic risk and network structure again.

5.2 Post-crisis Policies

In this subsection we discuss our policy study carried out using numerical methods. In
order to prevent a repeat of the bankruptcies and bailouts of 2008, central banks have
imposed more regulations to restrict the behavior of banks, especially in the area of
lending. But the regulatory environment has only become more tedious and compli-
cated. For example, as discussed in The Economist (2015), since the crisis, JPMorgan
Chase has employed an additional 950 people, approximately 400 of which are required
to monitor and implement some 500 regulations focused on the liquidity of its assets.
These regulations were put into place to prevent banks from toppling in the event of
a liquidity freeze. A team of 300 employees is needed to monitor compliance with the
1000 page Volcker rule, a rule, a rule which restricts banks from trading on their own
account. While these regulations might make banks safer, their effect on the overall
stability of the entire financial system is unclear. Undoubtedly, stricter regulations
make banks safer. But the effects of these policies on the whole financial system may
very well be negative.

Suppose the state ω is good in the sense that every bank or shadow bank has excess
amount of money. Assume that the central bank restricts bank investment by imposing
a limit on the amount banks can invest in the real economy. In the network shown
below, the red cross signs represent a decrease in lending due to these policies.

On one hand, banking sector regulations could have the side effect of weakening the
ability of banks to bail out shadow banks. With such policies, banking sector becomes
less profitable. In cases where shadow banks are insolvent, due to such regulations,
banks have limited ability to lend to liquidity strapped shadow banks. In other words,
banks limit their lending activities, and the channel that liquidity flows from banks to
shadow banks could be destroyed.

21See Bernanke (2010).
22See Volcker (2012).
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On the other hand, if banks’ investment activities are restricted, then banks may
also limit their borrowing activities. The reason is as follows: it does not make sense for
banks to continue borrowing the same amount of money, when banks, due to restrictions
on their investing activities (i.e., buying the debt of other banks), already have excessive
amounts of money. Moreover, there is no incentive to borrow because they will have
to pay back lenders next period with interest. As a consequence, shadow banks (via
the borrowing activity of banks from shadow banks) cannot put the same amount of
money into banks as before. Instead, shadow banks will invest in the real economy
directly. The new network will be like Figure 5(b). Intuitively, if more investments

Figure 5: Regulating Investments Behavior of Banks

(a) Network before imposing a policy (b) Network after imposing a policy

in the real economy are made by shadow banks, the financial system will become less
stable. Shadow banks are not in the safety net provided by the central bank. Moreover,
unlike banks, shadow banks do not diversify their investments across different projects
as do banks. Thus the investments of shadow banks are more risky than the investments
of bank. Lastly, because shadow banks unregulated, they face no reserve requirements.
The absence of capital reserves may potentially lead to liquidity problems.

The dual effects of restricting banks’ investment activities, via regulations, tends to
weaken or destroy the borrowing and lending links between banks and shadow banks.
As discussed in section 3, links between banks and shadow banks play an important
role in maintaining stability the system.

Based on our numerical example given in section 4, in this Subsection we will apply
our definition of systemic risk and show that by only regulating banks and not shadow
banks, the systemic risk of the whole financial system is increased. Recall that we
define systemic risk as the probability that the banking system reaches a failed state,
starting from a given state, within certain time period. We will carry out our analysis of
systemic risk under there different definitions of what it means for a state to be failed.
Our three different definitions of failure are as follows: First, we will define failed states
to be states in which the banking system (not including shadow banks) has banks with
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realized net cash flow less than zero (i.e., states where the set of banks contains some
insolvent banks). Under this definition of failed states and referring to the details in
the example in section 4, the set of failed states given by

ΩB
f = {ω ∈ Ω ∶ C1 < 0}.

Second, we will define failed states to be states in which the aggregate net cash flow of
all players (banks plus shadow banks) is negative. Under this negative net cash flow
definition of failed states and referring to the details in the example in section 4, the
set of failed states becomes

Ω2
f = {ω ∈ Ω ∶ ∑

i∈I

C i < 0}.

Finally, we will define failed states to be states in which some shadow banks default.
Under this defaulted shadow bank definition of failed states and referring to the details
in the example in section 4, the set of failed states is given by

Ω3
f = {ω ∈ Ω ∶ F ≠ ∅}.

Failed states, Ω2
f , is from the perspective of welfare loss (in that it is about the loss

in aggregate net cash flows). Failed states, Ω3
f , simply uses the number of defaulted

players.
Figure 6, shows shows systemic risks, using failed states, ωB

f , under policies 1 and
2 where these policies are aimed specifically at the banking system (excluding shadow
banks). Policy 1 bans a bank from investing more than 4 units of money, and Policy
2 disallows a bank from investing more than 3 units. The computational results are
consistent with the aim of the policies, which is to make the banking sector safer. With
above policies restricting banks’ investment behavior, the risks for banking system are
greatly reduced within the first 200 periods. However, in the long run, such policies
may make the banking system more unstable23. This is because such policies weaken
or break the links between banks and shadow banks in the financial network. These
connections should not be ignored when designing policies.

Figure 7 shows shows systemic risks, using failed states, Ω2
f and Ω3

f , again under
policies 1 and 2. Figure 7(a), (b) imply that under policies 1 and 2, systemic risks
increase. In other words, imposing regulations on banks investment behavior makes
the whole system even more risky. The result that systemic risks, under ω2

f and Ω3
f ,

increase under such policies is robust with respect to different p parameters.
The financial system turns out to have more systemic risk because banks, with

investment restriction, have difficulties in cumulating asset. When shadow banks are
in distress, banks are unable to bail them out. Under policy 1, funding flow from
banks to shadow banks is reduced by 25.8%, and it is reduced even further by 50% in

23The result that policies make banking system more stable is very robust with different p parameters.
But the result that banking system with policies face higher systemic risk in the long run is not robust
with different p values. Grids of p and systemic risks are shown in Appendix.
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Figure 6: Banking Systemic Risk

states where some shadow bank are insolvent, compared to the funding flow without
any policies. Under policy 2, funding flows from banks to shadow banks is reduced by
50%, and is reduced to zero in states where some shadow banks are insolvent. Shadow
banks can only borrow from banks when they face liquidity problem. If links between
shadow banks and banks are destroyed, the financial system becomes riskier.

Our computational results above imply that imposing regulations on bank invest-
ment levels can lead to a decrease in the bank’s lending amount and an increase in
systemic risks. We will verify the causal effect of an decrease in the bank’s lending on
increases in systemic risks. Policy 3 sets a maximum amount of possible transitions
between banks and shadow banks. The transactions cap is 1 unit of money. Under
policy 4, the banks’ set of lending actions is a subset of the lending action set without
any policy. Figure 7(c), (d) imply that systemic risks increase when the funding channel
from banks to shadow banks is weakened.

From our computations above, we show that imposing a policy restricting banks’
investment activities can reduce banks’ incentives to lend, causing an increase in sys-
temic risks. On the other hand, banks may also reduce borrowing leading to an in-
crease in systemic risks, as shown in Figure 5. We use another probability parameter
p = (0.98,0.93,0.88), and hold everything else the same. From Figure 8(a) and 8(b), It
is obvious that imposing policies to restrict banks investment behavior raises systemic
risk.

We will verify the causal effect of an decrease in the bank’s borrowing amount on
changes in systemic risks. Policy 3, as before, sets a maximum amount of possible
transitions between banks and shadow banks. And Policy 5 disallows banks to borrow
from shadow banks. Figure 8(c), 8(d) imply that systemic risks increase when the
funding channel from shadow banks to banks is weakened.
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Figure 7: Systemic Risks

(a) Systemic Risk: Failure states = Ω2
f (b) Systemic Risk: Failure states = Ω3

f

(c) Systemic Risk: Failure states = Ω2
f (d) Systemic Risk: Failure states = Ω3

f

6 Conclusion and Further Works
This paper builds a computable and empirically testable game-theoretic model of en-
dogenous network formation, which includes interactions between financial institutions
and the real economy. In our model, financial intermediaries are farsighted, and behave
strategically. Therefore, financial networks are endogenously formed. Our work here
also points the way to several other areas for further investigation. First, systemic risk
schedules and supernetworks are calculated from simulations, rather than from empir-
ically based estimates of the underlying parameters which determine supernetworks -
and hence systemic risk schedules. If the model is correct, given a time series of fi-
nancial system evolution, the probability of moving from one state ωi to another one
ωj generated from the true parameter values should be similar to the proportion of
times that ωj is observed among all states, starting from ωi. With estimated param-
eter values, policy studies could be done more precisely. One could further study and
compare several policies. Given on different policies, an empirically based version of
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Figure 8: Systemic Risks

(a) Systemic Risk: Failure states = Ω2
f (b) Systemic Risk: Failure states = Ω3

f

(c) Systemic Risk: Failure states = Ω2
f (d) Systemic Risk: Failure states = Ω3

f

our model could be used to to predict players’ state-dependent decisions. An empiri-
cally based study similar to those presented in sections 4 and 5 could be done. Since
the 2008 crisis, questions of whether or not and how to regulate shadow banks have
become increasingly important. Using an empirically-based, game-theoretic model of
financial network formation and equilibrium dynamics, we could study the implications
for systemic risk schedules of policies to restrict haircuts in the ABS market, or to
impose strict guidelines on collateral, or to increase transactions costs - or of policies
to regulate shadow bank liquidity - or the extension of the safety net to shadow banks.

Second, in our model, asymmetric information is not modeled. What role did asym-
metric information play in the 2008 crisis? Depositors, commercial banks, and even
central banks did not have access to the information of shadow banks. With hidden
information, some insolvent shadow banks could pretend to be in a good state and
borrow money from solvent players.

Third, what about the relationship between debt maturity and systemic risk. In
this paper, we only considered short term debt. It would be an interesting extension
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to build a game-theoretic model of endogenous network formation which allowed us to
understand the emergence of an equilibrium debt maturity structure.

Fourth, in section 2 we discussed briefly the relationship between network formation
rules and equilibrium strategies. Here we focused on pure Pareto optimal stationary
Markov equilibrium. In reality, financial networks may not be efficient. Further analysis
of network formation rules and equilibrium concepts would be useful.

Lastly, in our model, network failure came through two channels: loan contracts and
the real economy. The failure of a bank to meet its contractual loan obligations can
cause other banks to fail to meet their contractual loan obligations as well. Moreover,
the failure of projects in the real economy to produce returns can also lead to bank
failures. But further study of the interactions of the financial network and the real
economy in causing network failures is needed.
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Appendices
A Proofs

Proof of Proposition 1

The intuition of the proof is as follows. Eisenberg and Noe (2001) show the uniqueness
of “value of equity”. They also shows the uniqueness of clearing vector when “regulatory
condition”24 is satisfied. Regularity is to rule out cases when network is too complete
within a set of bankrupt nodes. In fact, regularity condition is sufficient but not nec-
essary. In our framework, regularity condition does not hold while uniqueness is still
valid. Examples in Figure 9 below illustrate the idea. The network on the left corre-

Figure 9: Examples

sponds to a lending network without depositors. In the example, Bank A and bank
B owe 1 unit of money to each other and generate no money from the real economy.
Let clearing vector p be defined as equation (3). Then p = (0,0), and p = (1,1) are
both clearing vectors. The system does not have a unique clearing vector. However on
the right hand side, C corresponds to a depositor, and both banks owe some money to
the depositor. The unique clearing vector is p = (0,0,0). The presence of a depositor
guarantees the uniqueness of the clearing vector.

A formal proof of uniqueness is given as below:

First, claim that there exists a greatest and least clearing vector, p̃+t+1 and p̃−t+1. Φ(⋅) is
positive, increasing, concave, and nonexplosive. Thus the set of fixed point of Φ has a
greatest and least element by Knaster-Tarski Fixed Point Theorem (see Aliprantis and
Border (2006), Theorem 1.10.).

Second, define value of net cash flow NCF i of node i before new deposits come in
as

NCF i =
⎧⎪⎪⎨⎪⎪⎩

(Ẽi
t+1 +∑j p̃

ji
t+1 − L̃i

t+1)+ if i ∈ I,
0 otherwise.

24See Eisenberg and Noe (2001).
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We claim that the vector of NCF is the same under any fixed point p̃t+1. I.e.,

(Ẽt+1 + p̃t+1Π − L̃t+1)+ = (Ẽt+1 + p̃′t+1Π − L̃t+1)+,∀p̃t+1, p̃′t+1being fixed points of Φ.

The only thing needs to be proved that

(Ẽt+1 + p̃+t+1Π − L̃t+1)+ = (Ẽt+1 + p̃t+1Π − L̃t+1)+,∀p̃t+1being fixed points of Φ.

Suppose there exists a clearing vector p̃t+1, such that (Ẽt+1 + p̃t+1Π − L̃t+1)+ ≠ (Ẽt+1 +
p̃t+1Π − L̃t+1)+. Because of the non-negativity of Π, we have

(Ẽt+1 + p̃+t+1Π − L̃t+1)+
≥
≠ (Ẽt+1 + p̃t+1Π − L̃t+1)+. (11)

Because p̃t+1 and p̃+t+1 are clearing vectors,

(Ẽt+1 + p̃+t+1Π − L̃t+1)+ = Ẽt+1 + p̃+t+1Π − p̃+t+1,

(Ẽt+1 + p̃t+1Π − L̃t+1)+ = Ẽt+1 + p̃t+1Π − p̃t+1.
(12)

Equations (11) and (12) imply

Ẽt+1 + p̃+t+1Π − p̃+t+1
≥
≠ Ẽt+1 + p̃t+1Π − p̃t+1. (13)

Notice that Πι = ι, where ι is m+n+ 1 column vector with any component equals to 1.
We have

ι(Ẽt+1 + p̃+t+1Π − p̃+t+1) = ι(Ẽt+1 + p̃t+1Π − p̃t+1),
contradicts with equation (13). Therefore, the vector of NCF is unique under any
clearing vector.

Last, we will show p̃+t+1 = p̃−t+1, which implies the uniqueness of a clearing vector.

Suppose p̃+t+1 ≠ p̃−t+1. I.e., ∃i ∈ I, such that

p̃+it+1 > p̃−it+1,

where p̃+it+1 and p̃−it+1 are the i-th components of p̃+t+1 and p̃−t+1. We say there is an arc
from i to j, ∀i, j ∈ I ∪ {m + n + 1} if Πij > 0. Denote an arc from i to j as i ⇢ j. It is
obvious that i⇢m+n+1. Notice that NCFm+n+1 is unique under any clearing vector.
Thus,

Ẽm+n+1
t+1 +∑

j

p̃+jt+1Πj(m+n+1) − p̃
+(m+n+1)
t+1 = Ẽm+n+1

t+1 +∑
j

p̃−jt+1Πj(m+n+1) − p̃
−(m+n+1)
t+1 .

48



By assumption, p̃+(m+n+1)t+1 = p̃
−(m+n+1)
t+1 = 0, and Ẽm+n+1

t+1 = 0. Therefore,

∑
j

p̃+jt+1Πj(m+n+1) = ∑
j

p̃−jt+1Πj(m+n+1).

I.e.,
∑
j

(p̃+jt+1 − p̃−jt+1)Πj(m+n+1) = 0. (14)

i⇢m + n + 1 imples Πi(m+n+1) > 0. p̃+it+1 > p̃−it+1. Thus

(p̃+it+1 − p̃−it+1)Πi(m+n+1) > 0.

∀k ∈ I ∪ {m + n + 1}, p̃+it+1 ≥ p̃−it+1, and Πk(m+n+1) ≥ 0. Therefore,

∑
j

(p̃+jt+1 − p̃−jt+1)Πj(m+n+1) > 0,

which contradicts with equation (14). Thus the clearing vector p̃t+1 is unique. The
uniqueness of net cash flow is easy to be obtained then.

Next, we will prove the joint continuity of fixed point p̃t+1 in Π, L̃t+1, Ẽt+1. For sim-
plicity, we change notations. Let γ∗ ∶= (Π, L̃t+1, Ẽt+1), and p∗ ∶= p̃t+1, representing the
fixed point of Φ(⋅;γ∗).

Given any sequence of variables {γn} = (Πn, Ln,En), with γn → γ∗, define pn be the
unique fixed point of Φ(⋅;γn). I.e.,

pn = Φ(pn;γn).

Want to show pn → p∗.

Because {γn} is bounded and Φ is nonnegative and nonexplosive, {pn} is bounded.
Thus, ∃{pnk

} ⊂ {pn}, pnk
→ pk∗ for some pk∗.

On the other hand, by the construction of the sequence {pn}, we have

pnk
= Lnk

∧ (Enk
+ pnk

Πnk
).

Therefore,
pk∗ = L∗ ∧ (E∗ + pk∗Π∗).

Thus, pk∗ = p∗, since p∗ is the unique fixed point of Φ(⋅;γ∗).

Therefore, every converging subsequence of pn converges to p∗. Thus, pn → p∗, which
completes the proof.

Q.E.D.
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Proof of Theorem 2

Define

NM ∶= {σ∗M ∈ Σ∣V i(ω0, σ
∗i
M, σ∗−iM ) ≥ V i(ω0, σ

i
M, σ∗−iM ),∀σi

M ∈ Σi,∀i ∈ I},

N ∶= {σ∗M = ×i∈Iσ∗iM ∈ NM∣∃(f i)i∈I , f i(⋅) ∶ Ω→ Gi, with f i(ω) ∈ Gi(ω),∀ω ∈ Ω,∀i ∈ I,
such that σi(f i(ω)∣ω) = 1,∀ω ∈ Ω,∀i ∈ I},

where σ∗iM = (σi, σi,⋯). Thus NM is the set of all stationary Markov equilibrium strate-
gies, and N is the set of all pure stationary Markov equilibrium strategies. Moreover,
let NP be the set of all pure Pareto optimal stationary Markov equilibrium strategies
defined in Definition 2.3. Define

NS ∶= {σ∗M ∈ N ∣∀σ′M ∈ N , V (ω0, σ
∗
M) ≠ V (ω0, σ

′
M) ⇒ ∃i ∈ I, V i(ω0, σ

′
M)) > V i(ω0, σ

∗
M)},},

where V (ω0, σM) = (V i(ω0, σM))i∈I is the vector of expected utility. NS is the set of pure
stationary Markov equilibrium strategies with expected utility not Pareto dominated
by any other pure stationary Markov equilibrium strategy. Notice that strategies in
NS may not be Pareto optimal, since they only dominate Nash equilibria by definition.
Next, given G̃ defined in (2), define

σ̃E ∶= ×i∈I σ̃
i
E ∈ Σp, σ̃

i
E = (σ̃i, σ̃i,⋯), such that σ̃i(G̃i∣ω) = 1,∀ω ∈ Ω,∀i ∈ I.

By assumption in section 2, G̃(ω) ∈ G(ω),∀ω ∈ Ω. Notice that G̃ denotes a network
that there is no connection between players, and they invest all they have into the first
project. Among all proposals that players form no connection, allocation of money in
real economy corresponds to G̃ may not be optimal. Due to the finiteness of action set,
there is a proposal that all players allocate their endowment optimally. Define

G̃∗(ω) ∶= (G̃∗1,⋯, G̃∗m+n) ∈ G(ω),
such that, lij = 0,∀j ∈ I,

and ∀G′(ω) = (G′1,⋯,G′m+n) ∈ G(ω),with lij = 0 ∀i, j ∈ I,we have
V i(ω0, σE) ≥ V i(ω0, σ′E),∀i ∈ I,

(15)

where

σE ∶= ×i∈Iσ
i
E ∈ Σp, σ

i
E = (σi, σi,⋯), such that σi(G̃∗i∣ω) = 1,∀ω ∈ Ω,∀i ∈ I,

and

σ′E ∶= ×i∈Iσ
′i
E ∈ Σp, σ

′i
E = (σ′i, σ′i,⋯), such that σ′i(G′i∣ω) = 1,∀ω ∈ Ω,∀i ∈ I.

Since a mismatched network proposal gives no final connections among players, any
unilateral deviation from strategy σE gives the players outcomes the same as V (ω0, σ0

E),
which is less than V (ω0, σE) by (15). Therefore σE ∈ N . Therefore, N ≠ ∅, and the set
of Pareto efficient strategies NS ≠ ∅.
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Claim: NS = NP . Therefore, the discounted stochastic game Γ has a pure Pareto
optimal stationary Markov equilibrium.

The proof is as the following. It is easy to show NP ⊂ NS . This is because pure Pareto
optimal stationary Markov equilibrium strategy dominates all other pure Nash equilib-
ria. The only part needs to be proved is NS ⊂ NP . Suppose NS /⊂ NP . ∴∃σ∗M ∈ NS , and
σ∗M ∉ NP . I.e., returns of some strategy Pareto dominate the returns of σ∗M.

∴∃K0 ⊂ I, and ∃σ′M ∈ Σp, and σ′M = ×i∈K0σ
′i
M ×i∈I/K0

σ∗iM, with σ′iM ∈ Σi
p,∀i ∈ I,

such that
V i(ω0, σ

′
M) > V i(ω0, σ

∗
M),∀i ∈K, (16)

K is defined in Definition 2.2. Moreover,

σ∗M ∈ N ⇒ V i(ω0, σ
∗
M) ≥ V i(ω0, σE),∀i ∈ I. (17)

Case I: ∣K0∣ = 1.

Then K =K0 = {i∗}, for some i∗ ∈ I, with σ∗M, σ′M ∈ Σ, and

V i∗(ω0, σ
′
M) > V i∗(ω0, σ

∗
M)

Therefore, σ∗M violates the definition of a Nash equilibrium. σ∗M ∉ N contradicts with
NS ⊂ N and σ∗M ∈ NS .

Case II: ∣K0∣ ≥ 2.

By definition of K when ∣K0∣ ≥ 2, ∀i ∈ I/K,

V i(ω0, σ
′
M) = V i(ω0, σ

∗
M). (18)

By inequalities (16) and (18),

V i(ω0, σ′M) ≥ V i(ω0, σ∗M),∀i ∈ I,
V i(ω0, σ′M) > V i(ω0, σ∗M),∀i ∈K.

Together with inequality (17),

V i(ω0, σ′M) ≥ V i(ω0, σE),∀i ∈ I,
V i(ω0, σ′M) > V i(ω0, σE),∀i ∈K.

Therefore, σ′M is a pure Nash equilibrium strategy. σ′M ∈ N , and Pareto dominates σ∗M.
It leads to a contradiction that σ∗M ∈ NS .
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Therefore, NS /⊂ NP does not hold. We have NS ⊂ NP , and thus NP ≠ ∅.

Moreover, NP ⊂ N by definition. Therefore, a pure Pareto optimal stationary Markov
equilibrium exists, and it is a Nash equilibrium in the stationary Markov strategy set.

Q.E.D.

Proof of Proposition 2

Player i will compare its utility when lending to j and to j′. Either j or j′ that invest
into one risky project would fail if the realization of the asset is 0. The actually payment
j or j′ could pay back is 0. Thus the utility of player i when lending to j is the following

V i = ui = C i − l + pkjrM l − αpkj(1 − pkj)(rM l)2.

And utility of player i when lending to j′ is:

V i = ui = C i − l + pkj′rN l − αpkj′(1 − pkj′)(rN l)2.

Claim that pkjrM < pkj′rN , and pkj(1 − pkj)(rM)2 < pkj′(1 − pkj′)(rN)2.
The first part is directly from assumption rM < p

kj′

pkj
rN . Together with pkj′ < pkj ,

pkj(1 − pkj)(rM)2 < pkj′(1 − pkj′)(rN)2 could be got.

Q.E.D.

Proof of Proposition 3

The derivation is the same as Proposition 2.

Q.E.D.

Proof of Proposition 4

By Theorem 6 and 7 in Gong et al. (2015)25, there exists a unique, finite, and disjoint
collection basins of attractions {A1,⋯,Ah}. Notice that each basin is a recurrent set.
And state not in any basin is transient.

What remains to be proved is the following statement. ∀l ∈ {1,⋯, h} and ∀ωx =
(Cx, F x, sx), ωy = (Cy, F y, sy) ∈ Al, we have F x = F y.

25More previous discussion could be found in Page and Wooders (2009), and classical graph theory of
network formation games, for example, Chapter 2 of Berge (2001). Moreover, decomposition theorem
with respect transient states and recurrent states is described in Cox and Miller (1977).
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Suppose ∃l ∈ {1,⋯, h}, such that ∃ωx = (Cx, F x, sx), ωy = (Cy, F y, sy) ∈ Al, and F x ≠ F y.

∴∃i ∈ F x, i ∉ F y, or ∃i ∈ F y, i ∉ F x.

Without loss of generality, assume ∃i ∈ F x and i ∉ F y.

Next, we construct two disjoint subset of Al so that both sets are absorbing. Let
A′ = {ω = (C,F, s) ∈ Al∣i ∈ F} be the subset of Al containing states where i defaults,
ωx ∈ A′. Thus, Al/A′ will be a nonempty subset of Al containing all states that i does
not default.

By assumption in section 2.2, default players stay in default set forever. Starting from
any state in A′, there is no chance to get to a state in Al/A′. I.e., P(A′∣ω) = 1,∀ω ∈ A′.
This violates Al being a basin of attractions.

Therefore, there is no such an Al. In other words, all states in the same basin of
attractions should have the same number of default players.

The existence of the singleton basin which contains the state where all players have
zero net cash flow and all shadow banks default is easily derived from the assumptions
of the law of motion.

Q.E.D.
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B Multilayered Financial Networks

Figure 10: Multi-layered Network

The above figure illustrates the reason why financial network including shadow banks
is a multilayered network. Connections within layer are draw by dashed lines and con-
nections between layer are shown by solid lines. A formal definition of multi-layered
network26 is as the following.

Definition 5: Multi-layered Network
Let A be the finite set of all possible connections (arcs) between nodes. I is the fi-
nite set of all players. And L = {l1,⋯, lM} is the set of layers. Im ⊂ I denotes the set
of nodes in layer m. Then, a multi-layered network, G, is a subset of A×(I×L)×(I×L).

Page et al. (2005) give a definition of heterogenous directed networks, which also in-
corporates the above definition of multi-layered network. Thus, multi-layered network
is a special case of general heterogeneous directed networks. Given x = (i, lm), i ∈ Vlm ,
y = (i′, l′m), i′ ∈ Vl′m , if there is an arc a ∈ A from x to y, then G(x, y) ∶= a. Notice that
the domain of function G is not necessarily equal to (I × L) × (I × L). And both ap-
proaches are practical in a sense that they allow the domain to be different of the whole
set (I × L) × (I × L). This feather turns out to be critical in analyzing multi-layered
networks.

For example, in Figure 10, A, B, C, and D are 4 nodes in the set I. The layer “SPVs
and Broker-Dealers” does not consists node C. Let layers from top to bottom be l1 to

26See Kivelä et al. (2014).
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l5, and ignore the middle ones which we do not drawn. Thus, L = {l1,⋯, l5}. Moreover,
let dashed arrow be a1, and solid arrow be a2. Therefore, G((D, l3), (D, l4)) = a2, and
G((D, l3), (B, l3)) = a1.

In the shadow bank system, broker-dealers vertically integrate their securitization
businesses (from origination to funding), lending platforms, and asset management
units. Pozsar et al. (2012) list 7 steps of these securitization, lending and investment
processes. Each step could be viewed as a layer. Within layer, nodes conducts lending
and investment activities with each other as well. An overall view of a shadow banking
system is as Figure 10.
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