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Abstract

The selection of upper order statistics in tail estimation is notoriously
difficult. Most methods are based on asymptotic arguments, like mini-
mizing the asymptotic mse, that do not perform well in finite samples.
Here we advance a data driven method that minimizes the maximum
distance between the fitted Pareto type tail and the observed quan-
tile. To analyse the finite sample properties of the metric we organize a
horse race between the other methods. In most cases the finite sample
based methods perform best. To demonstrate the economic relevance
of choosing the proper methodology we use daily equity return data
from the CRSP database and find economic relevant variation between
the tail index estimates.
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1 Introduction

In various research fields the tails of distributions are characterized as being
heavy tailed, e.g. the scaling behaviour described by Zipf’s Law and Gibrat’s
law (Reed, 2001). In the statistical literature there is an ongoing debate on
the number of tail data that have to be used in the estimation of the tail index.
The tail index is the shape parameter of these heavy tailed distributions. The
most popular estimator for the tail index of heavy tailed distributions is the
Hill (1975) estimator. This estimator necessitates a choice of the number of
order statistics utilized in the estimation of the tail index. This number is
referred to as k. The choice of k leads to a trade-off between the bias and
variance of the estimator. The literature to date utilizes the minimization
of the asymptotic mean squared error (mse) as the criterion on which k is
based. The methods that are used to find the k that minimizes the mse are
asymptotically consistent, but have unsatisfactory finite sample properties.
This paper proposes a novel methodology to pick the optimal k, labeled as k∗.
The methodology is based on fitting the tail of a heavy tailed distribution by
minimizing the maximum deviation in the quantile dimension. We show that
the metric outperforms the methods put forth by the theoretical statistical
literature.

The theoretical statistical literature and applied literature offer different
methods to choose an optimal k. These methods can be roughly divided
into two groups. The first group consists of heuristic approaches. These
methods are often used in applications and focus on analysing the plot of k
against the estimates of the tail index. Examples of these methods are the
Eye-Ball method and the automated form of the Eye-Ball method (Resnick
and Starica, 1997). Another heuristic rule is picking a fixed percentage of
the total sample size, for instance 5% of the upper order statistics. These
methods have a weak theoretical foundation and might therefore not be ro-
bust.

The second group of methods derives from the theoretical statistical liter-
ature. These are based on the minimization of the mean squared error
(mse) of the estimator. Hall (1990) and Danielsson, Peng, De Vries, and
De Haan (2001) utilize a bootstrap procedure to minimize the mse. Drees
and Kaufmann (1998) exploit the same bias and variance trade-off, but use
the maximum random fluctuation of the estimator to locate the point where
the trade-off is optimal. These methods are based on asymptotic arguments,
but their finite sample properties are subject to improvement.
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The shortcomings of the currently available methods motivated our new ap-
proach. In this paper we utilize the penalty function of the Kolmogorov-
Smirnov statistic to fit the tail of the distribution. From the fitted tail we can
subsequently determine the optimal k∗. This procedure is partially inspired
by Bickel and Sakov (2008). Bickel and Sakov (2008) consider a bootstrap
procedure for inference regarding the tail of a distribution. Since a full sam-
ple bootstrap is known to be inconsistent for replicating tail properties, they
use a subsample bootstrap. Their procedure aims to determine the proper
sub-sample bootstrap size for heavy tailed distributions. Their procedure
exploits the difference between subsequently smaller subsample bootstrap
distributions. The optimal subsample size has the smallest distance to its
smaller subsample neighbor. In their adaptive rule the Kolmogorov-Smirnov
(KS) test statistic functions as the distance metric. The Kolmogorov-Smirnov
statistic is measured as the maximum probability difference between the em-
pirical distribution and a parametric distribution.

In this paper we utilize Bickel and Sakov’s (2008) minimal maximum devi-
ation criterion, but with a twist. Instead of minimization in the probability
dimension, we minimize in the quantile dimension. This measure will hence
forth be referred to as the KS distance metric. The benchmark is the Pareto
distribution. The tail similarity of the heavy tailed EVT distributions allows
us to model the tails of these distributions with the Pareto distribution. The
estimates of the scaling constant and the tail index of the Pareto distribution
depend on k. By varying k we are able to simultaneously fit the empirical
distribution and elicit k∗.

The particular choice of the metric is motivated by problems that are spe-
cific for fitting the tail of the distribution. In the tail region, small mistakes
in the probability domain lead to a large distortion in the quantile domain.
However, the quantile is the domain that economist care about. Therefore,
we choose to base our metric in the quantile dimension rather than the prob-
ability dimension. Given the choice for the quantile domain, the choice of
penalty function is specific to the problem of fitting the tail. In the tail of
the distribution a small mistake in probability leads to an increasing error for
subsequently higher quantile levels. Consequently, no extra emphasis has to
be put on larger deviations as these naturally occur the further we move into
the tail. We therefore choose to represent the errors in absolute values rather
than squared deviations. Furthermore, deeper in the tail the size of the ex-
pected deviations become larger in the quantile domain. By focusing on the
maximum, the metric is not diluted by the numerous center observations.

These intuitive arguments are backed up by a rigorous simulation analysis
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and tests. To test the performance of the KS distance metric we analyze it
from four different perspectives. Firstly, to get a better idea of the behavior of
the KS distance, the metric is placed in a more general setting by considering
a Brownian motion representation. This allows us to analize the metric
without any strong parametric assumptions. We analize the properties of
the limit behaviour via extensive simulation studies. The simulation study
shows that our methodology locates an interior k∗ for various specifications.
Other metrics often locate k∗ at the boundaries of the admissible area and
as a result select a very low or very large number of order statistics.

Subsequently, we test the KS distance metric against various other penalty
functions. These penalty functions are often used in econometric applica-
tions. For instance, the OLS estimator is based on minimizing the average
squared errors. To evaluate the different metrics ability to correctly penalize
errors we use the results derived by Hall and Welsh (1985). They derive
the theoretical k∗ for the class of distributions that has a second order term
which is also hyperbolic. These results stipulate the behaviour of k∗ as a
function of the sample size. Also, k∗ is a function of the heaviness of the tail
within a family of heavy tailed distributions. For example, for the Student-t
distribution with α > 1, there is a negative relationship between k∗ and the
degrees of freedom. Furthermore, as the metric is only measured over the
tail of the distribution a desired property of the metric is that k∗ does not
change as the measurement area is altered.

To test the performance of the KS distance metric we contrast the metric with
several other penalty functions in Monte Carlo simulations. We use the mean
squared error, mean absolute error and the discrete version of the metric used
in Dietrich, De Haan, and Hüsler (2002) to benchmark the performance. The
KS distance metric shows promising results. For the Student-t, Symmetric
Stable and Fréchet distribution the patterns mentioned above observed for
k∗ are as predicted by the Hall and Welsh (1985). The other metrics fail
to reproduce stable results. This corroborates with the patterns for k∗ as
mentioned above. This translates in more unstable and biased estimates for
the tail index than the KS distance metric.

To test the finite sample properties of the different methods we perform var-
ious Monte Carlo simulation studies. In this horse race we simulate from
various families of heavy tailed distributions which conform the Hall expan-
sion or the conditions of the Kesten Theorem. For distributions that fit these
requirements, the underlying value of the tail index is known. As in the pre-
vious section, this allows us to benchmark the results. The primary focus of
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the simulations is the estimates of the tail index although the prime interest
in the end is quantile estimation. As a result, we also evaluate the methods in
this directions. Furthermore, we evaluate k∗ chosen by the various methods.
Studying the behavior of k∗ helps us to better understand the estimates of
α.

We find that the KS distance metric and the automated Eye-Ball method
outperform other heuristic and statistical methodologies. For the Student-t,
Symmetric Stable and the Fréchet distribution, the competing methodologies
do not reproduce the expected patterns for k∗ as derived by Hall and Welsh
(1985). This leads to a larger bias in α for less heavy tailed distributions. The
alternative methodologies often choose a high value for k∗ which corresponds
to a large bias.

We also consider dependent stochastic processes. For example, an ARCH
process captures the volatility clustering in financial data. It turns out that
the methods by Drees and Kaufmann (1998), Danielsson et al. (2001) and
the fixed sample fraction introduce a large bias in the Hill estimator for this
type of stochastic process. For the dependent time series, the automated
Eye-Ball method and the KS distance metric produce small biases.

In addition to estimating the tail index, we model the quantile function for
the various competing methods. We also compare the quantile estimates at
different probability levels to evaluate the performance at different regions of
the tail. We find that the KS distance metric produces relatively skewed and
volatile quantile estimates. Therefore, the bias of the KS distance metric is
relatively large. The distribution of the errors is skewed and consequently
the mean difference criterion produces a distorted image. When we analyse
the median of the errors, the KS distance metric performs well for the quan-
tiles beyond the 0.995 probability level. For the quantiles further towards
the center of the distribution, a large bias arises. The automated Eye-Ball
method produces less volatile estimates, but a similar bias in the estimates
to the KS distance metric. These results can be explained in light of the
method to choose k∗. These methods have a tendency to pick a small k∗ and
therefore fit the tail close to the maximum. The other methodologies often
utilize a larger number of order statistics and consequently fit well closer
towards the center of the distribution.

The Monte Carlo studies are limited to parametric distributions. In real
world applications the underlying stochastic process is unknown. Therefore,
it is difficult to assess the importance of the choice of methodology. In the
last section of this paper we show that the choice of k∗ is an economically
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important choice. For this purpose we use individual daily stock price infor-
mation from the Center for Research in Security Prices (CRSP) database.
For 17,918 individual stocks we estimate the left and right tail index of the
equity returns. We measure the average absolute difference between the esti-
mates. We find that the average difference between the methods ranges from
0.13 to 1.80. These differences are outside of the confidence interval of the
Hill estimator. For example, shifting the Hill estimate from 4 to 3 by using a
different methodology suddenly implies that the fourth moment, which cap-
tures the variance of the volatility (relevant for the confidence bounds around
the VIX index), does not exist. This shows that the choice of methodology
to choose k∗ is economically important and impacts the tail estimate signif-
icantly.

The paper first introduces the EVT framework and the Hill estimator. This
is followed by an overview of the theoretical and heuristic methodologies from
the literature. We then explain the framework of the distance metric and give
the intuition behind the KS distance metric. Section 4 explains the set-up
of the Monte Carlo horse race and analyses the simulation results. Section
5 presents the results of the different methodologies for daily stock return
data, followed by concluding remarks.

2 Extreme Value Theory methodology

The Extreme Value Theory (EVT) methodology employed in this paper
comes in two parts. The first part provides a review of the main EVT results.
It is the stepping stone for the semi-parametric approach. The second part,
introduces the alternative methods for determining the optimal number of
order statistics.

2.1 Extreme Value Theory

Consider a series X1, X2, ..., Xn of i.i.d random variables with cdf F. Suppose
one is interested in the probability that the maximum Yn = max (X1, ..., Xn)
is not beyond a certain threshold x. This probability is given by

P {Yn ≤ x} = P {max (X1, ..., Xn) ≤ x} =

P {X1 ≤ x,X2 ≤ x..., Xn ≤ x} =
∏n

i=1
P {Xi ≤ x} = [F (x)]n .
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EVT gives the conditions under which there exists sequences of norming
constants an and bn such that

lim
n→∞

[F (anx+ bn)]n → G (x) ,

where G (x) is a well defined non-degenerate cdf. EVT gives the forms of
G (x) that can occur as a limit, first derived by Fisher and Tippett (1928) and
Gnedenko (1943). There are three possible G (x), depending on the shape of
the tail of F (x). This paper concentrates on the case of a regularly varying
tail,

1− F (x)

x−
1
γL (x)

= 1, as x −→∞, γ > 0, (1)

where L is a slowly varying function, i.e lim
t→∞

L(tx)/L(t) = 1. Here 1/γ = α is

the index of regular variation, or the tail index. The γ determines how heavy
the tail is. Since α corresponds to the number of bounded moments, we often
discuss results in terms of α rather than γ. This property characterizes the
distributions that fall in the domain of attraction of the heavy tailed EVT
limit distribution. This is the Fréchet distribution (Balkema and De Haan,
1974):

Gγ>0 (x) = e−x
−1/γ

.

Note that Gγ>0 (x) satisfies (1). Hence the tail behaves approximately as a

power function, x−
1
γ . This implies that the distribution for the maximum has

a one-to-one relationship with the shape of the tail of F (x). As a consequence,
the entire tail can be utilized for fitting instead of just using maxima, see
Mandelbrot (1963) and Balkema and De Haan (1974).

Different estimators for γ are proposed in the literature (Hill, 1975; Pickands,
1975; De Haan and Resnick, 1980; Hall, 1982; Mason, 1982; Davis and
Resnick, 1984; Csorgo, Deheuvels and Mason 1985; Hall and Welsh, 1985).
The most popular tool for estimating the tail index is the Hill (1975) esti-
mator

γ̂ =
1

α̂
=

1

k

k−1∑
i=0

(log (Xn−i,n)− log (Xn−k,n)) , (2)

where k are the number of upper order statistics used in the estimation of γ.
Figure 1 depicts the reciprocal of the Hill estimates for a sample drawn from
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a Student-t(4) distribution plotted against an increasing number of order
statistics k. The estimate of 1/γ varies with k quite substantially. This shows
that the choice of k matters for obtaining the proper estimate.

The pattern in Figure 1 can be decomposed in the variance and the bias of
the Hill estimator.1 For small k the variance of the Hill estimator is relatively
high. As k increases the volatility subsides, and the bias kicks in. One can
find the bias and variance of the estimator for parametric distributions for
the subclass of distributions in (1) that satisfy the so called Hall expansion2

1− F (x) = Ax−1/γ
[
1 +Bx−β + o

(
x−β
)]
. (3)

Using the Hall expansion one shows the asymptotic bias as

E

[
1

α̂
− 1

α
| Xn−i,n > s

]
=
−βBs−β

α (α + β)
+ o

(
s−β
)
. (4)

Equation (4) provides the relationship between the threshold s and the bias
of the Hill estimator.3 From (4) one notices that as s becomes smaller, i.e.
the threshold moves towards the center of the distribution, that the bias
increases.4

The asymptotic variance of the Hill estimator is,5

var

(
1

α̂

)
=

sα

nA

1

α2
+ o

(
sα

n

)
.

The variance is also a function of s. As s decreases the variance becomes
smaller. When comparing the bias squared and the variance one notices a
trade-off. For large s, the bias is small, and the variance dominates. In
contrast, for small s the bias dominates. Suppose one likes to choose a k∗

which balances the two vices. Given this objective, how to elicit the minimum
mse from the data? This is the topic of the next section.

1See Appendix A.1.
2Heavy tailed parametric distributions like the Student-t, Symmetric Stable and

Fréchet distribution all conform the Hall expansion. The parameter values for these dis-
tributions are presented in Table 4 of the Appendix.

3Here s is the quantile at which the threshold is set.
4This result is based on the second order expansion by Hall and Welsh (1985).
5See Appendix A.2.
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Figure 1: Hill plot for the Student-t (4) distribution

This graph depicts the estimate of α for different levels of k. The sample is drawn from a
Student-t distribution with 4 degrees of freedom so that α = 4. The sample size is 10,000.
This graph is known as the Hill plot.

2.2 Finding k∗

Various methods exist for choosing k∗. These methods can be roughly divided
into two groups. The first group of methods come from the theoretical statis-
tics literature and are based on asymptotic arguments. The second group of
methods stem from suggestions by practitioners. The later are more heuristic
in nature, but some perform surprisingly well. The next section elaborates
further on these approaches.

2.2.1 Theoretical based methods

Hall (1990) and Danielsson et al. (2001) utilize the bias and the variance to
minimize the asymptotic mean square error (amse). They propose a boot-
strap method that minimizes the amse by choosing k appropriately. For the
distributions that satisfy the second order expansion by Hall, the sample
fraction at which the amse is minimized can be determined. Hall devises a
subsample bootstrap to find the k∗ under the restrictive assumption α = β in
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(3). To obtain the optimal rate6 in the bootstrap, the assumption of α = β
is crucial.

In general, β differs from α, and one is faced with eliciting the optimal
rate from the data. To this end, Danielsson et al. (2001) propose a double
bootstrap to estimate

lim
n→∞

mse = E
[
(γ̂ − γ)2] .

In the amse the value of γ is unknown. To tackle this problem the theoretical
γ value in the mse expression is replaced with a control variate. For the
control variate an alternative estimator to the Hill estimator is used, namely
γ̂∗. The control variate has an amse with the same rate of convergence as
the amse of γ̂.

Due to the use of this control variate, the true value 0 is known. Therefore
a bootstrap procedure can be used to construct an estimate of the mse of
γ̂ − γ̂∗. However, a simple bootstrap is inconsistent in the tail area. Conse-
quently, a subsample bootstrap is applied. Furthermore, to be able to scale
the subsample mse back to the original sample size, a second even smaller
subsample bootstrap is performed as well. As a by-product of their procedure
the ratio of α/β is also estimated. This bypasses the restrictive assumption
made in Hall (1990). The amse of the control variate is,

Q (n1, k1) := E

([
M∗

n1
(k1)− 2

(
γ∗n1

(k1)
)2
]2
)
,

where

M∗
n1

(k1) =
1

k1

k1∑
i=0

(
log

(
Xn1−i,n1

Xn1−k1,n1

)2
)
.

Here n1 = n1−ε is the smaller subsample for the bootstrap. The Q function
is minimized over two dimensions, namely: n1 and k1. Given the optimal n∗1
and k∗1 a second bootstrap with a smaller sample size n2 is executed to find
k∗2. Here n2 is typically chosen to be n2 = n2

1/n. The optimal number of
order statistics is,

k̂∗DB =
(k2)2

k1

[
log (k1)2

(2 log (n1)− log (k1))2

] log(n1)−log(k1)
log(n1)

.

6The subsample bootstrap size needs to increase slower than n to achieve asymptotic
optimality in the bootstrap procedure.
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A second approach is the method by Drees and Kaufmann (1998). Drees and
Kaufmann (1998) rely on the results by Hall and Welsh (1985). They show
that if the underlying cdf satisfies the Hall expansion, the amse of the Hill
estimator is minimal for

k∗DK ∼

(
A2ρ (ρ+ 1)2

2β2ρ3

)1/(2ρ+1)

n2ρ/(2ρ+1),

with ρ > 0, where for convenience ρ = α/β, A > 0 and β 6= 0. Drees and
Kaufmann (1998) show that for the estimation of the second order tail index

ρ̂ :=

∣∣∣∣∣log

∣∣∣∣∣ γ̂−1
n,t1 − γ̂−1

n,s

γ̂−1
n,t2 − γ̂−1

n,s

∣∣∣∣∣ / log

(
t1
t2

)∣∣∣∣∣
and

λ̂0 :=

∣∣∣∣∣(2ρ̂)−1/2

(
n

t1

)ρ̂ γ̂−1
n,t1 − γ̂−1

n,s

γ̂n,s

∣∣∣∣∣
2/(2ρ̂+1)

that

k̂n :=
[
λ̂0n

2ρ̂/(2ρ̂+1)
]

(5)

is a consistent estimator of k∗DK .

Drees and Kaufmann (1998) introduce a sequential procedure that yields an
asymptotically consistent estimator of k∗. Their estimator relies on the fact
that the maximum random fluctuation i1/2 (γ̂n,i − γ), with 2 ≤ i ≤ kn, is of

the order (log log n)1/2 for all intermediate sequences kn. This property is
used to define the stopping time,

kn (rn) = min

{
k ∈ {2, .., n} | max

2≤i≤kn
i1/2 |γ̂n,i − γ̂n,k| > rn

}
,

where the threshold rn = 2.5γ̃nn
1/4 is a sequence larger than (log log n)1/2

and smaller than n1/2. Here γ̃n is the initial estimator for γ with k = 2
√
n+,

where n+ is the number of positive observations in the sample. Given that
|γ̂n,i − γ̂n,k| is composed of a variance and a bias, the bias dominates if the

absolute difference exceeds the (log log n)1/2. Under conditions rn = o
(
n1/2

)
11



and (log log n)1/2 = o (rn) one shows that kn (rn) ∼ const. (rnn
ρ)2/(2ρ+1).

So that
(
kn
(
rξn
)
/kn (rn)ξ

)1/(1−ξ)
with ξ ∈ (0, 1) has the optimal order k̂n

defined in (5). This leads to the adaptive estimator

k∗DK :=

[
(2ρ̂n + 1)−1/ρ̂n

(
2γ̃2

nρ̂n
)1/(2ρ̂n+1)

(
kn
(
rξn
)
/kn (rn)ξ

)1/(1−ξ)
]

with

ρ̂n,λ (rn) := log

max
2≤i≤[λkn(rn)]

i1/2
∣∣∣γ̂n,i − γ̂n,[λkn(rn)]

∣∣∣
max

2≤i≤kn(rn)
i1/2

∣∣∣γ̂n,i − γ̂n,kn(rn)

∣∣∣ / log (λ)− 1

2
,

where λ ∈ (0, 1).

The theoretical methods by Danielsson et al. (2001) and Drees and Kauf-
mann (1998) are asymptotically consistent methods. As the arguments are
based on asymptotic reasoning, the question is how well these methods per-
form in finite samples.

2.2.2 Heuristics

Applications in the economic literature frequently resort to heuristic rules.
These rules are based on finding the region where the Hill plot, as in Figure
1, becomes more stable. This is the region where, as k increases, the variance
is subsiding, and the bias of the Hill estimators has not become dominant
yet. The method of finding the stable region in the Hill plot by observation
is referred to as the ”Eye-Balling technique”.

This method might be practical for a single experiment, but other applica-
tions require a more automated approach. Automated approaches are often
based on an algorithm which tracks the variance of the Hill plot as k in-
creases. These algorithms seek a substantial drop in the variance as k is
increased.

To formalize an automated Eye-Ball method, we use a sequential procedure.
This leads to the following estimator,

k∗eye = min

{
k ∈ 2, ..., n+ − w|h < 1

w

∑w

i=1
I {α̂ (k + i) < α̂ (k)± ε}

}
. (6)
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Here w is the size of the moving window, which is typically 1% of the full
sample. This window is used to evaluate the volatility of the Hill plot. The
ε gives the range between which [α̂ (k + 1) , ..., α̂ (k + w)] are within the per-
mitted bound around α̂ (k). No less than h% of the estimates should be
within the bound of α̂ (k) for k to be considered as a possible candidate.
Here h is typically around 90%, and ε is chosen to be 0.3. The n+ is the
number of positive observations in the data.7

The Eye-Ball method and the corresponding automatized algorithm, attempt
to find a proper trade-off between the variance and the bias. To find this
stable region, the information in the high variance region that precedes is
ignored. Similarly, once the bias causes the Hill plot to fall off sharply, this
variance bounds method ignores such a region as well.There is a possibility
that there is an optimal choice of k nested in the high variance region of the
Hill plot.

Other heuristic methods are more blunt and take a fixed percentage of the
total sample. Kelly and Jiang (2014), for instance, use the 5% sample fraction
to estimate the tail index for the cross-section of the US stock market returns
to price disaster risk.

The heuristic rules are easy to apply, but are somewhat arbitrary. This has
consequences for the application in which these are used. In accordance with
the theoretical k∗, put forth by Hall and Welsh (1985), different distributions
have different optimal regions and different rates of convergence. Therefore,
choosing a fixed portion of the sample is not appropriate. The optimal sample
fraction also depends on the sample size.

3 Alternative framework

The shortcomings of the existing methods outlined above motivated our al-
ternative approach. This alternative approach is based on minimizing the
distance between the empirical distribution and a semi-parametric distribu-
tion. This procedure is partially inspired by Bickel and Sakov (2008). Bikkel
and Sakov show that a sub-sample bootstrap is consistent in many cases,
but may fail in some important examples. They show that an adaptive rule
based on the minimization of the Kolmogorov-Smirnov (KS) test statistic

7In the Monte Carlo studies we choose n+ to be a prespecified threshold which also
applies to the other methods. Later to be defined as T .
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finds the proper sub-sample bootstrap size.8 For instance, the Gumbel, Ex-
ponential and the Uniform distribution need relatively small sub-samples for
convergence. Therefore, the choice of the subsample size in the bootstrap
procedure is essential.

Bickel and Sakov (2008) find the proper subsample size by matching the em-
pirical and theoretical distribution. We use their idea of matching the tail of
the empirical cdf to a theoretical distribution for finding α (k∗). This match-
ing process requires a semi-parametric form for the theoretical distribution.
The scaled Pareto distribution is the ideal candidate for matching the em-
pirical tail. After all, all distributions in this class by definition satisfy (1)
and the Pareto distribution is the only distribution for which (1) holds over
the entire support as it does not contain a second order term.9 The choice of
the supremum, rather than other well known penalty functions, is validated
via a simulation study.

3.1 Motivation for the KS distance metric

The new metric deviates from the classic Kolmogorov-Smirnov distance. The
difference lies in the fact that the distance is measured in the quantile di-
mension rather than the probability dimension. There are several reasons for
this choice. The first reason is that most economic variables, such as gains
and losses, are concepts in the quantile dimension rather than the probability
dimension. Various risk measures, such as Value-at-Risk, Expected Short-
fall, and the variance are concepts related to quantiles at a given probability
level in the horizontal dimension. The second motivation is more technical.
Our analysis is solely focused on the tail of the distribution, rather than the
center observations. For tail observations, small changes in probabilities lead
to large changes in quantiles. Consequently, small mistakes in estimating
probabilities lead to large deviations in the quantiles. We therefore prefer
to minimize the mistakes made in the quantile dimension rather than the
probability dimension.

Given the decision to measure over the quantile dimension, a function is
needed to penalize deviations from the empirical distribution. Some exam-
ples of penalty functions are the mean squared error, and the mean abso-
lute error in addition to various others that weigh the deviations differently.
Different penalty functions put emphasis on minimizing a specific array of

8The KS distance is the supremum of the absolute difference between the empirical cdf
and a parametric cdf, i.e. sup

x
|Fn (x)− F (x)|.

9L (1) is constant.
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mistakes. For instance, the mean squared error punishes large deviations
disproportionally more than small errors. The penalty function we opt for
is the maximum absolute deviation. The maximum absolute deviation has
specific benefits which makes it suitable for fitting the quantiles in the tail.

The inner part of the penalty function takes the absolute difference between
the quantiles instead of, for instance, the squared difference. The reason is
that our application focuses on fitting tail quantiles. A small error in the tail
is automatically magnified. Therefore, fitting the tail quantiles already intro-
duces a natural way to put emphasis on the larger deviations. It consequently
does not necessitate additional penalizing, like the squared differences do.

To translate all the absolute differences along the tail into one metric, we
use the maximum over the absolute distances. Taking the maximum has as
a benefit that the metric is not diluted by the numerous center observations.
This, for instance, is the case when the differences are averaged.

3.2 The distance metric

The starting point for locating k∗ is the first order term of the power expan-
sion:

P (X ≤ x) = F(x) = 1− Ax−α[1 + o(1)]. (7)

This function is identical to a Pareto distribution if the higher order terms
are ignored. By inverting (7), we get the quantile function

x =

(
P (X ≥ x)

A

) 1
−α

. (8)

To turn the quantile function into an estimator, the empirical probability
j/n is substituted for P (X ≥ x). The A is replaced with the estimator
k
n

(Xn−k+1,n)α and α is estimated by the Hill estimator. The quantile is
thus estimated by

q (j, k) =

(
P (X > x)

A

) 1
−α

=

[
k

j
(xn−k+1,n)α̂k

] 1
α̂k

. (9)

Here j is the (n− j)th order statistic X1,n ≤ X2,n ≤ ... ≤ Xn−j,n ≤ ... ≤ Xn,n

such that j/n comes closest to the probability level P (X > x).

Given the quantile estimator, the empirical quantile and the penalty function,
we get:
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Q1,n = inf
k

[
sup
T
|xn−j,n − q (j, k)|

]
, for j = 1, ..., T (10)

where T > k is the region over which the KS distance metric is measured.
Here xn−j,n is the empirical quantile and q (j, k) is the estimated quantile
from (9). This is done for different levels of k. The k, which produces the
smallest maximum horizontal deviation along all the tail observation till T ,
is the k∗ for the Hill estimator.

3.3 Brownian motion representation

There are various ways to study the behavior of this metric. Our first ap-
proach to study the properties of the KS distance metric is to model the
quantile process with a Brownian motion representation. This helps in de-
vising the Monte Carlo experiments. By Theorem 2.4.8 from De Haan and
Ferreira (2006, page 52) the KS distance metric in (10) can be written as10

arg min
0<k<T

sup
0<l<T

k

∣∣xn−lk,n − (l)−γ xn−k,n
∣∣ =

arg min
0<k<T

sup
0<l<T

k

∣∣∣∣∣ γ√kU
(n
k

)
l−γ

[
l−1w (l)− w (1)−A0

(n
k

) √k
γ

l−ρ − 1

ρ

]∣∣∣∣∣ , (11)

where l = i/k, ρ ≤ 0, U (n/k) =
(

1
1−F

)←
, w (l) is a Brownian motion and

A0 (n/k) is a suitable normalizing function.

For the case that the cdf satisfies the Hall expansion (7) the functions U
(
n
k

)
and A0

(
n
k

)
can be given further content. This is also needed for the sim-

ulations that are performed below. Applying the De Bruijn inversion11 we
arrive at,

U
(n
k

)
= Aγ(n/k)γ

[
1 +

B

α
A−βγ (n/k)−βγ

]
and

A0 (n/k) = − β/α

αB−1Aβ/α n
k
β/α

.

Below we report the results of an extensive elaborate simulation study on
the performance of the minimization in (11) and whether this renders a k for

10For the derivation see Appendix A.5.
11See Bringham, Goldie, and Teugels (1989, p. 29).
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which the Hill estimator performs well. Thus far, we have not been able to
prove on the basis of (11) that the resulting choice for k yields a consistent Hill
estimator of α, nor whether k∗ minimizes the asymptotic mse. However, the
simulation studies at least seem to suggest that the new criterion performs
better than existing approaches.

3.4 Alternative penalty functions

To benchmark the relative performance of the penalty function of the KS
distance metric we introduce four additional metrics for the simulation exer-
cise. The following three are introduced for a comparative MC study to serve
as benchmarks for the relative performance of the specific penalty function
in (10). The last distance metric in this section is used in the MC horse race.

The following two metrics average the difference measured over the region
indicated by T . The first alternative penalty function is the average squared
distance in the quantile dimension,

Q2,n =
1

T

T∑
j=1

(xn−j,n − q (j, k))2 .

The second alternative measure is the average absolute distance

Q3,n =
1

T

T∑
j=1

|xn−j,n − q (j, k)| .

These two penalty functions are intuitive and are often used in the econo-
metric literature.12

The third metric we consider is motivated by the theoretical test statistic by
Dietrich, De Haan, and Hüsler (2002). They develop a statistic to test as to
whether the extreme value conditions do apply. We take the discrete form
of this statistic and adjust it for our own purpose, resulting in

Q4,n =
T∑
j=1

(xn−j,n − q (j, k))2

[q′ (j, k)]2
=

1

T

T∑
j=1

(
xn−j,n −

(
k
j

) 1
α̂k xn−k+1,n

)2

[
− 1
α̂k

(
j
k

)−(1+ 1
α̂k

)
(xn−k+1,n) n

k

]2 .

12The vast literature on ordinary least square- and least absolute deviation regressions
demonstrates this.
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For the purpose of benchmarking the KS distance metric in the Monte Carlo
horse race, we introduce a slightly altered version of the metric. We normalize
the distance by dividing the difference by the threshold quantile xn−k+1,n.13

This results in

Q5,n = inf
k

[
sup
T

∣∣∣∣∣ xn−j,nxn−k+1,n

− k

j

1
α̂k

∣∣∣∣∣
]
. (12)

The relative distance leads to a slight alteration of the KS distance metric.
This ratio metric will be introduced in the Monte Carlo horse race as an
alternative to the Q1,n measure.

3.5 Simulation approach

We use a Monte Carlo simulation to study the properties of the KS distance
metric. The theoretical derivation of the optimal number of order statistics
for the Hill estimator by Hall and Welsh (1985) gives some guidelines on
how the optimal threshold behaves. This provides us the opportunity to
analyse the properties of k∗ across different distributions. For the simulation
study, we choose distribution families which adhere to the Hall expansion in
Equation (3). These distributions therefore have a known α and k∗, where
k∗ minimizes the amse.

In the simulation study, estimates of α and k∗ for different penalty functions
are analyzed. There are six properties which we evaluate. The first property
is the bias in the estimate of α. Secondly, we compare the estimates for α
of different members within the same distribution family, like the Student-
t. This helps us to isolate the specific performance of metrics keeping the
distribution family constant.

Thirdly, the results derived by Hall and Welsh (1985) give us the level of
k∗ for a given parametric distribution and sample size.14 This allows us to
evaluate how close the different criteria come to the k∗. The Fourth property
addresses the theoretical relationship between α and k∗ which are inversely
related for most distributions. We evaluate whether this is born out in the
simulations. The fifth property of k∗ is that for n → ∞ and k (n) → ∞
that k/n → 0. This entails that for the same distribution a larger sample
size should lead to a smaller proportion of observations being used for the
estimation of α. The methods should capture this decline.

13The normalized difference lends itself better for proving theoretical results.
14See Appendix A.3.
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The sixth property we pay attention to is the fact that the choice of k∗ does
not depend on the tail region we optimize over, i.e. T . We have defined
above that the metric is optimized over a region [xn−T,n,∞], where T > k.
Here T is an arbitrarily chosen parameter, but in the simulation study we
investigate the sensitivity of k∗ with respect to T .

3.6 MC Brownian motion representation

To study the behavior of the KS distance metric, we perform Monte Carlo
simulation studies. Firstly, the simulations are done on the basis of the
stochastic process representation of the distance criterion in (11). This allows
us to study the metric under relatively general conditions. The second step
is to test the relative performance of the KS distance metric.

Simulating the function in Equation (11) necessitates a choice of values for
parameters α, β, A and B. For the robustness of the Monte Carlo simu-
lations, we use distributions and processes that differ along the dimension
of α, A and the second order terms in (3). These parameters are extracted
using the power expansion by Hall for the Student-t, Symmetric Stable and
Fréchet distribution.

Figure 2 shows whether the KS distance metric finds an interior k∗ which
has the smallest maximum absolute difference. The upper graph in Figure 2
shows where the largest deviations are found for a given k. This illustrates
that the largest deviations are often found close to the extremes of the opti-
mization area. By using few observations, a small k, the tail is fitted towards
the largest observations. As a consequence, the largest deviation is found
towards the center of the distribution. This logic also holds for when k is
fixed towards the center. For k large, the largest deviation is found deep in
the tail of the distribution. Combined, the two results imply that there is an
optimum somewhere between the two endpoints. Given the upper graph of
Figure 2, the lower graph shows how large on average these corresponding
deviations are for a fixed k. In addition, it tells us which k on average gets
the best fit by producing the smallest maximum deviation.

The lower graph shows a U-shape. This implies that the KS distance metric
does not provide an undesirable corner solution. This corresponds to a k∗

which is not in the volatile or extremely biased area of the Hill plot.15

15The figures for the Symmetric Stable and the Fréchet distribution are in Appendix
B.2.
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Figure 2: Simulations Brownian motion for Student-t parameters

These two figures show the simulations for the limit function in (11). The parameters are
for the Student-t distribution, which are found in Table 4 of the Appendix. The value for
α for the different lines is stated in the legend. Here T is 1,500, therefore, the interval
between w(si)−w(si+1) is normally distributed with mean 0 and variance 1/k. The path of
the Brownian motion is simulated 1,000 times. The top figure shows the average number
of order statistics at which the largest absolute distance is found for a given k. The bottom
graph depicts the average distance found for the largest deviation at a given k. The top
and bottom graphs are related by the fact that the bottom graph depicts the distances
found at the ith observation found in the top graph.

The simulation results for the Fréchet distribution are presented in Figure
7 in the Appendix. The results for the Fréchet distribution show a similar
pattern to the Student-t distribution. A U-shaped pattern emerges for the
value of the supremum for increasing values of k.

For the Symmetric Stable distribution, the results are less clear. Figure 6 in
the Appendix does not show the same pattern as the previously discussed
distributions. For α = 1.7, there is no clear pattern in which the largest
deviations are found for a given k. For α = 1.9, the largest deviations are
found at the observations closest to the center of the distribution for almost
any given k. For k > 1, 400, the largest deviations are on average found
further towards the more extreme tail observations. For the other shape
parameter values the largest deviations are found close to either the largest or
smallest observations in the optimization area. This is similar to the patterns
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found for the Student-t distribution. In the lower graph the supremum fails
to produce the desired U-shape, suggesting no clear interior k∗ is found for
this distribution family. We therefore suspect that the performance of the
KS distance metric is less clear for the Symmetric Stable distribution.

3.7 MC penalty functions

Next, the Monte Carlo simulation study of the relative performance of the
KS distance metric is presented. We contrast the performance of the KS
distance metric with the other three metrics presented in Section 3.5. For a
thorough analysis, we draw samples from the same three families of heavy
tailed distributions as in the previous section.

In Figure 3, the level of α(k∗) is displayed against the area over which the
specified metric is optimized, i.e. T . These plots give an indication whether
the α(k∗) is at the right level and stabilizes as a function of T .

The first fact to notice in Figure 3 is that for the KS distance metric the
curves are relatively flat. More importantly, the curves come closest to the
theoretical α levels. On the basis of the mean square distance, mean absolute
distance, and the metric by Dietrich et al. (2002), the estimates of α(k∗) do
not stabilize, except for the Student-t (2) distribution. The more or less
monotonic decline in the three graphs indicates that it is hard to choose an
optimal k-level on the basis of the three criteria.

In Figure 17, in the Appendix, the curves for the Symmetric Stable distri-
bution family are depicted. In the upper left graph, the curves for the KS
distance metric are relatively horizontal. This indicates that the inability to
generate a U-shape in section 3.6 does not have a strong influence on the
estimate of α. The estimates of the level of α are not unbiased. There is
a positive bias of 0.1 for the α between 1.1 and 1.7. For the specific case
of α = 1.9, all methods have trouble finding the correct α. This is because
the Symmetric Stable distribution with α = 1.9 comes close to α = 2 which
is the thin tailed normal distribution. The normal distribution falls in the
domain of attraction of the Gumbel distribution and is therefore outside of
the domain of the Hill estimator.

All the estimates of α have a small bias when the samples are drawn from the
Fréchet distribution family, as can be observed from Figure 18 in Appendix
B.2. The Fréchet distribution has a small bias and therefore the choice of k∗

is less crucial. In addition, the k∗ which minimizes the amse, as derived by
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Figure 3: Optimal α̂ for quantile metrics (Student-t distribution)

This Figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme order statistics over which the metric is
optimized. In the upper left graph this is done for the KS distance metric for different
Student-t distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n=10,000.

Hall and Welsh (1985), for the Fréchet distribution does not depend on the
shape parameter α. This implies that the same k∗ minimizes the amse for
different members within the Fréchet distribution family.16

Figure 4 depicts the average k∗ over 10,000 simulations for the Student-t
distribution family. Via these figures we can study the properties of k∗ as
the interval [0, T ] over which the metric is optimized changes. We observe
that the average k∗ as a function of T stabilizes for the KS distance met-
ric. This indicates that the choice of k∗ is stable given that the area you
optimize over is sufficiently large. For the Student-t (2) distribution no such
stabilization occurs. The average mean square distance displays roughly the
same properties as the KS distance metric. Although the choice of k seems
to roughly stabilize, this does not automatically translate into a stable and

16The results are based on the second order expansion. This might be different when
higher order terms are used.
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optimal estimation of α (k). This stabilization does not occur for the mean
absolute difference and the metric by Dietrich et al. (2002).

Figure 4: Optimal k for quantile metrics (Student-t distribution)

This Figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme order statistics over which the metric is optimized.
In the upper left graph this is done for the KS distance metric for different Student-t
distributions with degrees of freedom α. This is also done for the mean squared distance,
mean absolute distance and the criteria used by Dietrich et al. (2002). The simulation
experiment has 10,000 iterations for sample size n = 10, 000.

Next, we study the relationship of the average level of k∗ for the different
members within the distribution family. In Figure 4 we observe that for the
KS distance metric k∗ is an increasing function of the degrees of freedom
for the Student-t distribution. This is the pattern that we expect based on
the k∗ derived by minimizing the amse. This pattern is not observed for the
other criteria.

Figure 19 in the Appendix depicts the results for the Symmetric Stable distri-
bution. The plots do not show the same stabilizing results that are found for
the Student-t distribution. The choices of k∗ are the expected level relative
to one another until approximately T = 600. For larger values of T , the level
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of the estimates start to shift relative to one another. The Symmetric Stable
distribution is relatively difficult to analyse. This is due to several reasons.

Figure 14 in the Appendix shows a hump shape for the Hill plot of the Sym-
metric Stable distribution. Sun and De Vries (2014) show that the positive
sign of the scale parameter of the third order term in the Hall expansion
explains the hump shape. This convexity can lead to two intersections of
the Hill plot with the true value of α. The region where k is small, the
high volatility region, has an intermediate probability containing the best
estimate. As k increases and moves into the hump, the volatility subsides,
however, the bias kicks in. These estimates are biased and therefore have
a low probability of containing the best estimate. As k increases further
towards T , the Hill estimates move back in the range of the true α. These
estimates have a lower variance and possibly a better estimate than the first
volatile part. This is a possible explanation for the shape of k∗ as a function
of T in the KS distance metric plotted in Figure 19. The increase in k∗ after
a flat line between 500 and 1,000 is an indication that the before suggested
effect is kicking in.

The results for the Fréchet distribution are depicted in Figure 20. The value
of k∗ in the plots is an increasing function of T . This is explained by the
relatively large value of k∗. For a total sample size of 10,000, the mse optimal
threshold is approximately at 10%. This implies that T needs to be large
to reach a stable region. The pattern of the lines being close together is as
expected. For the Fréchet distribution, the k∗ is independent of α. Therefore,
we do not expect to see a particular pattern between the estimates of the
different members of the Fréchet distribution. Additionally, from Figure
15 we see that the bias is relatively small for the Fréchet distribution. This
makes the choice of k∗ less important in contrast with the other distributions.

In Monte Carlo simulation studies none of the metrics used attain the optimal
level of k∗. Based on the other desirable attributes described in Section
3.5, the KS distance metric outperforms the other metrics. The simulation
results show that as the tail becomes heavier the number of observations
chosen for the Hill estimator increases for the Student-t and Symmetric Stable
distribution. One of the concerns where the other metrics fail considerably
is the robustness of their results. Ideally, the chosen k∗ should not change as
the interval for the metric changes, i.e. change in T . The KS distance metric
is the only metric that is robust to changes in T . This alleviates the concern
of arbitrarily chosen parameters driving the results.
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4 Monte Carlo: The big horse race

Given the choice of the KS distance metric as the appropriate penalty func-
tion, the literature offers competing methods for choosing k∗. These are the
Double Bootstrap and the method by Drees and Kaufmann (1998) reviewed
in Section 2.2.1. Additionally, we use the automated Eye-Ball method, fixed
sample proportion and Q5,n in (12) in the MC horse race. The k∗ as derived
by Hall and Welsh (1985) is not useful for real world applications, but it can
function as a useful benchmark in a MC study. In the horse race we judge
the methods on their ability to estimate the tail index and to reproduce the
patterns in α and k∗ described in Section 3.5. In addition, we evaluate the
ability to estimate the different quantiles. Even though the methodologies are
focused on the Hill estimator, estimating the quantiles can give an interesting
new dimension to the performance of these methodologies. For the quantile
estimator, both the shape and scale parameters need to be estimated. These
are dependent on k∗.

4.1 Distributions and processes for MC horse race

To do the Monte Carlo horse race properly, we have chosen a wide range
of heavy tailed distributions and processes. One prerequisite is that the
tail index for these distributions is known. Although this restriction is not
necessary, it allows the analysis to be more robust and informative. Given
this limitation, the distributions vary in their tail index, in addition to their
rate of convergence as n→∞, and their bias and variance trade-offs.

As before we use three distribution families to draw i.i.d. samples from: The
Fréchet, Symmetric Stable and the Student-t distribution. We also employ
dependent time series. The ARCH and the GARCH models by Engle (1982)
and Bollerslev (1986), respectively, model the volatility clustering in financial
data. Therefore, the simulations also use non-stationary times series in the
form of ARCH volatility models to evaluate the performance of the methods
under the clustering of extremes. For the ARCH process we do not know
the variance and the bias of the Hill estimator. However, due to the Kesten
Theorem, we are able to derive the tail index.17

17See Appendix A.4.
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4.2 Results of the MC horse race for the tail index

Table 1 presents the results from the Monte Carlo horse race for the heavy
tailed distributions and processes with the mean estimates of α for the differ-
ent methodologies. From Table 1 it is clear that all methods for the Student-
t distribution exhibit an increasing bias as the degrees of freedom increase.
This problem is most prominent for the Double Bootstrap method and the
iterative method of Drees and Kaufmann (1998). The KS ratio metric in-
troduces a large bias for the more heavy tailed distributions of the Student-t
family. The KS distance metric, Theoretical threshold and the automated
Eye-Ball method give estimates that are closest to the true value of the tail
index.18 Based on these results for the Student-t distribution we conclude
that the KS distance metric performs better than other implementable meth-
ods. However, the automated Eye-Ball method is only performing marginally
inferior to the KS distance metric.

The simulation results for the Symmetric Stable distribution do not point
towards a method that is clearly superior. With the exception of the KS
ratio metric, for α = 1.1 and α = 1.3, the other methods perform better in
terms of the mean estimate than the KS distance metric. The bias of the KS
distance metric is 0.11 and 0.09, respectively. For α = 1.5 and α = 1.7, the
bias is around 0.08 for the KS distance metric. The performance of the other
methods starts to worsen at these levels of α. The estimates of the other
methods are upwards biased. This bias is even more severe for α = 1.9. For
α = 1.9, the competing methods completely miss the mark. The same is
true for the KS distance metric, but the bias is the smallest among all the
methods. At α = 2 the tail of the Symmetric Stable distribution becomes
the thin tailed normal distribution and is therefore outside of the domain of
where the Hill estimator applies.

The bias of the Hill estimator for the Fréchet distribution is relatively small
compared to the Student-t and Symmetric Stable distribution.19 Therefore,
all of the methods perform relatively well except for the KS ratio metric.
The automated Eye-Ball method has the best performance for this family of
distributions. The bias in the KS distance metric is large relative to the other
metrics. As the bias in the Fréchet distribution is small, the bias due to the
KS distance metric is still limited in absolute terms. Due to the small bias

18The k∗ chosen by the results of Hall and Welsh (1985) does not have any empirical
application. The true data generating process needs to be known in order to determine
k∗, but as a benchmark the comparison can be insightful.

19See Figure 15 in the Appendix.
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Table 1: Estimates of α under different methods for the four families of
processes

α KS dif KS rat TH 5% Eye-Ball Drees Du Bo

Student-t

2 2.01 3.33 1.92 1.85 1.98 1.70 1.71
3 2.85 3.56 2.79 2.45 2.83 2.24 2.20
4 3.53 3.92 3.58 2.87 3.48 2.64 2.52
5 4.10 4.37 4.32 3.16 3.96 2.92 2.75
6 4.49 4.71 4.96 3.38 4.29 3.14 2.92

Stable

1.1 1.21 4.33 1.11 1.11 1.10 1.07 1.09
1.3 1.39 3.30 1.33 1.37 1.32 1.33 1.36
1.5 1.58 3.74 1.57 1.72 1.54 1.68 1.71
1.7 1.78 3.63 1.84 2.32 1.84 2.18 2.19
1.9 2.31 3.63 2.55 3.55 3.36 3.13 2.90

Fréchet

2 2.01 3.63 1.99 1.98 2.00 1.92 1.93
3 2.93 3.89 3.01 2.97 3.00 2.88 2.90
4 3.79 4.25 4.05 3.96 3.99 3.85 3.87
5 4.71 5.16 5.09 4.95 4.99 4.81 4.84
6 5.63 5.82 6.14 5.94 5.98 5.77 5.81

ARCH

2.30 2.59 15.15 2.13 2.34 1.93 1.88
2.68 2.87 3.72 2.39 2.66 2.16 2.05
3.17 3.22 3.95 2.69 3.04 2.42 2.22
3.82 3.66 4.49 3.02 3.50 2.71 2.39
4.73 4.18 4.50 3.38 4.03 3.04 2.55

This table depicts the mean for the estimated α for the different methodologies.
The samples are drawn from four different heavy tailed distribution families. The
samples are drawn from the Student-t, Symmetric Stable, Frechet distribution and
ARCH process. The different methods are stated in the first row. KS dif is the
Kolmogorov-Smirnov distance metric in (10). The KS rat is the Kolmogorov-Smirnov
distance in (12). TH is based on the theoretically derived optimal k from minimizing
the mse for specific parametric distributions, presented in Equation (17) in the
Appendix. The automated Eye-Ball method in (6) is the heuristic method aimed
at finding the first stable region in the Hill Plot. For the column Drees the k∗ is
determined by the methodology described by Drees and Kaufmann (1998). Du Bo
is the Double Bootstrap procedure by Danielsson et. al. (2001). Here α indicates
the corresponding theoretical tail exponent for the particular distribution which the
sample is drawn from. The sample size is n = 10, 000 for 10, 000 repetitions.

for the Fréchet distribution, the choice of method for k∗ is less important.

The Hill plot of the ARCH process is similar to that of the Student-t dis-
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tribution. Therefore, we expect that the methods which performed well in
the Student-t simulation to also perform well for the ARCH process. Table 1
shows that for the ARCH simulations the KS distance metric and the auto-
mated Eye-Ball method indeed outperform the other methods. For the very
heavy tailed processes the automated Eye-Ball method has a smaller bias.
For α = 3.172 and larger values of α, the KS distance metric shows a smaller
bias. The other methods show a substantial bias over the whole range of α.
To conclude, the automated Eye-Ball method and KS distance metric are the
preferred methods since these perform best across a wide range of α values.

In Table 5 of the Appendix the patterns in k∗ for the various distributions give
a mixed picture. The KS distance metric, as previously discussed, shows the
patterns derived by Hall and Welsh (1985). The automated Eye-Ball method
offers a more confusing picture. For the Student-t distribution the average
number of observations used for the estimation increases with α. This goes
against the results for k∗TH . The same holds true when the sample is drawn
from the Symmetric Stable distribution.

The Double Bootstrap method shows the right patterns in the choice of k∗,
but the levels for the Student-t and Symmetric Stable distribution are far
higher than desired. In part, this is due to the fact that for the Double
Bootstrap method the practical criterion is based on asymptotic arguments.
This means that the asymptotic results might not hold in finite samples.
In addition, the bootstrap has a slow rate of convergence. In practice this
leads the criterion function to be flat and volatile near the optimum. As a
consequence, often no clear global minimum is found.

4.3 Simulation results for the quantiles

We also included an analysis on how the different metrics perform in esti-
mating the quantiles of the distribution. For many of the economic questions
this is more relevant than the precise value of the tail index. Figure 5 depicts
the bias of the quantile estimator for the different methodologies.

For the Student-t distribution, the method by Drees and Kaufmann (1998),
the Double Bootstrap and the 5% fixed sample size approach generate a com-
paratively large bias in the 99% to 100% quantile region. The flip side is that
these methods have a small bias for the quantiles further towards the center
of the distribution compared to the other competing methodologies. With
exception of the KS distance metric for the Student-t distribution with two
degrees of freedom, the KS distance metric, the automated Eye-Ball method
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Figure 5: Quantile estimation bias different methodologies (Student-t distribu-

tion)

This Figure show the bias induced by using the quantile estimator presented in Equation
(9). We use the k∗ from the different methodologies to estimate α(k∗) and the scale
parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000 are
drawn from the Student-t distribution family with the shape parameter indicated at the
top of the picture. The i on the horizontal axis gives the probability level i/n at which
the quantile is estimated. Moving rightwards along the x-axis represents a move towards
the center of the distribution.

and the theoretical mse produce a smaller bias in the tail region. These three
methods exhibit a larger bias towards the center of the distribution. Given
that one intends to model the quantiles deep in the tail of the distribution,
the KS distance metric and the automated Eye-Ball method are the preferred
methods.
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Figure 21 depicts the results for the Symmetric Stable distribution. The KS
distance metric introduces a large bias over the entire region. Comparing
these results with Table 1 suggests that the bias in the quantiles stems from
the estimated scale parameter A. The methods by Drees and Kaufmann
(1998) and Danielsson et al. (2001) perform consistently well over the region
for α ≤ 1.5. As α increases, the ranking of the different methodologies alters
and no clear choice of methodology arises.

The results for the Fréchet distribution are presented in Figure 22 in the
Appendix. The 5% fixed sample fraction produces a consistently small bias.
The theoretical mse and automated Eye-Ball method produce a relatively
small bias for the quantiles larger than 99.5% region. Their bias increases
relative to other methodologies for quantiles that are closer towards the center
of the distribution.

The bias might be subject to asymmetric outliers in the error distribution.
Therefore, we also produce results for the median difference to obtain an
outlier robust centrality measure. The outcomes for the Student-t distribu-
tion do not change dramatically. For the quantiles towards the center of the
distribution, the KS distance metric improves its performance compared to
the automated Eye-Ball and theoretical mse criteria. The median error for
the Symmetric Stable distribution also produces a different picture for the
performance of KS distance metric. The KS distance metric performs rela-
tively better compared to the analysis based on the mean estimation error.
This is throughout the whole region of the tail. The same results emerge for
the samples drawn from the Fréchet distribution. From this we infer that
the KS distance metric is rather susceptible to outliers.

Based on the analysis of the Monte Carlo horse race, we conclude that both
the KS distance metric and the automated Eye-Ball method have a superior
performance over the other implementable methods. Both methods perform
well based on α̂. However, based on the analysis of the choice of k∗, the KS
distance metric shows a better pattern. This translates into a smaller bias
in the simulation study for the Student-t and Symmetric Stable distribution
for higher values of α. The conclusions for quantile estimation are more
sobering. Since the KS distance metric and the automated Eye-Ball method
perform well deep in the tail of the distribution, they have a relatively large
bias towards the center.

The performance of the methods of Drees and Kaufmann (1998) and Daniels-
son et al. (2001) in finite samples is inferior to the other methods. This
notwithstanding the proofs that asymptotically the methods are consistent.
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Picking a fixed percentage of observations, such as 5%, ignores the informa-
tion which can be obtained from the Hill plot. For larger samples this often
means that α is estimated with a relatively large bias as can be observed
from the Monte Carlo simulation. This leads to the conclusion that the KS
distance metric overall comes out as the preferred approach.20

5 Application: Financial return series

We now take the KS distance metric to the real data. We estimate the tail
index for the return data on individual U.S. stocks. The various methods
that are used in the horse race are used to estimate the tail exponent for
returns on U.S. stocks.

5.1 Data

The stock market data is obtained from the Center for Research in Security
Prices (CRSP). The CRSP database contains individual stock data from
1925-12-31 to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. In
total 17,918 stocks are used. For every stock included in the analysis, it needs
to trade on one of the four exchanges during the whole measurement period.21

Only stocks with more than 48 months of data are used for estimation. For
the accuracy of EVT estimators typically a large total sample size is required,
because only a small sample fraction is informative regarding the tail shape
properties.

5.2 Empirical impact

The average absolute differences between the estimates of the tail exponent
are compared to one another in the tables below.22

20For additional simulation results the reader can consult the Tables and Figures from
Monte Carlo simulations in the online Appendix.

21In the CRSP database ’exchange code’ -2, -1, 0 indicates that a stock is not traded
on one of the four exchanges and thus no price data is recorded for these days.

22For the descriptive statistics on the tail estimates of the left and right tail for the
different methods consult Tables 6 and 7 in the Appendix.
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Table 2: The mean absolute difference of the estimates of α in
the left tail for the 6 different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 0.71 0.84 0.59 1.11 1.44
KS rat 0.71 0.00 1.45 1.14 1.73 2.05

5% 0.84 1.45 0.00 0.56 0.49 0.74
Eye-Ball 0.59 1.14 0.56 0.00 0.92 1.22

Drees 1.11 1.73 0.49 0.92 0.00 0.49
Du Bo 1.44 2.05 0.74 1.22 0.49 0.00

This table presents the results of applying the six different methods to
estimate α for left tail of stock returns. The data is from the CRSP
database that contains all individual stocks data from 1925-12-31 to
2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The matrix
presents the mean absolute difference between the KS distance metric, KS
ratio method, 5% threshold, automated Eye-Ball method, the iterative
method by Drees and Kaufmann (1998) and the Double Bootstrap by
Danielsson et. al. (2001). The stocks for which one of the methods
has α̂ > 1, 000 are excluded. The maximum k is cut-off at 15% of the
total sample size. There are 17,918 companies which are included in the
analysis.

Table 3: The mean absolute difference of the estimates of α in
the right tail for the 6 different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 0.78 0.75 0.54 0.88 1.22
KS rat 0.78 0.00 1.44 1.15 1.57 1.90

5% 0.75 1.44 0.00 0.55 0.39 0.63
Eye-Ball 0.54 1.15 0.55 0.00 0.77 1.12

Drees 0.88 1.57 0.39 0.77 0.00 0.50
Du Bo 1.22 1.90 0.63 1.12 0.50 0.00

This table presents the results of applying the six different methods to
estimate α for right tail of stock returns. The data is from the CRSP
database that contains all the individual stocks data from 1925-12-31 to
2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The matrix
presents the mean absolute difference between the KS distance metric, KS
ratio method, 5% threshold, automated Eye-Ball method, the iterative
method by Drees and Kaufmann (1998) and the Double Bootstrap by
Danielsson et. al. (2001). The stocks for which one of the methods
has α̂ > 1, 000 are excluded. The maximum k is cut-off at 15% of the
total sample size. There are 17,918 companies which are included in the
analysis.
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Tables 2 and 3 present the results of the estimation of the tail exponents for
the left and right tail. The thresholds are estimated with the six method-
ologies from the horse race.23 The absolute difference between the different
methods is quite substantial for both the left and right tail.24 Note from
the results that the methods can be divided into two groups. These groups
have relatively similar estimates. The KS distance metric and the auto-
mated Eye-Ball method show a relatively large deviation from the estimates
that are obtained with the Double Bootstrap and the iterative method by
Drees and Kaufmann (1998). This result is in line with the Monte Carlo
simulations, where the KS distance metric and automated Eye-Ball method
estimates are relatively close to one another. Both methodologies utilize a
low fraction of the total sample for α̂ in the simulations. The same holds for
the return data. Tables 12 and 13 in the Appendix show that the Double
Bootstrap procedure has the smallest average difference in choosing the k∗

with the method by Drees and Kaufmann (1998). This is in line with the
Monte Carlo horse race where both methods picked similar optimal sample
fractions. The results for the right tail of the empirical distribution are some-
what proportionally smaller, but the same relative differences are preserved
between methodologies.

Comparing the results between the horse race and the financial application
does show parallels. In the horse race the KS distance metric and the auto-
mated Eye-Ball method perform well and have estimates close to one another.
This is also the case for the analysis on the equity return data. The methods
by Drees and Kaufmann (1998) and Danielsson et al. (2001) also generate
estimates of α which are close to one another for the financial data. In the
Monte Carlo horse race they show poor finite sample properties. Even though
these patterns might be coincidental, it does cast doubt on the applicability
of these methods for real world empirical estimations.

6 Conclusion

In this paper we propose a new approach to choose the optimal number of
order statistics for the Hill estimator. We employ the Kolmogorov-Smirnov
distance over the quantile dimension to fit the Pareto quantile estimator to

23The theoretical threshold is not applicable for these applications. Only with strong
parametric assumptions is the theoretical threshold applicable.

24The average absolute difference can easily be dominated by large estimates of α. In
Tables 8 and 9 we also report the results for the median difference. The results for the
median are similar to these results, but smaller in size.
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the empirical distribution. The scale and shape coefficients of the Pareto
quantile estimator are dependent on the tail index estimate and therefore on
the number of order statistics utilized for the estimation. By fitting the tail
of the distribution we try to find the optimal sample fraction for the Hill
estimator.

Validating the performance of the methodology we model the KS distance
metric in terms of a Brownian motion. Modelling the KS distance metric
as a Brownian motion allows us to study the properties of the KS distance
metric in a more general setting. In addition, we use the properties derived
by Hall and Welsh (1985) on the optimal number of order statistics to run
further simulation studies. A comparison is drawn between the KS distance
metric and other commonly applied penalty functions. Guided by the results
by Hall and Welsh (1985), we find that among an array of penalty functions
the KS distance metric has the best properties.

The literature to date provides methods from the theoretical statistical liter-
ature. These methods are backed by asymptotic arguments. Although these
methods are asymptotically consistent, their finite sample properties are of-
ten unstable and inaccurate. In the applied literature, heuristic methods are
frequently applied as well. This can range from picking a fixed percentage
of order statistics to Eye-Ball the Hill plot. These methods are somewhat
arbitrary and subjective. To test the performance of the KS distance metric
we consider a horse race between the different methodologies. In the horse
race we use various parametric heavy tailed distributions and processes to
estimate the tail index with the Hill estimator. The KS distance metric and
the automated Eye-Ball method outperform the competing methods based
on the size of the bias. Both methods come close to the theoretically optimal
threshold as the threshold derived by Hall and Welsh (1985). Although the
theoretical optimal threshold is unknown in empirical application, it does
give confidence that the KS distance metric and the automated Eye-Ball
method estimate the tail index properly in empirical applications.

We also estimated quantiles in the simulation studies. The various method-
ologies have different areas in the tail where they outperform other methods.
The KS distance metric and the automated Eye-Ball method have better
quantile estimates for the very high probabilities. The Double Bootstrap
and the method by Drees and Kaufmann (1998) preform relatively better for
the quantiles towards the center of the distribution. This can be explained
by the high values of k∗ for these methods. A high value for k∗ normally
services a better fit towards the center observations. This is a possible ex-
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planation for the outcomes of the simulations for the Double Bootstrap and
method by Drees and Kaufmann (1998).

To show that the choice of the proper number of order statistics matters,
we estimate the tail index for various securities. We apply the different
methodologies to the universe of daily CRSP US stock returns. We estimate α
for the tail of the empirical distribution and compare the absolute differences
between the estimates of the different methods for the individual stocks. We
do this both for the left and right tail. The methods can be divided into
two groups. We find that the methods that perform well in the simulation
studies have estimates close to one another in financial applications. The
methods that ranked low in the Monte Carlo simulations also have estimates
which are highly correlated. The variation in estimates holds for both sides
of the tail. This gives the impression that the KS distance metric and the
automated Eye-Ball method should be preferred for empirical applications.

The automated Eye-Ball method has the advantage over the theoretical
methods that it locates in a direct way the trade-off between the bias and
the variance of the estimator. The region where the volatility firstly subsides
is directly observed from the Hill plot. The maximum absolute distance in
the KS distance metric focuses on minimizing the largest deviations. For
the horizontal dimension, these naturally occur deep in the tail of the distri-
bution. This is also the region for which EVT is intended. The conclusion
therefore is that the two empirically driven methods are best suited for the
estimation of α (k∗) and the quantiles deep in the tail.

This has important implications for the risk management of investors which
for instance hold these stocks. For example, Value-at-Risk estimates heavily
depend on the thickness of the left tail. The Value-at-Risk determines the
allowable risk taking in many financial institutions via internal risk manage-
ment or regulations. This makes the choice of methodology economically
important.
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A Appendix

A.1 The bias of the Hill estimator

E
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]
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k−1∑
i=0
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]
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.

The expectation is conditional on that Xn−k,n = s is in the tail of the distri-
bution, i.e.
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The numerator is a gamma 2 function, given that first order expansion is
taken for the cdf,
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Given that we take a second order expansion for the tail of the density
function of the numerator
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The last equation is obtained from applying the Taylor expansion to the
denominator. The bias is thus
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=
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A.2 Variance of the Hill estimator

For the variance of the Hill estimator the variance is written out in the form
of expectations
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The first term is worked out first,
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Substituting in the variance expression
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From the binomial distribution it is known that
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The conditional expectation of M is,
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As n becomes very large the second term goes to zero and E [M ] = nAs−α +
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Taking the Pareto approximation for the probability,
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With the results that are found
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Taking all the individual results together,
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Giving the variance of the Hill estimator,
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A.3 Optimal theoretical threshold

From the variance and the bias the mse = var + (bias)2 is
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For the amse the small terms go to 0,
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Taking the derivative w.r.t. s and setting it to zero gives the optimal thresh-
old
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Hall and Welsh (1985) show that there does not exist an estimator which
can improve on the rate that the amse disappears as n increases. Given s∗

and noticing that 1 − F (s) = As−α
[
1 + s−β

]
gives the following result for

the number of upper order statistics,

n
−2β
α+2βM (s∗) →

n→∞
A

[
2AB2β3α−1

(α + β)2

]− α
α+2β

, (17)

with probability 1.
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A.4 Kesten Theorem

Given stochastic difference equation (SDE)

Yt = AtYt−1 +Bt,

where (At, Bt) are i.i.d. random vectors and they are not necessarily inde-
pendent from each other.

Kesten Theorem:

Suppose E
(
Ak1
)

= 1,EAk1 (logA1)+ < ∞ and 0 < E
(
Bk

1

)
< ∞ for some

k > 0. Suppose B1/ (1− A1) is non-degenerate and logA1|A1 6= 0 is non-
lattice. Then the stationary solution of the SDE must be heavy tailed with
tail index k.

Given:

Xt = ztσt

σ2
t = γ + βX2

t−1,

where zt ∼ N (0, 1).

For ARCH process we have

X2
t = z2

t

(
γ + βX2

t−1

)
,

or

X2
t = z2

t γ + βz2
tX

2
t−1.

So that we may write

X2
t = Bt + AtX

2
t−1,

where At = βz2
t , Bt = z2

t γ.

We can see that conditions EAk1 (logA1)+ < ∞ and 0 < E
(
Bk

1

)
< ∞ are

met for the ARCH process with normally distributed shocks.

Given that zt ∼ N (0, 1) and the central moments of the normal distribution
are
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E [zp] = σp
2p/2Γ

(
p+1

2

)
√
π

,

the expectation works out to be

1 = E
(
βkz2k

t

)
1 = βk E

(
z2k
t

)
= βkσ2k 2kΓ

(
k + 1

2

)
√
π

1 =
(β2)k√
π

Γ

(
k +

1

2

)
.

Here β is the AR component of the ARCH process. Solving this equation
gives the tail exponent of X2

t . Assuming that X is Pareto distributed,

P
(
X2 > x

)
= P

(
X > x0.5

)
= Ax−

α
2 .

Making the tail index of an ARCH random variable 2k.

A.5 Limit function KS distance metric

The distance to be minimized is,

xn−i,n −
(
i

k

)−γ
xn−k,n.

Using from page 52 Theorem 2.4.8 in De Haan and Ferreira (2007) we get,
where we write s = i/k,

xn−i,n = U
(n
k

)[( i
k

)−γ
+

γ√
k

(
i

k

)−γ−1

w

(
i

k

)
− A0

(n
k

)( i
k

)−γ ( i
k

)−ρ − 1

ρ

]
,

where 0 < k < T < n and 0 < i < T . Here i, k, T and n are positive integers.
Furthermore, ρ ≤ 0, γ > 0, and n is the sample size. The T are the number
of order statistics over which the distance is minimized (tail region). The
w (·) is Brownian motion. Here A0 (·) is a suitable function. As an example
we have the following function for the case that the Hall expansion applies
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A0 (n/k) = − βγ

γ−1B−1Aβγ
(
n
k

)βγ .
Here β ≥ 0, B < 0, A > 0 and

U (i/k) =

(
1

1− F (i/k)

)←
,

and where (·)← denotes the inverse. The right hand part of the distance can
be modelled as,(

i

k

)−γ
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k

)( i
k

)−γ [
1 +

γ√
k
w (1)

]
.

Putting the two parts together gives
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.

For i/k = s we get

xn−sk,n−(s)−γ xn−k,n =
γ√
k
U
(n
k

)
s−γ

[
s−1w (s)− w (1)− A0

(n
k

) √k
γ

s−ρ − 1

ρ

]
.

This gives the limit function for the KS distance metric,

arg min
0<k<T

sup
0<s<T

k

∣∣xn−sk,n − (s)−γ xn−k,n
∣∣ =

arg min
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sup
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[
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) √k
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]∣∣∣∣∣ ,
where T ≥ k.
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B Tables and Figures

B.1 Tables

Table 4: Hall expansion parameters values

Stable Student-t Fréchet
α (1, 2) (2,∞) (2,∞)
β α 2 α

A 1
π
Γ (α) sin

(
απ
2

)
1√
απ

Γ(α+1
2 )

Γ(α2 )
α(α−1)/2 1

B −1
2

Γ(2α) sin(απ)

Γ(α) sin(απ2 )
−α2

2
α+1
α+2

1
2
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Table 5: Estimates of k∗ under different methods for the four families of distri-
butions

α KS dif KS rat TH 5% Eye-Ball Drees Du Bo

Student-t

2 509.89 5.32 281.00 500.00 19.67 1036.73 968.18
3 343.13 9.63 132.00 500.00 35.21 841.59 895.65
4 227.99 13.92 78.00 500.00 51.48 754.68 859.72
5 164.88 17.93 53.00 500.00 69.02 708.41 837.61
6 140.07 20.25 40.00 500.00 84.55 677.95 823.24

Stable

1.1 240.82 2.43 817.00 500.00 8.00 1481.88 1180.98
1.3 172.74 2.97 292.00 500.00 10.14 1466.24 1218.68
1.5 137.18 3.54 146.00 500.00 12.66 1376.89 1214.89
1.7 200.45 4.34 74.00 500.00 18.88 1176.03 1153.69
1.9 667.03 4.13 27.00 500.00 108.09 861.59 1061.44

Frechet

2 217.71 5.39 928.00 500.00 19.26 1500.70 1305.65
3 231.47 9.58 928.00 500.00 34.99 1501.00 1304.65
4 226.54 14.53 928.00 500.00 51.35 1501.00 1305.28
5 227.16 19.49 928.00 500.00 67.51 1501.00 1303.90
6 229.31 25.70 928.00 500.00 84.04 1501.00 1304.10

ARCH

2.30 290.39 8.53 500.00 31.32 1131.36 1244.62
2.68 300.24 10.29 500.00 36.21 1036.93 1244.78
3.17 290.97 12.06 500.00 42.90 947.32 1245.28
3.82 246.72 14.90 500.00 52.81 864.97 1246.05
4.73 202.79 17.84 500.00 64.75 791.26 1247.14

This table depicts the mean for the estimated k∗ for the different methodologies. The
samples are drawn from four different heavy tailed distribution families. The samples are
drawn from the Student-t, Symmetric Stable, Frechet distribution and ARCH process. The
different methods are stated in the first row. KS dif is the Kolmogorov-Smirnov distance
metric in (10). The KS rat is the Kolmogorov-Smirnov distance in (12). TH is based on the
theoretically derived optimal k from minimizing the mse for specific parametric distributions,
presented in Equation (17) in the Appendix. The automated Eye-Ball method in (6) is the
heuristic method aimed at finding the first stable region in the Hill Plot. For the column
Drees the k∗ is determined by the methodology described by Drees and Kaufmann (1998).
Du Bo is the Double Bootstrap procedure by Danielsson et. al. (2001). Here α indicates the
corresponding theoretical tail exponent for the particular distribution which the sample is
drawn from. The sample size is n = 10, 000 for 10, 000 repetitions.
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Table 6: Different statistics for α̂ in the left tail for the six different
methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
mean 3.40 3.99 2.70 3.19 2.41 1.98

median 3.35 3.78 2.72 3.19 2.32 2.05
st. dev. 0.81 5.01 0.58 0.65 0.94 0.53

min 0.27 0.49 0.16 0.16 0.48 0.19
max 7.79 427.86 15.04 8.52 53.00 10.09

skewness 0.40 55.10 0.71 0.09 18.34 -0.58
kurtosis 3.07 3835.31 19.53 4.56 717.86 11.60

This table presents the results of applying the six different methods to estimate
α for left tail of stock returns. The data is from the CRSP database that
contains all the individual stocks data from the 1925-12-31 to 2013-12-31 for
NYSE, AMEX, NASDAQ and NYSE Arca. The six different methods are
the KS distance metric, KS ratio method, 5% threshold, automated Eye-Ball
method, the iterative method by Drees and Kaufmann (1998) and the Double
Bootstrap by Danielsson et. al. (2001). Different statistics are calculated for
the distribution of α̂. The stocks for which one of the methods has α̂ > 1, 000
are excluded. The maximum k is cut-off at 15% of the total sample size. There
are 17,918 companies which are included in the analysis.

Table 7: Different statistics for α̂ in the right tail for the six dif-
ferent methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
mean 2.97 3.58 2.37 2.87 2.22 1.77

median 2.90 3.40 2.39 2.87 2.13 1.83
st. dev. 0.81 3.91 0.52 0.63 0.76 0.55

min 0.54 0.32 0.12 0.11 0.32 0.12
max 7.48 357.56 7.22 7.09 45.42 34.91

skewness 0.42 53.65 -0.22 0.15 17.52 12.51
kurtosis 3.01 4196.10 6.79 4.11 779.80 740.25

This table presents the results of applying the six different methods to estimate
α for right tail of stock returns. The data is from the CRSP database that
contains all the individual stocks data from the 1925-12-31 to 2013-12-31 for
NYSE, AMEX, NASDAQ and NYSE Arca. The six different methods are
the KS distance metric, KS ratio method, 5% threshold, automated Eye-Ball
method, the iterative method by Drees and Kaufmann (1998) and the Double
Bootstrap by Danielsson et. al. (2001). Different statistics are calculated for
the distribution of α̂. The stocks for which one of the methods has α̂ > 1, 000
are excluded. The maximum k is cut-off at 15% of the total sample size. There
are 17,918 companies which are included in the analysis.
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Table 8: The median absolute difference of the estimates of α
in the left tail for the six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 0.22 0.70 0.46 1.02 1.40
KS rat 0.22 0.00 1.14 0.77 1.45 1.80

5% 0.70 1.14 0.00 0.50 0.40 0.68
Eye-Ball 0.46 0.77 0.50 0.00 0.86 1.19

Drees 1.02 1.45 0.40 0.86 0.00 0.27
Du Bo 1.40 1.80 0.68 1.19 0.27 0.00

This table presents the results of applying the six different methods to es-
timate α for left tail of stock returns. The data is from the CRSP database
that contains all individual stocks data from 1925-12-31 to 2013-12-31 for
NYSE, AMEX, NASDAQ and NYSE Arca. The matrix presents the me-
dian absolute difference between the KS distance metric, KS ratio method,
5% threshold, automated Eye-Ball method, the iterative method by Drees
and Kaufmann (1998) and the Double Bootstrap by Danielsson et. al.
(2001). The stocks for which one of the methods has α̂ > 1, 000 are ex-
cluded. The maximum k is cutt-off at 15% of the total sample size. There
are 17,918 companies which are included in the analysis.

Table 9: The median absolute difference of the estimates of α
in the right tail for the six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 0.28 0.59 0.42 0.74 1.16
KS rat 0.28 0.00 1.12 0.78 1.25 1.64

5% 0.59 1.12 0.00 0.50 0.30 0.59
Eye-Ball 0.42 0.78 0.50 0.00 0.73 1.10

Drees 0.74 1.25 0.30 0.73 0.00 0.31
Du Bo 1.16 1.64 0.59 1.10 0.31 0.00

This table presents the results of applying the six different methods to esti-
mate α for right tail of stock returns. The data is from the CRSP database
that contains all the individual stocks data from 1925-12-31 to 2013-12-
31 for NYSE, AMEX, NASDAQ and NYSE Arca. The matrix presents
the median absolute difference between the KS distance metric, KS ratio
method, 5% threshold, automated Eye-Ball method, the iterative method
by Drees and Kaufmann (1998) and the Double Bootstrap by Danielsson
et. al. (2001). The stocks for which one of the methods has α̂ > 1, 000
are excluded. The maximum k is cutt-off at 15% of the total sample size.
There are 17,918 companies which are included in the analysis.
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Table 10: The correlation matrix of α̂ in the left tail for the six
different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 0.10 0.38 0.49 0.24 0.24
KS rat 0.10 1.00 0.05 0.06 0.04 0.03

5% 0.38 0.05 1.00 0.68 0.33 0.65
Eye-Ball 0.49 0.06 0.68 1.00 0.26 0.49

Drees 0.24 0.04 0.33 0.26 1.00 0.24
Du Bo 0.24 0.03 0.65 0.49 0.24 1.00

This table presents the correlation matrix for the estimates of α by ap-
plying the six different methods for left tail of stock returns. The data is
from the CRSP database that contains all the individual stocks data from
1925-12-31 to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca.
The different methods are the KS distance metric, KS ratio method, 5%
threshold, automated Eye-Ball method, the iterative method by Drees and
Kaufmann (1998) and the Double Bootstrap by Danielsson et. al. (2001).
The stocks for which one of the methods has α̂ > 1, 000 are excluded. The
maximum k is cut-off at 15% of the total sample size. There are 17,918
companies which are included in the analysis.

Table 11: The correlation matrix of α̂ in the right tail for the
six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 0.13 0.41 0.55 0.32 0.26
KS rat 0.13 1.00 0.05 0.06 0.05 0.04

5% 0.41 0.05 1.00 0.72 0.39 0.62
Eye-Ball 0.55 0.06 0.72 1.00 0.37 0.45

Drees 0.32 0.05 0.39 0.37 1.00 0.25
Du Bo 0.26 0.04 0.62 0.45 0.25 1.00

This table presents the correlation matrix for the estimates of α by apply-
ing the six different methods for right tail of stock returns. The data is
from the CRSP database that contains all the individual stocks data from
1925-12-31 to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca.
The different methods are the KS distance metric, KS ratio method, 5%
threshold, automated Eye-Ball method, the iterative method by Drees and
Kaufmann (1998) and the Double Bootstrap by Danielsson et. al. (2001).
The stocks for which one of the methods has α̂ > 1, 000 are excluded. The
maximum k is cut-off at 15% of the total sample size. There are 17,918
companies which are included in the analysis.
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Table 12: The mean absolute difference of the estimates of k∗ in
the left tail for the six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 80.51 126.78 78.18 224.47 360.98
KS rat 80.51 0.00 172.30 34.54 294.60 439.86

5% 126.78 172.30 0.00 142.01 140.18 267.66
Eye-Ball 78.18 34.54 142.01 0.00 266.68 408.87

Drees 224.47 294.60 140.18 266.68 0.00 168.47
Du Bo 360.98 439.86 267.66 408.87 168.47 0.00

This table presents the results of applying the six different methods to estimate
α for left tail of stock returns. The data is from the CRSP database that
contains all the individual stocks data from 1925-12-31 to 2013-12-31 for NYSE,
AMEX, NASDAQ and NYSE Arca. The matrix presents the mean absolute
difference between the KS distance metric, KS ratio method, 5% threshold,
automated Eye-Ball method, the iterative method by Drees and Kaufmann
(1998) and the Double Bootstrap by Danielsson et. al. (2001). The stocks for
which one of the methods has α̂ > 1, 000 are excluded. The maximum k is
cut-off at 15% of the total sample size. There are 17,918 companies which are
included in the analysis.

Table 13: The mean absolute difference of the estimates of k∗ in
the right tail for the six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 0.00 92.13 128.39 85.37 195.12 349.54
KS rat 92.13 0.00 174.16 28.10 266.57 438.43

5% 128.39 174.16 0.00 149.29 120.49 264.38
Eye-Ball 85.37 28.10 149.29 0.00 243.99 413.43

Drees 195.12 266.57 120.49 243.99 0.00 191.04
Du Bo 349.54 438.43 264.38 413.43 191.04 0.00

This table presents the results of applying the six different methods to estimate
k∗ for right tail of stock returns. The data is from the CRSP database that
contains all the individual stocks data from 1925-12-31 to 2013-12-31 for NYSE,
AMEX, NASDAQ and NYSE Arca. The matrix presents the mean absolute
difference between the KS distance metric, KS ratio method, 5% threshold,
automated Eye-Ball method, the iterative method by Drees and Kaufmann
(1998) and the Double Bootstrap by Danielsson et. al. (2001). The stocks for
which one of the methods has α̂ > 1, 000 are excluded. The maximum k is
cut-off at 15% of the total sample size. There are 17,918 companies which are
included in the analysis.
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Table 14: The correlation matrix of α̂ (k∗) in the left tail for the
six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 0.10 0.38 0.49 0.24 0.24
KS rat 0.10 1.00 0.05 0.06 0.04 0.03

5% 0.38 0.05 1.00 0.68 0.33 0.65
Eye-Ball 0.49 0.06 0.68 1.00 0.26 0.49

Drees 0.24 0.04 0.33 0.26 1.00 0.24
Du Bo 0.24 0.03 0.65 0.49 0.24 1.00

This table presents the correlation matrix for the estimates of α by applying the
six different methods for left tail of stock returns. The data is from the CRSP
database that contains all the individual stocks data from 1925-12-31 to 2013-
12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The different methods
are the KS distance metric, KS ratio method, 5% threshold, automated Eye-
Ball method, the iterative method by Drees and Kaufmann (1998) and the
Double Bootstrap by Danielsson et. al. (2001). The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut-off at 15% of
the total sample size. There are 17,918 companies which are included in the
analysis.

Table 15: The correlation matrix of α̂ (k∗) in the right tail for the
six different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 0.13 0.41 0.55 0.32 0.26
KS rat 0.13 1.00 0.05 0.06 0.05 0.04

5% 0.41 0.05 1.00 0.72 0.39 0.62
Eye-Ball 0.55 0.06 0.72 1.00 0.37 0.45

Drees 0.32 0.05 0.39 0.37 1.00 0.25
Du Bo 0.26 0.04 0.62 0.45 0.25 1.00

This table presents the correlation matrix for the estimates of α by applying the
six different methods for right tail of stock returns. The data is from the CRSP
database that contains all the individual stocks data from 1925-12-31 to 2013-
12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The different methods
are the KS distance metric, KS ratio method, 5% threshold, automated Eye-
Ball method, the iterative method by Drees and Kaufmann (1998) and the
Double Bootstrap by Danielsson et. al. (2001). The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut-off at 15% of
the total sample size. There are 17,918 companies which are included in the
analysis.
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Table 16: The correlation matrix of k∗ in the left tail for the six
different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 -0.04 -0.00 -0.10 0.19 -0.11
KS rat -0.04 1.00 -0.01 0.17 0.16 -0.27

5% -0.00 -0.01 1.00 0.00 0.01 0.01
Eye-Ball -0.10 0.17 0.00 1.00 -0.08 -0.26

Drees 0.19 0.16 0.01 -0.08 1.00 -0.29
Du Bo -0.11 -0.27 0.01 -0.26 -0.29 1.00

This table presents the correlation matrix for the estimates of k∗ by applying
the six different methods for left tail of stock returns. The data is from the
CRSP database that contains all the individual stocks data from 1925-12-31
to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The different
methods are the KS distance metric, KS ratio method, 5% threshold, auto-
mated Eye-Ball method, the method by Drees and Kaufmann (1998) and the
Double Bootstrap by Danielsson et. al. (2001). The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut-off at 15% of
the total sample size. There are 17,918 companies which are included in the
analysis.

Table 17: The correlation matrix of k∗ in the right tail for the six
different methods

KS dif KS rat 5% Eye-Ball Drees Du Bo
KS dif 1.00 -0.13 -0.01 -0.11 0.21 -0.06
KS rat -0.13 1.00 0.02 0.20 0.13 -0.16

5% -0.01 0.02 1.00 0.00 -0.00 0.02
Eye-Ball -0.11 0.20 0.00 1.00 -0.06 -0.22

Drees 0.21 0.13 -0.00 -0.06 1.00 -0.10
Du Bo -0.06 -0.16 0.02 -0.22 -0.10 1.00

This table presents the correlation matrix for the estimates of k∗ by applying
the six different methods for right tail of stock returns. The data is from the
CRSP database that contains all the individual stocks data from 1925-12-31
to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The different
methods are the KS distance metric, KS ratio method, 5% threshold, auto-
mated Eye-Ball method, the iterative method by Drees and Kaufmann (1998)
and the Double Bootstrap by Danielsson et. al. (2001). The stocks for which
one of the methods has α̂ > 1, 000 are excluded. The maximum k is cut-off at
15% of the total sample size. There are 17,918 companies which are included
in the analysis.
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B.2 Figures

Figure 6: Simulations Brownian motion for Symmetric Stable parameters

These two figures show the simulations for the limit function in (11). The parameters
are for the Symmetric Stable distribution, which are found in Table 4 of the Appendix.
The value for α for the different lines is stated in the legend. Here T is 1,500, therefore,
the interval between w(si) − w(si+1) is normally distributed with mean 0 and variance
1/k. The path of the Brownian motion is simulated 1,000 times. The top figure shows the
average number of order statistics at which the largest absolute distance is found for a
given k. The bottom graph depicts the average distance found for the largest deviation
at a given k. The top and bottom graphs are related by the fact that the bottom graph
depicts the distances found at the ith observation found in the top graph.
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Figure 7: Simulations Brownian motion for Fréchet parameters

These two figures show the simulations for the limit function in (11). The parameters are
for the Fréchet distribution, which are found in Table 4 of the Appendix. The value for
α for the different lines is stated in the legend. Here T is 1,500, therefore, the interval
between w(si) − w(si+1) is normally distributed with mean 0 and variance 1/k. The
path of the Brownian motion is simulated 1,000 times. The top figure shows the average
number of order statistics at which the largest absolute distance is found for a given k.
The bottom graph depicts the average distance found for the largest deviation at a given
k. The top and bottom graphs are related by the fact that the bottom graph depicts the
distances found at the ith observation found in the top graph.
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Figure 8: Optimal α̂ for quantile metrics (Symmetric Stable distribution)

This Figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme order statistics over which the metric is
optimized. In the upper left graph this is done for the KS distance metric for different
Symmetric Stable distributions with degrees of freedom α. This is also done for the mean
squared distance, mean absolute distance and the criteria used by Dietrich et al. (2002).
The simulation experiment has 10,000 iterations for sample size n=10,000.
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Figure 9: Optimal α̂ for quantile metrics (Fréchet distribution)

This Figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme order statistics over which the metric is
optimized. In the upper left graph this is done for the KS distance metric for different
Fréchet distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n=10,000.
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Figure 10: Optimal k for quantile metrics (Symmetric Stable distribution)

This Figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme order statistics over which the metric is optimized.
In the upper left graph this is done for the KS distance metric for different Symmetric
Stable distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n = 10, 000.
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Figure 11: Optimal k for quantile metrics (Fréchet distribution)

This Figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme order statistics over which the metric is optimized.
In the upper left graph this is done for the KS distance metric for different Fréchet
distributions with degrees of freedom α. This is also done for the mean squared distance,
mean absolute distance and the criteria used by Dietrich et al. (2002). The simulation
experiment has 10,000 iterations for sample size n = 10, 000.
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Figure 12: Shape of the Hill Plot for different distributions

The Figure depicts the Hill estimates for the Student-t(3), Symmetric Stable(1.7), and
Fréchet(3) distribution against the number of order statistics used in the estimation.
These graphs are constructed by taking the average Hill estimates over 500 simulations.
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Figure 13: The shape of the Hill plot for the Student-t distribution

The Figure depicts the Hill estimates for the Student-t distribution family against the
number of order statistics used in the estimation. This is done for different corresponding
tail indices. These graphs are constructed by taking the average Hill estimates over 500
simulations.
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Figure 14: The shape of the Hill plot for the Symmetric Stable distribution

The Figure depicts the Hill estimates for the Symmetric Stable distribution family against
the number of order statistics used in the estimation. This is done for different corre-
sponding tail indices. These graphs are constructed by taking the average Hill estimates
over 500 simulations.
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Figure 15: The shape of the Hill plot for the Fréchet distribution

The Figure depicts the Hill estimates for the Fréchet distribution family against the
number of order statistics used in the estimation. This is done for different corresponding
tail indices. These graphs are constructed by taking the average Hill estimates over 500
simulations.
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Figure 16: The shape of the Hill plot for the ARCH stochastic process

The Figure depicts the Hill estimates for the ARCH(1) process against the number of
order statistics used in the estimation. This is done for different corresponding tail
indices. These graphs are constructed by taking the average Hill estimates over 500
simulations.
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Figure 17: Optimal α̂ for quantile metrics (Symmetric Stable distribution)

This Figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme order statistics over which the metric is
optimized. In the upper left graph this is done for the KS distance metric for different
Symmetric Stable distributions with degrees of freedom α. This is also done for the mean
squared distance, mean absolute distance and the criteria used by Dietrich et al. (2002).
The simulation experiment has 10,000 iterations for sample size n=10,000.
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Figure 18: Optimal α̂ for quantile metrics (Fréchet distribution)

This Figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme order statistics over which the metric is
optimized. In the upper left graph this is done for the KS distance metric for different
Fréchet distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n=10,000.
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Figure 19: Optimal k for quantile metrics (Symmetric Stable distribution)

This Figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme order statistics over which the metric is optimized.
In the upper left graph this is done for the KS distance metric for different Symmetric
Stable distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n = 10, 000.
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Figure 20: Optimal k for quantile metrics (Fréchet distribution)

This Figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme order statistics over which the metric is optimized.
In the upper left graph this is done for the KS distance metric for different Fréchet
distributions with degrees of freedom α. This is also done for the mean squared distance,
mean absolute distance and the criteria used by Dietrich et al. (2002). The simulation
experiment has 10,000 iterations for sample size n = 10, 000.
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Figure 21: Quantile estimation bias different methodologies (Symmetric Stable

distribution)

This Figure show the bias induced by using the quantile estimator presented in Equation
(9). We use the k∗ from the different methodologies to estimate α(k∗) and the scale
parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000 are
drawn from the Symmetric Stable distribution family with the shape parameter indicated
at the top of the picture. The i on the horizontal axis gives the probability level i/n at
which the quantile is estimated. Moving rightwards along the x-axis represents a move
towards the center of the distribution.
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Figure 22: Quantile estimation bias different methodologies (Fréchet Distribution)

This Figure show the bias induced by using the quantile estimator presented in Equation
(9). We use the k∗ from the different methodologies to estimate α(k∗) and the scale
parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000 are
drawn from the Fréchet distribution family with the shape parameter indicated at the
top of the picture. The i on the horizontal axis gives the probability level i/n at which
the quantile is estimated. Moving rightwards along the x-axis represents a move towards
the center of the distribution.
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Figure 23: Quantile estimation different methodologies median difference

(Student-t distribution)

This Figure show the median difference induced by using the quantile estimator presented
in Equation (9). We use the k∗ from the different methodologies to estimate α(k∗)
and the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size
n = 10, 000 are drawn from the Student-t distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the x-axis represents a
move towards the center of the distribution.
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Figure 24: Quantile estimation different methodologies median difference (Sym-

metric Stable distribution)

This Figure show the median difference induced by using the quantile estimator presented
in Equation (9). We use the k∗ from the different methodologies to estimate α(k∗)
and the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size
n = 10, 000 are drawn from the Stable distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the x-axis represents a
move towards the center of the distribution.
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Figure 25: Quantile estimation different methodologies median difference (Fréchet

distribution)

This Figure show the median difference induced by using the quantile estimator presented
in Equation (9). We use the k∗ from the different methodologies to estimate α(k∗)
and the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size
n = 10, 000 are drawn from the Fréchet distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the x-axis represents a
move towards the center of the distribution.
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